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Phellinus linteus (PL) has been used as a traditional herbal medicine owing to its immune regulatory activity. Previous studies
reported that PL grown on germinated brown rice (PBR) exerted immunomodulatory, anticancer, and anti-inflammatory
activities. However, role of PBR on type I hypersensitive reactions has not been studied yet. We found that PBR contained more
polyphenolic compounds than PL extract. Among fractions, PBR butanol fraction (PBR-BuOH) significantly contained the most
amounts of total polyphenolic contents compared with all extracts or fractions. In this study, anti-allergic activity of PBR-BuOH
was examined using in vitro and in vivo models of immunoglobulin E/antigen- (IgE/Ag-) stimulated allergy. ,e inhibitory
activity of degranulation was higher in PBR-BuOH (IC50 41.31± 0.14 μg/mL) than in PL-BuOH (IC50 108.07± 8.98 μg/mL). We
observed that PBR-BuOH suppressed calcium influx and the level of TNF-α and IL-4 mRNA expression in a dose-dependent
manner. ,e phosphorylation of Fyn, Gab2, PI3K, Syk, and IκB protein is reduced by PBR-BuOH. Oral administration of PBR-
BuOH inhibited allergic reactions including the extravasation of Evans blue dye, ear swelling, and infiltration of immune cells in
mice with passive cutaneous anaphylaxis (PCA). ,ese findings suggest that PBR-BuOH might be used as a functional food, a
health supplement, or a drug for preventing type I hypersensitive allergic disease.

1. Introduction

Type I hypersensitivity reaction is mediated by immuno-
globulin E (IgE) antibodies binding to high-affinity IgE
receptors (FcεRI) [1–3] and includes allergic rhinitis, atopic
dermatitis, and asthma [4, 5]. ,e prevalence rate of type I
hypersensitivity is increased by triggers such as food,
medications, insects, and unspecified causes over the last 10
years worldwide [6–11]. ,e current treatments for IgE-
mediated allergic diseases are merely confined to the
avoidance of allergens, anti-histamine treatment, and cor-
ticosteroid therapy with less efficacy and more side effects.
However, it is reported that immediate hypersensitivity
reactions could be induced by the unidentified food allergens
[11–14], corticosteroids [11, 15], aspirin [16], progestogens
[17], and antibiotics [18]. Current therapeutic agents for

reducing the allergic reaction such as corticosteroids
downregulated the expression of inflammatory mediators
such as histamine and cytokines, but they can cause side
effects that induce anaphylaxis involving urticaria, bron-
chospasm, angioedema, and cardiovascular collapse [11, 19].
Many reports are interested in improving the quality of care
for those who suffer from allergic diseases [11] and exam-
ining whether the various complementary and alternative
medicine therapies such as acupuncture, diet therapy, herbal
medicines, and physical techniques are used for regulating
diverse allergic disorders [7].

Phellinus linteus (PL) has been traditionally used as a
natural medicine in Asian countries for immune regulatory
activities [20–22]. Wild PL cannot be obtained in large
quantities because they are difficult to grow onmulberry tree
and are expensive [23]. In this study, we used Phellinus

Hindawi
Evidence-Based Complementary and Alternative Medicine
Volume 2019, Article ID 1485015, 15 pages
https://doi.org/10.1155/2019/1485015

mailto:nimpi79@hanmail.net
https://orcid.org/0000-0003-1017-7056
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1485015


linteus grown on germinated brown rice (PBR), which is
inoculated and cultured the mycelium of PL on germinated
brown rice, that is, different from regular PL. In the previous
studies, PBR exhibited physiological functions such as anti-
inflammatory [24, 25], anticancer [26, 27], and anti-oxidant
activities [23]. Unlike PL, PBR reduces IgE production
through downregulating,2 responses and has the immune-
modulating of the balance of ,1 and ,2 cytokines in
murine mesenteric lymph node lymphocytes [28]. ,e re-
ducing IgE production of ,2 cell helps to modulate the
hypersensitivity via suppressing IL-4 secretion and B cell
activation in IgE-FcεRI-mediated allergic responses. In ad-
dition, previously they reported that ergosterol peroxide and
atractylenolide III were found in PBR but not in wild PL
[29, 30].,e contents of β-glucan and c-aminobutyric acid in
PBR was higher than that in regular PL and brown rice
[25, 31]. Ergosterol peroxide possesses immunosuppressive
[32], anti-inflammatory [33], and antibacterial effects [34].
β-glucan and c-aminobutyric acid inhibited the allergic ac-
tivity in both IgE-mediated mast cells and type I hypersen-
sitivity animal models [35–37]. However, the effect of PBR
and its underlying mechanisms against type I hypersensitivity
reaction has not been studied yet. In this study, we in-
vestigated the inhibitory activity of PBR against IgE/Ag-
stimulated RBL-2H3 cell activation and PCA reaction inmice.

2. Materials and Methods

2.1. Preparation of PBR Extract and Fractionation.
Mycelia of PL (voucher number Kucari 0904) produced by
solid-state culture and PBR (voucher number Kucari 0905)
were kindly provided by the Cell Activation Research In-
stitute (Seoul, Republic of Korea) and deposited in the
Herbarium at the College of Bioscience and Biotechnology,
Konkuk University (Seoul) [25, 26]. Each PBR or PL (1 kg)
was powdered using a grinder and then was extracted with
sterilized water (dry sample : water, 1 : 2) for 3 h at 95–100°C
(Figure 1(a)). After filtration, the hot water extract was
concentrated with a vacuum evaporator (Figure 1(a), yield of
PBR and PL, 31.3± 1.1 and 24.9± 2.2%). Concentrated PBR
was successively partitioned with hexane (yield 7.5± 0.9%),
ethyl acetate (EA, 9.6± 0.5%), and water saturated n-butanol
(BuOH, 9.9± 0.5%) (Figure 1(a)). PL also was successively
partitioned with butanol using the same procedure as PBR.
Each layer was concentrated by a rotary evaporator using
vacuum (EYELA, Tokyo, Japan) at 40°C.

2.2. Determination of Total Polyphenol Contents (TPCs).
TPC in each extract was determined using a modified
Folin–Ciocalteu method [38]. In each tube, 20 μL of each
extract and fractions of PBR or PL (50mg/mL) and gallic
acid (0–500 μg/mL) was incubated with 20 μL of Folin–
Ciocalteu reagent for 5min. ,en, 120 μL of 7% sodium
carbonate (Na2CO3) was added and incubated at room
temperature (RT) for 30min. Absorbance was measured at
720 nm using a UV-Visible spectrophotometer (Epoch,
BioTek Instruments, VT, USA). TPC was expressed as mg of
gallic acid equivalents (GAEs)/g of dry mass.

2.3. Cell Culture. RBL-2H3 cells (rat basophilic leukemia
cells, catalog number CRL-2256) were obtained from the
American Type Culture Collection (ATCC) Biological Re-
source Center (Manassas, VA, USA). Cells were cultured in
minimum essential medium (MEM; Invitrogen Co.,
Carlsbad, CA, USA) supplemented with 15% fetal bovine
serum (FBS; Gibco, Grand Island, NY, USA) and 100U/mL
penicillin-streptomycin (Gibco) and were grown in a
75Tcell culture flask at 37°C under humidified air containing
5% CO2 [1].

2.4. β-Hexosaminidase Secretion Assay. RBL-2H3 cells
(2×105 cells/well) were sensitized with 200 ng/mL of dini-
trophenyl- (DNP-) specific IgE (Sigma-Aldrich, St. Louis,
MO, USA) overnight. After washing with PIPES buffer
(25mM PIPES at pH 7.2, 119mM NaCl, 5mM KCl, 1mM
CaCl2, 0.4mM MgCl2·6H2O, 40mM NaOH, 5.6mM glu-
cose, and 0.1% BSA), cells were treated with PBR fractions
(25 and 50 μg/mL) or PP2 (Calbiochem, La Jolla, CA, USA),
an Src tyrosine kinase inhibitor [1, 39]. PP2 blocks the
phosphorylation of Syk [1, 39]. After 30min, cells were
stimulated with 200 ng/mL of antigen (DNP-BSA; Sigma-
Aldrich, St. Louis, MO, USA) for 15min at 37°C. ,ereafter,
the collected supernatant was mixed with 30 μL of 1mM
p-nitrophenyl-acetyl-β-D-glucosaminide (p-NAG; Sigma-
Aldrich) in 0.1M citrate buffer (0.1M sodium citrate, 0.1M
citric acid, pH 4.5) and incubated at 37°C for 2 h. ,en,
200 μL of 0.1M Na2CO3/NaHCO3 solution (pH 10.0) was
added to stop the reaction. Degranulation was calculated
with the measurement of the released β-hexosaminidase as
previously described [30, 40].

2.5. Fluorescence Assay of Intracellular Calcium Using Fluo-4
Direct Assay. Intracellular calcium levels were measured as
previously described [30, 40, 41]. RBL-2H3 cells (2×104
cells/well) were sensitized with 200 ng/mL of DNP-specific
IgE overnight and then pretreated with PBR-BuOH (25 and
50 μg/mL) for 30min. RBL-2H3 cells were incubated with
50 μL of Fluo-4 solution (Fluo-4 Direct Calcium kit, Invi-
trogen, Kumamoto, Japan) for 30min at 37°C and then
stimulated with 200 ng/mL DNP-BSA (Ag). Images were
taken every 5min on a fluorescent microscope (Nikon
Eclipse Ti, Nikon Instruments, Melville, NY) using filter
(excitation� 494 nm, emission� 516 nm). ,en, the fluo-
rescence intensity was quantitated by Image J software.

2.6. Cell Viability Assay. Cell viability was determined using
the Cell Counting Kit-8 (CCK-8) (Dojindo Laboratories,
Kumamoto, Japan) as described previously [1, 40]. RBL-2H3
cells (2×104 cells/well) were incubated with PBR fractions or
PL fraction (25 and 50 μg/mL) at 37°C for 24 h, and then
10 μL of CCK-8 solution was added and incubated at 37°C
for 2 h. ,e absorbance was measured with a microplate
reader at 450 nm (Epoch, BioTek Instruments, VT, USA).

2.7. Reverse Transcription-Polymerase Chain Reaction (RT-
PCR). Reverse transcription PCR was performed as
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described previously [1, 40]. Total RNA was isolated from
RBL-2H3 cells, using TRIzol reagent, according to the
manufacturer’s protocol (Invitrogen, Carlsbad, CA). PCR
was performed according to the manufacturer’s protocol
(Qiagen, Hilden, Germany). PCR program for TNF-α was
done as follows: initial denaturation at 94°C for 2min,
followed by 30 cycles of denaturation at 94°C for 20 s,
annealing at 62.2°C for 10 s, and extension at 72°C for 45 s,
with a final extension at 72°C for 5min. PCR program for IL-
4 was done as follows: initial denaturation at 94°C for 2min,
followed by 30 cycles of denaturation at 94°C for 20 s,
annealing at 56°C for 10 s, and extension at 72°C for 25 s,
with a final extension at 72°C for 5min. PCR program for
GAPDHwas done as follows: initial denaturation at 94°C for
2min, followed by 30 cycles of denaturation at 94°C for 20 s,
annealing at 62°C for 10 s, and extension at 72°C for 25 s,
with a final extension at 72°C for 5min [42]. PCR program

for Fcε receptor was performed as follows: initial de-
naturation at 95°C for 15min, followed by 35 cycles of
denaturation at 94°C for 30 s, annealing at 49°C for 90 s (for
FcεRI α-subunit) or annealing at 51.9°C for 90 s (for FcεRI
β-subunit), and extension at 72°C for 90 s, with a final ex-
tension step at 72°C for 5min. PCR program for IFN-c was
done as follows: initial denaturation at 94°C for 2min,
followed by 30 cycles of denaturation at 94°C for 20 s,
annealing at 57.3°C for 10 s, and extension at 72°C for 25 s,
with a final extension at 72°C for 5min. ,e following
primers were used: TNF-α forward 5′-CAC CAC GCT CTT
CTG TCT ACT GAA C-3′; TNF-α reverse 5′-CCG GAC
TCC GTG ATG TCT AAG TAC T-3′; IL-4 forward 5′-ACC
TTG CTG TCA CCC TGT TC-3′; IL-4 reverse 5′-TTG TGA
GCG TGG ACT CAT TC-3′; FcεRI α-subunit forward 5′-
AAT GGA TCC ACA ATG ATA GC- 3′; FcεRI α-subunit
reverse 5′-AAT GAT GGG AAA ATG AGT TG-3′; FcεRI
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Figure 1: ,e procedure for sample extraction and fractionation (a) and the measurement of total polyphenol content in Phellinus linteus
grown on germinated brown rice (PBR) and Phellinus linteus (PL) (b) (###p< 0.001 vs. total hot water extract of PL and ∗∗∗p< 0.001 vs.
total hot water extract of PBR). Data are shown as mean± SD values (n � 3). GAEs, gallic acid equivalents.
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β-subunit forward 5′- GCA AAAGCT CTA CCA GAGAA-
3′; FcεRI β-subunit reverse 5′-CTA CGC TCA AAT TCT
TGT CC-3′; IFN-c forward 5′-CA CAC TGC ATC TTG
GCT TTG-3′; IFN-c reverse 5′-TC CAC ATC TAT GCC
ACT TGA G-3′; GAPDH forward 5′-CTT CAC CAC CAT
GGAGAAGGCTG-3′; GAPDH reverse 5′-GACCACAGT
CCA TGC CAT CAC TG-3′ (Cosmo Genetech, Seoul,
Republic of Korea). ,e PCR product was separated by
electrophoresis in 1.5% agarose gels. ,e bands were ana-
lyzed by RT-PCR using LI-COR Odyssey (LI-COR Bio-
sciences lnc., Lincoln, NE, USA).

2.8. Western Blotting. Protein analysis was performed as
described previously [1, 31, 40]. Cells (1× 106 cells/well) were
lysed in RIPA cell lysis buffer, according to the manufac-
turer’s protocol (Cell Signaling Technology, Beverly, MA,
USA). ,e protein concentrations were determined using a
BCA Protein Assay kit (,ermo Scientific, Rockford, USA).
Equal amounts of proteins were loaded into each well and
electrophoretically separated by 7–10% SDS-PAGE. ,e
separated proteins were transferred to nitrocellulose
membranes and blocked in 5% nonfat milk. Samples were
probed with the following primary antibodies: phosphory-
lated Fyn (Santa Cruz, CA, USA), phosphorylated-the
adaptor growth-factor-receptor-bound protein 2 (GRB2)-
associated binding protein 2 (Gab2, Cell signaling tech-
nology, MA, USA), Gab2 (Cell signaling technology),
phosphorylated-phosphoinositide 3-kinase (PI3K, Cell sig-
naling technology), phosphorylated-Syk (Cell signaling
technology), Syk (Cell signaling technology), phosphory-
lated-IκBα (Cell signaling technology), NFκB (Cell signaling
technology), phosphorylated-ERK1/2 (Cell signaling tech-
nology), ERK1/2 (Cell signaling technology), and β-actin
(Cell signaling technology). ,e membranes were washed in
TBST (Tris Buffered Saline with Tween 20) buffer (Bio-Rad
Laboratories, Hercules, CA, USA) and were incubated with
horseradish peroxidase-labeled secondary antibody (Cell
signaling technology or Santa Cruz). ,e bands were vi-
sualized and analyzed using LI-COR Odyssey (LI-COR
Biosciences, Lincoln, NE, USA).

2.9. Passive Cutaneous Anaphylaxis (PCA). Six-week-old
female BALB/c mice, which are housed in under specific
pathogen free conditions, were obtained from Orient Bio
(Orient Bio Inc., Gyeonggi-do, Seongnam, Republic of
Korea). ,ey were maintained in cages at 22± 2°C and
humidity 55± 5% and were exposed to 12 h light/12 h
darkness cycles each day. Animals were randomly divided
into four groups of six mice and were acclimated to labo-
ratory conditions for 5–7 days. ,ey were fed with standard
diet and allowed free access to drinking water. All animal
experiments were approved by the Institutional Animal Care
and Use Committee (IACUC) at Gachon University (Orient
Bio Inc., Gyeonggi-do, Seongnam, Republic of Korea)
(GIACUC-R2017014).

DNP-specific IgE (1 μg/mL) was injected into the ear of
the mice. After 24 h, mice were intravenously injected with
1mg/mL DNP-BSA (Ag) containing 1% Evans blue dye. To

measure the activity of PBR-BuOH (25mg/kg) or cetirizine
(20mg/kg, CZ), mice were orally administered the above-
mentioned dosages 1 h before DNP-BSA administration.
,e dye was extracted from each excised ear tissue with
700 μL formamide at 63°C overnight as previously described
[1, 30]. ,e absorbance was measured with a microplate
spectrophotometer at 620 nm (Epoch, BioTek Instruments,
VT, USA).

2.10. Histopathologic Assessment. Ear samples were fixed
using 10% formalin and were embedded in paraffin as
previously described [1, 43]. Paraffin-embedded sections
were stained with hematoxylin and eosin (H&E); in general,
the nuclei are stained blue-purple, whereas the cytoplasm
and extracellular matrix are stained pink [1, 44]. Images of
stained samples were taken by Nikon eclipse Ti (Nikon
Instruments Incorporated, Melville, NY) using CCD camera
(Point Grey Research Inc., Richmond, BC, Canada).

2.11. Statistical Analysis. Results are presented as mean-
s± standard deviation (SD). Statistical differences between
the control and the treatment groups were determined by
Student’s t-test and one-way ANOVA followed by Dunnett’s
t-test or Duncan’s t-test (p< 0.05). ,e experimental data
were analyzed using the Statistical Package for the Social
Sciences-12 (SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Total Polyphenol Content (TPC) in PBR. TPC in total hot
water extract of PBR (9.16± 0.16mg of gallic acid equivalents
(GAEs)/g of dry mass, ###p< 0.001) was significantly higher
than that in PL (7.71± 0.06mg of GAEs/g of dry mass,
Figure 1(b)). TPC was detected in all fractions (hexane, ethyl
acetate, and n-butanol). Among the fractions, TPC in PBR
butanol fraction (PBR-BuOH, 13.15± 0.31mg of GAEs/g of
dry mass of TPC, ∗∗∗p< 0.001) was highest among total
water extract, hexane, or ethyl acetate fractions (Figure 1(b)).
,ese data indicate PBR-BuOH might exert biological ac-
tivity due to the presence of active molecules.

3.2. Effect of PBR on Degranulation of IgE/Antigen- (IgE/Ag-)
Stimulated RBL-2H3 Cells. To elucidate the antiallergic
activity of PBR (total hot water, hexane, EA, BuOH, and
water), we evaluated whether they could inhibit β-hexosa-
minidase release (an index of degranulation) in IgE/Ag-
stimulated RBL-2H3 cells. As shown in Figure 2(a),
β-hexosaminidase release in the PBR-BuOH-treated group
was inhibited at a concentration of 41.31± 0.14 μg/mL (IC50,
50% inhibitory concentration of degranulation). IC50 values
suggested that PBR-BuOH suppressed degranulation most
efficiently compared to other PBR fractions. In addition,
IC50 values of PBR-BuOH treatment (41.31± 0.14 μg/mL)
are lower than those of PL-BuOH treatment (108.07
± 8.98 μg/mL). ,us, our data showed that PBR-BuOH
significantly inhibited degranulation in IgE/Ag-stimulated
RBL-2H3 cells (Figure 2(a)) and had noneffective cell
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viability at a concentration of 25 and 50 μg/mL (Figure 2(b)).
,erefore, PBR-BuOH had been selected for further studies.

3.3. Effect of PBR on Proinflammatory Cytokines mRNA Ex-
pression in IgE/Ag-Stimulated RBL-2H3 Cells. We evaluated
whether PBR-BuOH decreased the level of IgE/Ag-induced
TNF-α and IL-4 mRNA expression by RT-PCR in IgE/Ag-

stimulated RBL-2H3 cells. IgE/Ag-stimulated RBL-2H3
secrete TNF-α and IL-4 that promote the release of in-
flammatory mediators such as nitric oxide, reactive oxygen
species, and other cytokines and induce IgE antibody pro-
duction of B cells compared with the nontreated control
(Figure 3). PBR-BuOH (25 and 50 μg/mL) significantly
suppressed the level of IgE/Ag-induced TNF-α and IL-4
mRNA expression in a dose-dependent manner (Figure 3).
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Figure 2: Effect of PBR fractions on degranulation of IgE/Ag-stimulated RBL-2H3 cells. (a) Degranulation was determined by the amount of
β-hexosaminidase released in IgE/Ag-stimulated RBL-2H3 cells. RBL-2H3 cells were treated in the presence or absence of PBR or PL
(∗∗∗p< 0.001, ∗p< 0.05 vs. IgE/Ag-stimulated control). (b) Cell viability of RBL-2H3 cells was measured using the Cell Counting Kit-8
(CCK-8) assay. RBL-2H3 cells (2×104 cells/well) were treated in the presence or absence of PBR or PL fractions for 24 h. Each value
represents the mean± SD of three independent experiments. Data were analyzed with one-way ANOVA/Dunnett’s t-test (∗∗p< 0.01,
∗p< 0.05 vs. nontreated control). EA, ethyl acetate; BuOH, butanol.
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In addition, PBR-hot water extracts significantly increased
the level of IFN-c mRNA expression in a dose-dependent
manner in IgE/Ag-induced RBL-2H3 cells (Figure 3).

3.4.EffectofPBRonCalciumInfluxof IgE/Ag-StimulatedRBL-
2H3 Cells. IgE-mediated degranulation requires increased
calcium mobilization [40, 41]. To evaluate whether PBR-
BuOH affects the calcium influx induced by IgE/antigen,
RBL-2H3 cells were stained with calcium-sensitive dye Fluo-
4. We observed that fluorescence intensity decreased in
PBR-BuOH-treated RBL-2H3 cells, compared with that in
IgE/Ag-stimulated RBL-2H3 cells (Figure 4(a)). ,e quan-
titative analysis revealed that the levels of intracellular
calcium were decreased in PBR-BuOH-treated RBL-2H3
cells (Figure 4(b)). ,is result indicated that PBR-BuOH can
inhibit IgE/Ag-stimulated degranulation by suppressing the
intracellular calcium mobilization.

3.5. Effect of PBR-BuOH on FcεRI mRNA Expression and the
Activation of FcεRI-Dependent SignalingMolecules in IgE/Ag-
Stimulated RBL-2H3 Cells. To evaluate the level of IgE/Ag-
induced FcεRI mRNA expression, we used by RT-PCR.
PBR-BuOH (25 and 50 μg/mL) significantly suppressed the
level of IgE/Ag-induced FcεRI α-subunit and FcεRI
β-subunit mRNA expression in a dose-dependent manner
(Figure 5). ,ese results indicated that PBR-BuOH might
reduce the rate of FcεRI α-subunit cross linking with IgE and
inhibit the activation of FcεRI β-subunit.

3.6. Effect of PBR-BuOH on the Activation of FcεRI-Dependent
andNF-κBSignalingMolecules in IgE/Ag-StimulatedRBL-2H3

Cells. Activation of FcεRI signaling events in mast cells
results in the degranulation and the production of
proinflammatory cytokines. ,e Src family kinase (e.g.,
Fyn and Syk) and downstream molecules (e.g., Gab2,
PI3K, and ERK1/2) are involved in FcεRI signaling
pathways and NF-κB signaling pathway. First, to elucidate
the mechanism of its action, we investigated whether
PBR-BuOH inhibited phosphorylation of Fyn, Gab2, and
PI3K. PBR-BuOH decreased the expression of phos-
phorylated Fyn, Gab2, and PI3K in a dose-dependent
manner compared with the IgE/Ag-stimulated control
(Figure 6(a)). Here, we determined whether PBR-BuOH
could suppress the activation of Syk, ERK1/2, NF-κB, and
IκBα. PBR-BuOH decreased the levels of p-Syk, p-ERK1/
2, NF-κB, and p-IκBα (Figure 6(b)). ,ese results indicate
that PBR-BuOHmay exert its antiallergic activity through
downregulation of the FcεRI-dependent and NF-κB sig-
naling pathway in IgE/Ag-stimulated RBL-2H3 cells
(Figure 7).

3.7. Inhibitory Effect of PBR-BuOH on IgE/Ag-Mediated
Passive Cutaneous Anaphylaxis (PCA) in BALB/C Mice.
To measure the inhibitory effect of PBR-BuOH on IgE/Ag-
mediated type I allergic response, we used an IgE-dependent
PCA that is immediate hypersensitivity reaction in the
dermis. After IgE sensitization (injected into the ear), DNP-
BSA (Ag) containing 1% Evans blue dye was injected
through the tail vein (Figure 8(a)). PBR-BuOH, adminis-
tered orally, at a dose of 25mg/kg suppressed the amount of
extravasated Evans blue dye in the ear of mice with IgE/Ag-
mediated PCA, compared with IgE/Ag-stimulated control
mice (Figures 8(b) and 8(c)).
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Figure 3: Effect of PBR on proinflammatory cytokines in IgE/Ag-stimulated RBL-2H3 cells. IgE-binding RBL-2H3 cells were stimulated with
200 ng/mL of DNP-BSA (Ag). Total RNA was isolated and then reverse-transcribed. ,e expression of TNF-α, IL-4, and IFN-c mRNA were
determined by quantitative RT-PCR. Representative images from three independent experiments are shown. Data were analyzed by one-way
ANOVA/Duncan’s t-test (p< 0.05). Different letters indicate significant differences between groups.
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3.8. Effect of PBR-BuOH on Histopathological Changes of Ear
Tissues on IgE/Ag-Mediated PCA in BALB/C Mice. To
identify inflammatory cell infiltration and ear swelling, the
tissue sections were stained with H&E. ,e ear thickness in
PBR-BuOH (25mg/kg/day) or CZ (20mg/kg/day)-treated
mice was decreased, compared with that in the mice with IgE/
Ag-mediated PCA (Figure 9(a)). ,e number of infiltrated
immune cells was also decreased after the oral administration
of PBR-BuOH (30.1± 16.0; p< 0.001) or CZ (30.3± 11.5;
p< 0.05), compared with that in the IgE/Ag-stimulated
control group (42.4± 14.9) (Figure 9(b)).,ese results suggest
that PBR-BuOH suppressed the infiltration of inflammatory
cells and reduced dermal and epidermal thickening, com-
pared with that in the IgE/Ag-stimulated control group.

4. Discussion

In the present study, we demonstrated that Phellinus linteus
grown on germinated brown rice (PBR) alleviated IgE/Ag-
stimulated hypersensitivity by suppressing FcεRI-mediated
pathway along with improvements in antiallergic activity.
Recently, several studies reported that PBR showed en-
hanced biological activities, including immune regulation
[28], anti-inflammatory [24, 25], anticancer [26, 27], and
antioxidant activities, compared with PL [23]. ,e levels of
ergosterol peroxide and atractylenolide III was only found in
PBR, not in PL [25, 29]. It is reported that ergosterol per-
oxide has anticancer activity against colon cancer cells [33]
and atractylenolide III has antiallergic activity by inhibiting
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Figure 4: Effect of PBR-BuOH on calcium influx in IgE/Ag-stimulated RBL-2H3 cells. (a) Intracellular calcium levels were detected by Fluo-
4 Direct CalciumAssay Kit. Scale bars indicate 50 μm. (b),e fluorescence intensity was analyzed by Image J program. Each value represents
the mean± SD of three independent experiments. Data were analyzed by one-way ANOVA/Duncan’s t-test (p< 0.05). Different letters
indicate significant differences between groups.
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IgE/Ag-mediated hypersensitivity response [30]. Other
groups reported that both PL and germinated brown rice
exert anti-inflammatory and antiallergic activities [24, 25].
In addition, PL or germinated brown rice contains the
polyphenolic compounds such as protocatechuic acid and
gallic acid, which inhibited the expression of cytokines
(TNF-α and IL-4) exerted by IgE-mediated allergy-induced
basophils [45–48]. In this study, we found that the total
polyphenolic content (TPC) in hot water extract of PBR
was significantly higher than that in hot water extract of PL.
Particularly, PBR-BuOH contained the highest amount of
TPC compared with the other fractions (Figure 1). How-
ever, the antiallergic activity and its mechanism of PBR
have not been reported yet. ,us, in this study, we in-
vestigated whether PBR-BuOH showed the antiallergic
activity and its mechanisms in IgE/Ag-mediated allergy
responses.

To identify the antiallergic effect of PBR-BuOH, we
observed the released inflammatory mediators of de-
granulation in IgE/Ag-stimulated RBL-2H3 cells. ,e
granules of basophils andmast cells are degranulated by IgE-
mediated reactions, cross linking with FcεRI, and IgE/an-
tigen (Ag)-complex [1, 40, 49]. Activated basophil initiates
the degranulation of secretory granules including histamine,
serotonin, and β-hexosaminidase [50]. Among them,
β-hexosaminidase is one of the lysosomal enzymes, which
may be fused with secretory lysosome and endosome in
RBL-2H3 cells [51]. It is used as an indicator of de-
granulation [52–54] and has defense against bacterial in-
filtration by degrading the cell wall peptidoglycan [55]. In
the present study, PBR-BuOH markedly reduced de-
granulation, suppressing the activity of released β-hexosa-
minidase in IgE/Ag-stimulated RBL-2H3 cells (Figure 2).
PBR-BuOH also exhibits enhanced degranulation-sup-
pressing activity compared with PL-BuOH (Figure 2). As the
immediate hypersensitivity continues, a large amount of
cytokines (IL-3, IL-4, IL-5, IL-6, TNF-α, and GM-CSF) and

chemokines (IL-8, and MIP1α) are secreted by IgE/Ag-
stimulated basophils and mast cells within a few hours
[50, 51]. Some cytokines such as TNF-α and IL-4 can be used
as fascinating therapeutic target molecules for IgE-mediated
allergic responses [51, 54, 56] and proinflammatory ,2 cell
responses in allergic diseases [57]. TNF-α is found in se-
cretory granules and induces endothelial activation, adhe-
sion molecule expression, and inflammatory cell
recruitment [52]. IL-4 acts upon naive T-cells, induces them
to differentiate into allergen-specific ,2 cells, and stimu-
lates B-cell differentiation to produce IgE [50, 58–60]. Some
studies conducted on allergic rhinitis and asthma showed
that there is an association of IL-4 with significant increase
in TNF-α [56]. Previous reports have shown that PBR in-
hibits the production of IgE by modulating the ,1/,2
balance, decreasing the concentration of IL-4, a ,2 cyto-
kine, in murine lymphocytes [28]. ,erefore, we examined
whether PBR-BuOH suppressed IgE/Ag-induced gene ex-
pression of TNF-α and IL-4. We found that PBR-BuOH
significantly reduced TNF-α and IL-4 mRNA expression
(p< 0.05, Figure 3). In addition, we found that PBR-hot
water extract increased the level of IFN-c mRNA expression
in RBL-2H3 cells (Figure 3), which enhances ,1-mediated
responses and inhibits ,2 differentiation and mast cell
activation [61–64]. ,is result suggests that the antiallergic
effect of PBR-BuOH is a result of its reduction of TNF-α and
IL-4 expression in basophils.

Basophils and mast cells have FcεRI for IgE on their cell
membranes [65, 66], which is divided into the IgE-binding
portion (α-subunit) and the signaling portion (β- and
c-subunits). Some asthmatic patients have more FcεRI-
expressed immune cells, compared with non-asthmatic
control patients [67, 68]. Increased numbers of FcεRI-
expressed immune cells can rapidly respond to small
amounts of IgE/antigen (Ag) complex and lead to the allergic
reaction by releasing cytokines, chemokines, and other
mediators, leading to activation of recruited other immune
cells [69]. In brief, reducing the number of immune cells that
can bind the IgE/Ag complex is targeted for treating hy-
persensitivity reaction. Some studies have also reported that
FcεRI α-subunit-deficient mice do not induce degranulation
because IgE cannot bind to the cell membrane receptor of
basophils and mast cells [1, 70]. Since IgE-binding FcεRI
α-subunit activates the antigen-binding site of IgE molecule,
induction of FcεRI α-subunit increases IgE-mediated allergy
[59, 71–73]. Our data showed that PBR-BuOH decreased the
expression of FcεRI α-subunit mRNA in IgE/antigen-
stimulated RBL-2H3 cells (Figure 5). ,erefore, PBR-BuOH
mitigates the allergic response by inhibiting the expression
of FcεRI α-subunit, which it induces the degranulation of
granules.

,e IgE/Ag-mediated degranulation process can be di-
vided into two phases: (1) the translocation of granules to cell
membrane [74] and (2) the fusion between granules and cell
membrane [53, 74, 75]. First, Fyn/Gab2/PI3K signaling
pathway was activated by the phosphorylation of FcεRI
[52, 65, 76–79]. Fyn and Gab2 can regulate not only the
formation of microtubule but also the translocation of
granules to the cell membrane [52, 74, 78, 80]. In this study,
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Figure 5: Effect of PBR-BuOH on FcεRI subunit mRNA expression
in IgE/Ag-stimulated RBL-2H3 cells. IgE-binding RBL-2H3 cells
were stimulated with 200 ng/mL of DNP-BSA (Ag). Total RNA was
isolated and then reverse-transcribed. ,e expression of FcεRI
subunit mRNA were determined by quantitative RT-PCR. Rep-
resentative images from three independent experiments are shown.
Data were analyzed by one-way ANOVA/Duncan’s t-test
(p< 0.05). Different letters indicate significant differences between
groups.
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we found that PBR-BuOH significantly decreased the ex-
pression of FcεRI β-subunit mRNA in IgE/Ag-stimulated
RBL-2H3 cells (Figure 5) and significantly inhibited the
phosphorylation of Fyn, Gab2, and PI3K (Figure 6(a)). Our
observations suggest that PBR-BuOH might inhibit the
translocation of granules for degranulation by negatively
regulating FcεRI-mediated signaling pathway. Second, we
postulate that PBR-BuOH would suppress the calcium-de-
pendent exocytosis of cytoplasmic granules. ,e increased
intracellular calcium constitutes calcium-calmodulin com-
plex that leads to the exocytosis of granules by inducing the
SNARE complex activation [53, 74, 75]. Consistent with
previously reported studies, we found that stimulation of
IgE/Ag increases the levels of intracellular calcium in RBL-
2H3 cells (Figure 4) [40, 41]. We observed that PBR-BuOH
inhibited calcium influx assay compared with that in IgE/
Ag-stimulated RBL-2H3 cells (Figure 4). We have deduced
the reason for blocking degranulation by PBR its sup-
pressing activity on the activation of FcεRI-mediated sig-
naling molecules and calcium influx. Additionally, NFκB
signaling pathway induces the production of inflammatory
cytokines in IgE-mediated allergic reaction [81–83]. Some
studies demonstrated that phosphorylated Syk is known to
induce NFκB and NFATactivation [84]. As shown Figure 6,
PBR-BuOH reduced total NFκB protein expression and
inhibited the phosphorylation of IκBα, Syk, and ERK1/2
MAP kinase protein in IgE/Ag-stimulated RBL-2H3 cells

(Figure 6(b)). ,ese data suggest that PBR-BuOH possesses
antiallergic activity by suppressing the level of phosphory-
lated Syk, ERK1/2 kinase protein, and IκBα protein.

PCA is a representative local type I allergy that is induced
in mice by injecting IgE into the ears and intravenously
injecting antigen into the tails [30, 85, 86]. ,e antigen-an-
tibody interactions increase the production of vasoactive
substances such as histamine in immune cells of sub-
cutaneous tissue [87] and induce the permeability and ex-
travasation of the Evans blue dye injected into the circulation
along with the antigen [88]. We observed that PBR-BuOH
decreased the amount of extravasated Evans blue dye in the
ear of mice, compared with that in the IgE/Ag-mediated
allergic group (Figure 8). IgE-mediated PCA induces the
expression of endothelial selectins and trafficking molecules
that can bind with immune cells [89], and then the infiltration
of immune cells occurs in the ear tissues [90–94]. ,e results
showed that PBR-BuOH significantly inhibits IgE-mediated
PCA by reducing the number of infiltrating inflammatory
cells and the ear swelling (Figure 9). In this study, these
findings implied that PBR-BuOH decreased the vascular
expansibility and the activated immune cells caused by the
degranulation and released cytokines of IgE/Ag-stimulated
basophils and mast cells in dermis, which were in accordance
with our in vitro results. In addition, Hong et al. conducted a
clinical trial in which PBR powder was orally administered for
12 weeks to an atopic dermatitis patient at an average age of
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Figure 6: PBR-BuOH inhibited the activation of Fyn, Gab2, PI3K, IκBα, NFκB, Syk, and ERK proteins in IgE/Ag-stimulated RBL-2H3 cells.
,e levels of p-Fyn, p-Gab2, p-PI3K, p-IκBα, NFκB, p-Syk, and p-ERK proteins were measured by immunoblotting. PP2 is a general Src-
family kinase inhibitor. Representative images from three independent experiments are shown as means± SD and are analyzed by one-way
ANOVA/Duncan’s t-test (p< 0.05). Different letters indicate significant differences between groups.
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Figure 8: Effect of PBR-BuOH in BALB/c mice model on IgE/Ag-mediated PCA. (a) Scheme of the experimental design. DNP-IgE (1 μg/
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7.3 years [95]. ,e symptomatic effect of atopic dermatitis, a
type of hypersensitive reaction, was verified based on previous
research that has significantly decreased the itching and
objective SCORAD indices of the patient [95].

5. Conclusion

Our study demonstrated that PBR-BuOH has more potent
antiallergy activity than PL-BuOH in IgE/Ag-mediated al-
lergic response through suppressing degranulation and
decreasing the level of TNF-α and IL-4 mRNA expression.
PBR inhibited the phosphorylation of Fyn, Gab2, and PI3K
in FcεRI-mediated signaling pathway and calcium mobili-
zation. In addition, PBR-BuOH suppressed IgE-mediated
type I hypersensitivity in the PCA murine model. Our
findings suggest that PBR could be developed as functional
food, health supplement, and drug for treating or preventing
type I allergic diseases.
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