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Angiogenesis is one of the hallmarks of cancer and, as such, one of the alternative general targets for
anticancer therapy. Since angiogenesis is a complex process involving a high number of interconnected
components, a network approach would be a convenient systemic way to analyse responses to directed drug
attacks. Herein we show that, although the angiogenic network is easily broken by short combinations of
directed attacks, it still remains essentially functional by keeping the global patterns and local efficiency
essentially unaltered after these attacks. This is a clear sign of its high robustness and resilience and stresses
the need of directed, combined attacks for an effective blockade of the process. The results of this theoretical
study could be relevant for the design of new antiangiogenic therapies and the selection of their targets.

ngiogenesis, the formation of new blood vessels from pre-existing ones, is a hallmark of cancer'.

Mechanistically, angiogenesis is a very complex process in which several key steps are involved®. In fact,

when quiescent endothelial cells are activated by some proangiogenic signal, they change their phenotype
to become highly proliferative and able to migrate, remodel the surrounding extracellular matrix (ECM) and
finally to differentiate to form new vessels. Any of these key steps can be a potential pharmacological target to
inhibit angiogenesis and, hence, to treat angiogenesis-dependent diseases’. However, the results obtained in the
clinical treatment of cancer with approved antiangiogenic compounds show only limited -although significant-
improvement. It should be stressed that this first generation of antiangiogenic compounds targets the first step of
VEGF biosignaling. As we have previously suggested, since tumor angiogenesis is very complex and involves a
number of different cell types, it is possible that multi-target approaches could produce better results*. Therefore,
new multi-targeted compounds (or combinations of them) are urgently required to be introduced in the clinical
setup.

In a multi-target approach the number of possible unrepeated combinations to explore is m", being m the
number of angiogenic elements and » the number of elements to be attacked at every step. The repercussion of
such combined approaches will be dependent on the relations among the elements. Therefore, due to the high
number of molecular elements contributing to the angiogenic process and the complex relationships among
them, the multi-target strategies are far from being under control by using reductionist approaches. Network
theory provides a suitable framework for the study of interacting components with a systemic perspective. Herein,
we present the utilization of this systemic approach to evaluate the fragility of the angiogenic network against drug
attacks.

Results

The main goal of the present work was to carry out a systemic analysis of the fragility/robustness of the angiogenic
process. To achieve this goal, we aimed to build a representative angiogenesis network to be topologically
characterized and submitted to directed attacks. Our working hypotheses are: 1. The angiogenic network is
not a random network. 2. According to the previous statement and to the complexity of the process and the
different molecules, pathways and cells involved in it, it could be suspected that the angiogenic network is resistant
to random attacks. In contrast, the angiogenic network could be easily broken upon several directed attacks. 3. In
spite of this, the angiogenic network could exhibit a high resiliency. A fulfillment of these hypotheses would be
consistent with the claimed multi-targeted therapeutical approaches to fight angiogenic diseases.

To start with this research schedule, the first task should be the building of a representative angiogenic network.
As mentioned above, the Network of Angiogenesis is defined herein as the collection and integration of protein-
protein interaction, protein modification and transport data from literature, databases and tools for biological
data integration. After merging and applying the scoring function to all the initially constructed networks, a
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Table 1 | P-values and percentage of clustering coefficients of each
type of networks according to their score values.

GO:0001525 P-value %clustering

PPi net high score 2.38x10°¢ 42.9%

PPi net medium score 2.61x10°72 64.1%

PPi net low score 7.45%x107%2 64.9%
Reaction net high score 4.16x10°28 18.4%
Reaction net medium score 8.99x107% 24.5%
Reaction net low score 7.10x10"% 24.5%

functional analysis with each network was performed by using
BINGO®. Table 1 shows that this BINGO analysis pointed to both
medium confidence score networks as those incorporating the high-
est set of angiogenic proteins and with the best p-values, as compared
with their respective high and low confidence score counterparts.

Based on this assessment, the union of these two medium confid-
ence score networks was taken as the reference angiogenic network
(Figure 1, panel A). Figure 1 (panels B and C) also shows the high and
the low confidence score angiogenic networks. The topological char-
acterization of the reference angiogenic network (Figure 1, panel A
and Table 2), in general terms, allows to observe that it is enough
biased from random network as to think that this network could
capture some relevant biological information.

An important signature of some real networks is their degree
distribution. If the degree distribution follows a Gaussian

Table 2 | General topological measures from the medium angio-
genic network. To compare, the average and standard deviation of
1000 iterations of the null random connection model is included.

Graph properties Angiogenesis Random
Number of vertices 337 319=18
Number of edges 982 982
Avg, Connectivity 5,82 5.81+0.37
Avg, Min, Distance 3,81 3,55+0.01
Avg, Clustering Coefficient 0,26 0,019+0.001

Components 1* 1*

Assortative Mixing 0,02 —0,003+0.001
Global Efficiency 0,29 0,31+0.06
Local Efficiency 0,32 0,19+0.02
Percolation threshold 59,02 40,27+3.2

*Only the biggest connected component was used in order to be able to calculate the averaged

minimal distance.

distribution, this is a clue to the random nature of the conformation
of this network. On the contrary, if the degree distribution can fit to
an asymmetrical and fat tail distribution, this observation points to
the fact that some kind of constrains are governing the conformation
of the network and that the selected nodes and edges could be a
representative selection of the highlighted process. Figure 2 shows
that this is the case for the combined representative angiogenic net-
work (panel A), as well as for the angiogenic interactome (panel B)
and the angiogenic reaction network (panel C).

Figure 1| The angiogenic network. Combined interaction/reaction networks with different confidence score. (A) The selected representative angiogenic
network (that with a medium confidence score). (B) The network with the highest confidence score. (C) The network with the lowest confidence score.
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Figure 2 | Degree distribution of the angiogenic network. (A) Degree distribution of the combined selected angiogenic network and the average values
of degree of 1000 random networks (insert). (B) Degree distribution of the angiogenic interactome. (C) Degree distribution of the angiogenic reaction

network.

It is known that fat-tail degree distributions confer to the network
a high resilience to a random attack but a high sensitivity to a select-
ive node attack’. Here we focus on the network tolerance to targeted
attack. The fragmentation of real networks after directed attacks has
been considered a sign of their fragility”®. As stated in our working
hypothesis 2, the angiogenic network is broken after less directed
attacks, as compared to the case of a random network (Figure 3,
panel A). However, we must keep in mind that actual cellular protein
networks should be expected to be highly fragmented due to the
differential expression of proteins according to cell types and envir-
onmental conditions®’. Therefore, at least for protein networks, it
could be advisable to make use of the variation in the local efficiency
as a better estimator of their fragility/robustness'. Here, the local
efficiency of the network is analyzed', since it is considered a good
estimator of information flow. Local efficiency reveals how efficient
the communication is (path length) among the first neighbours of
the n; subgraph when this #; is removed (for example, due to drug
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treatments, gene mutations, etc.). Hence, local efficiency is an impor-
tant coefficient related to vulnerability/robustness®. As Figure 3
(panel B) shows, local efficiency of the angiogenic network remains
always greater than that corresponding to the random network under
the different directed attacks tested, even though the networks
were split up in several connected components and this occurred -
as previously mentioned- after less directed attacks in the angiogenic
network (Figure 3, panel A).

In this work, we also suggest that the analysis of the overrepre-
sentation of cross-cluster motifs could be an useful method to val-
idate the functional relationship of connected proteins within a
functional and signalling network. Figure 4 shows the 10 different
types of motifs than can be found in the network. As we show in
Figure 5, motif 5 is the most significantly overrepresented motif.

In addition, the high locality of the angiogenic networks, reflected
by the overrepresentation of the most redundant cross-cluster
motif, motif 5, (Figure 5), keeps their global patterns and their local
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Figure 3 | Robustness of the angiogenic network. Number of connected components (A) and local efficiency (B) of both real (full symbols) and
randomized (void symbols) network after the recursive-targeted attacks RD (recalculated degree distribution, triangles), RB (recalculated betweenness
distribution, squares) and RB/D (recalculated betweenness/degree distribution, circles).
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Figure 4 | Cross-cluster motifs. The set of all the possible combinations of
connections for three elements (named cross-cluster motifs along the
manuscript). Continuous edges represent physical interactions between
proteins and dashed edges represent a common event of protein
modification or transport.

efficiency essentially unaltered after a systematic RB/D attack
(Figure 5 and Figure 3, panel A).

Although this is not within the aims and scope of the present
research work, it should be underscored that the angiogenesis net-
work by us constructed and depicted in Figure 1A maintains a whole
array of biologically relevant information making it possible to pro-
ceed to a further analysis of its biological insights, as depicted in three
selected zooms of Figure 1A shown in Supplementary information as
Figures S1, S2 and S3. As an example of further analysis of biological
information associated to the angiogenic network, we carried out a
simple functional annotation clustering analysis by making use of
DAVID Bioinformatics database web tools''. Table S1 (in Supple-
mentary material) lists the 213 clusters that the nodes of the angio-
genic network form according to such a functional annotation
clustering analysis. The clusters are ranked in the order of increasing
p-values. Table S2 (in Supplementary material) lists the gene pro-
ducts included in 3 clusters particularly relevant in angiogenesis,

namely, clusters 1 (associated to descriptions of “angiogenesis”), 2
(associated to description of cell migration, a key step in angiogen-
esis) and 9 (associated to description of tube morphogenesis, another
key step in angiogenesis).

Discussion

Mono-targeted antiangiogenic therapies have obtained at most very
limited success in the clinical setting®®. The high complexity of the
process and of the inter-relationships among the partners have made
to claim for requested, new combined, multi-targeted therapeutical
approaches*. However, simple combinatorial calculations makes it
clear that experimental testing of the whole set of possible combina-
tions could be extremely expensive and time-consuming. In this
scenario, systemic biocomputational approaches could be useful
for a preselection of the best strategies to be experimentally tested.
The modern science of networks provides a convenient frame-
work for such a task'>. Therefore, we decided to build a representa-
tive angiogenic network to test our three working hypotheses
mentioned above.

The results shown in figures 1-2 and Tables 1-2 clearly rule out
the possibility of considering angiogenesis networks as random
networks. Therefore, our working hypothesis 1 was confirmed.
Furthermore, the topological features of the angiogenic network
contribute to its robustness against random attacks (not shown), as
stated by working hypothesis 2. Since the angiogenesis network
shows topological properties far away from the properties exhibited
by a random network, this makes possible to hypothesize that it
emerged under strict evolutionary constraints. In spite of the fact
that a fat tail degree distribution has been correlated with a highest
vulnerability to target attack’, the angiogenic network seems to be
robust against the several applied attacks, according to the results
obtained on the changes in local efficiency after directed or random
attacks (Figure 3, panel B). And this in spite of the fact that the
angiogenic network is broken after less directed attacks than random
networks (Figure 3, panel A), as expected and stated in our working
hypothesis 2. This observation suggests that the angiogenic network
has a singular shape that should be underscored. The reason of this
unusual resiliency could be the high level of local connections
and organizational redundancy in their overrepresented motifs, as
shown in the cross-motif elements exploration. The redundancy in
its structure, as a result of the highest densities of motif 5 (Figure 5),
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Figure 5 | Distribution of cross-cluster motifs in the angiogenic network. Percentual representation of the different cross-cluster motifs shown in
figure 4 for the selected angiogenic network (solid lines) respect to the random network (dotted lines) before (grey bar) and after (white bar) a selective
attack (RD, recalculated degree distribution). In the case of random networks, 1000 independent networks were built and the means*SD values

are represented.
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maintains the network stable even after ten steps of directed attacks.
This observation is relevant, since motif 5 is (among the ten kinds of
motifs shown in Figure 4) that with the lowest probability in a com-
pletely random null model. The interpretation of this event is that in
the angiogenic network the connection among nodes obeys func-
tional requirements (in contrast with a simple random connection),
giving priority to those local connections produced as a consequence
of the physical interactions, as well as modifications and transport
events related with the angiogenic process. Altogether, results
shown in Figures 3 and 5 can be interpreted as a clear sign of the
high robustness and resilience of the angiogenic networks, provided
by their reinforcement of signal transmissions through physics inter-
actions among the involved proteins. These results reinforce our
hypothesis 4 and are in agreement with the claimed requirement
for multi-targeted therapeutical approaches to fight angiogenesis-
dependent diseases. Therefore, the angiogenic network reveals fitted
and resilient machinery, reflecting the high level of regulation exerted
on this network by their channelled cybernetic elements, since these
cybernetics elements are involved in the control and coordination of
cellular process'*'*. We are aware that it is obvious that not all the
proteins or connections are occurring at the same time and at the
same place. This reinforces the idea that more experimental informa-
tion (in reference to the expression levels at the several states of
angiogenesis and the reactions among the elements) is necessary to
test which of these motifs are occurring at different moments of the
angiogenic process and the real vulnerability of the depicted network.

All in all, compliance with the three starting hypotheses here for-
mulated reinforces the idea that the angiogenesis regulation elements
are related as a very resilient system and its resiliency supports the
claims for requested multi-targeted anti-angiogenic therapies*’.
Therefore, as suggested above, network approach together with the
experimental validation could be a useful approach to explore the
minimal number of targets and the more essentials elements in this
multi-target attack scenario.

Although the main goal of the present work was to carry out a
systemic analysis of the fragility/robustness of the angiogenic pro-
cess, it is also possible to carry out additional analysis to put the
angiogenic network in its biological context. Due to the biological
relevance of deregulated angiogenesis in cancer progression, a com-
parison with similar networks of cancer makes sense. When com-
paring to a general cancer signaling network", several major insights
are revealed: i) With its 362 nodes and 1195 edges, the angiogenic
network depicted in Figure 1A is much smaller than the cancer
signaling network, containing 1397 nodes and 4827 edges. ii) Gene
products directly related with the angiogenic switch (such as VEGFs,
FGFs and their receptors; see Figure S1 in Supplementary material)
or involved in key steps of angiogenesis, such as extracellular matrix
remodeling (this is the case of MMPs, urokinase and their inhibitors,
TIMPs and PAIs, respectively; see Figure S2 in Supplementary
material), endothelial cell migration (as it is the case of the adhesion
molecules integrins; see Figures S2 and S3 in Supplementary mater-
ial) and tube morphogenesis have a key important role (both in terms
of their connections and their participation in functional clusters) in
the angiogenic network, which is not the case within the network of
cancer signaling. iii) The main hub in cancer network p53 remains
well connected in the angiogenic network but it is not as relevant
in this biological context, as revealed by the middle size of the node
representing it in Figure S3 (Supplementary material). Furthermore,
the simple functional annotation clustering analysis carried out with
DAVID Bioinformatics Resources reveals that the nodes of the
angiogenic network depicted in Figure 1A determine 213 functional
clusters (listed in Table S1, Supplementary material). As expected,
the uppest cluster in the rank of p-values is cluster 1, associated to
GO terms IDs 0048514, 0001944, 0001568 and 0001525 with the
functional descriptions “blood vessel morphogenesis”, “vasculature
development”, “blood vessel development” and “angiogenesis”.

Furthermore, clusters 2-4 are related to endothelial cell migration
and cluster 9 is associated to tube morphogenesis, two key steps of the
angiogenic process. Table S2 (Supplementary material) lists the
whole array of gene products included in clusters 1, 2 and 9, accord-
ing to their association to each of the GO terms IDs associated to
a biological function revealed for each of the mentioned clusters.
As expected, among these three clusters, the greatest one is that
associated to the overall process of angiogenesis (cluster 1) and the
smallest one is that related to the specialized process of tube mor-
phogenesis (cluster 3). The great redundancy of the nodes associated
to the different GO terms included in each cluster is also expected.
Additional deeper biological function analysis of the angiogenic net-
work is beyond the limits of this work. Further future work in this
direction seems warranted.

The high complexity of angiogenesis regulation, controlled by
multiple complementary, overlapping and independent pathways,
could explain -at least in part- the limited clinical success met by
antiangiogenic monotherapies. Combination therapies, acting simu-
Itaneously on several pharmacological targets, could help to reach an
effective inhibition of tumor angiogenesis. Network analyses such as
that presented in this communication reinforce this concept of com-
bination therapy and stress the importance of the selection of targets,
since a simple breakdown of the network does not warrant a loss of its
efficiency. Future deeper network analyses could throw light upon
which targets could be simultaneously inhibited to lead to an effective
inhibition of tumor angiogenesis. Such systemic approaches could
help to increase the success rate of in vitro and preclinical studies
carried out with drug combinations. The expected results could also
contribute to the design of new therapeutic strategies for a number
of other angiogenic-dependent diseases for which antiangiogenic
approaches have already shown benefits.

Methods

Angiogenic network reconstruction. In the reconstruction of both, physical
interactions and common reactions angiogenic networks, several information
sources have been merged in order to obtain a more high accuracy and a more reliable
set of proteins and relationships. The set of proteins that finally has been considered
to be involved in angiogenesis was collected from several sources, such as online
available literature*'*', databases, such as Gene Ontology®*, Uniprot*, APID** or
Reactome®, computational and experimental tools such as Protein lounge®,
Ingenuity Pathway”” and Agilent Literature search®, and commercial experimental
sets such as G-arrays (SuperArray). The retrieved information from each of the nine
different data resources used was merged in a set of angiogenic nodes. From these sets,
their different possible combinations obtained connecting them by union and/or
intersection were taken into account in order to build two different kinds of
angiogenic networks. Firstly, angiogenic interactomes, making use of the data
extracted from those databases containing actual information on protein-protein
interaction, namely, Uniprot, APID and Reactome. On the other hand, a second set of
angiogenic networks was built connecting nodes sharing a common reaction. After
that, each node and interaction was ranked and evaluated according to its redundancy
(that is, the number of data sources in which it appears) and the relative reliability of
the sources in which it appears, according to the simple following equation:

S = > Ns > Ss, where S is the score value, Ns, refers to the redundancy, that is,
the number of data sources in which it appears, and Ss makes reference to the
reliability of each event source, using the following simple score: Literature (6), Exp.
Tool (5), computational Tools (4), Uniprot (3), Gene Ontology (2), AGIL (1),
Reactome (1) and Protein lounge (1). For the next validation step, from each set of
interaction and reaction networks we took three key representative networks of the
score distribution, namely, the network with the mean score value and the two most
external networks in both sides of the score distribution. They were named as high,
medium and low score networks, according to their score values.

These six selected angiogenic networks (three interaction networks and three
reaction networks) were functionally tested according to the p-values and maximal
number of proteins grouped within the GO cellular process term “Angiogenesis”
(G0:0001525) using BINGO®, a pluging extension of Cytoscape®>*°. Finally, since
both medium score networks exhibited the lowest p-values and the highest per-
centage of nodes clustered into the angiogenesis class (GO:0001525), they were
selected for further analysis.

For the sake of comparison, systematically all the analyses carried out with the
selected angiogenic networks were also performed with 1000 random networks.

Measure of the topological properties. The topological properties of the selected
graphs were valued using the Nets package algorithm®'. For a deeper explanation of
each measure, see’.
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Measurement of the cross-correlation. An important coefficient concerning the
topological functionality and collective dynamics of the networks is their locality™.
For a network with one type of edges, locality is usually evaluated according to the
degree of clustering, which can be estimated by the local clustering coefficient® as the
probability of a link among neighbors of node i:

Ci = P{Ajk = 1]|Aijj = Aik = 1}, where Aij is the adjacency matrix of the network.

The clustering coefficient for networks with two types of edges (e.g., edges of type P
and R: AjjP and AijjR) can be generalized as the probability of a P-edge between R-
neighbors of i: Ci*® = Pr{Ajk” = 1|Ajj* = Aik*® = 1}. This is the cross-cluster
coefficient measure. Cross-cluster motifs represent an extension of the cross-cluster
coefficient measure® and the concept of motif*. Here we extend this Ci®™ probability
to the ten possible combinations (Figure 4):

G = Pr{AjK” = 1|Aj* = Aik® = 1},

C? = Pr{AjK” = 1|Aj® = Aik® = 1},

Ci* = Pr{AJK® = 1|Aif” = Ak = 1},

Ci* = Pr{Ajk® = 1]Aij® = Aik® = 1},

Ci® = Pr{AK* = Ajj* = AIK® = 1] AjK® = Aij* = Aik® = 1},

Ci® = Pr{Ajk® = Aij® = 1] AjK® = Ajj* = Aik® = 1},

Ci” = Pr{Ajk® = 1] Ajk® =Ajj* = Aik* = 1},

Ci® = Pr{Ajk® = 1] Ajk® =Aj* = Aik” = 1},

Ci® = Pr{Ajk® = Aj® = 1| AjK® = Ajj® = Aik® = 1},

Ci' = Pr{AjK® = Ajj® = 1] Aij* = Aik® = 1},

Analysis of the resiliency of the angiogenic networks against node attacks. In order
to achieve a deeper understanding of the angiogenesis process and its potential
robustness, we performed three kinds of systematic and recurrent attacks against the
selected angiogenic networks: (RD) recalculated degree distribution, (RB)
recalculated betweenness distribution and (RB/D) recalculated betweenness / degree
distribution. At every step, either the most connected (RD), the most central (RB) or
the most bottleneck (RB/D) node of the network was attacked. After the attack, we
recalculated to identify the new node in the top of each rank and removed it in the
following attack. At each removal step (that is, after each attack), we tested the
number of vertices and edges, average connectivity, average minimal distance,
average clustering coefficient, size and number of components, global and local
efficiency and the percolation threshold as a way to identify when the networks lost
their functionality.

Functional annotation clustering analysis. We used DAVID Bioinformatics
Resources', available online in http://david.abcc.ncifcrf.gov/
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