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Abstract

Mathematical aspects of coverage and gaps in genome assembly have received substantial attention by bioinformaticians.
Typical problems under consideration suppose that reads can be experimentally obtained from a single genome and that
the number of reads will be set to cover a large percentage of that genome at a desired depth. In metagenomics
experiments genomes from multiple species are simultaneously analyzed and obtaining large numbers of reads per
genome is unlikely. We propose the probability of obtaining at least one contig of a desired minimum size from each novel
genome in the pool without restriction based on depth of coverage as a metric for metagenomic experimental design. We
derive an approximation to the distribution of maximum contig size for single genome assemblies using relatively few
reads. This approximation is verified in simulation studies and applied to a number of different metagenomic experimental
design problems, ranging in difficulty from detecting a single novel genome in a pool of known species to detecting each of
a random number of novel genomes collectively sized and with abundances corresponding to given distributions in a single
pool.
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Introduction

Recent experiments in metagenomics (also known as commu-

nity genomics or environmental genomics) have proposed that

genetic sequences from previously uncatagologued species can be

discovered/recovered and investigated by subjecting large samples

of RNA or DNA taken from a pool of organisms representative of

a set of different species to shotgun sequencing and assembly

[1–7]. Such a technique is regarded as especially useful for

obtaining genetic information from species resistant to standard

culturing techniques (e.g. [8,9] provide recent overviews of the

state of microbial cultivation; approximately 99% of microorgan-

isms are suggested to be resistant), and is presumed to is presumed

to yield contigs that are representative of the collection of species

in the sample (Mavromatis et al [10] provides an evaluation of this

and related claims).

To date, there are many specific examples of metagenomic

studies. In an early project viruses isolated from seawater samples

were lysed and the recovered DNA molecules were then sequenced

and assembled, yielding contigs from a number of previously

unsequenced virus species [11]. This was followed by a number of

additional sea and ocean water analyses that investigated issues

relating to microbial diversity, phylogeny, structure and function

[12–15]. In extensions of this general program to other environ-

ments, the microbial contents of sediment samples [16,17]; hot

springs and hydrothermal vents [18–20]; soil [21,22]; and other

environments [23–25] have been similarly studied. More recently,

the human metagenome is seeing attention from the metagenomics

community [26]. In [27], viruses in human fecal matter were

isolated and sequenced as were those in seawater. Again, this initial

study was followed by others of the human gut [28–31] and blood

[32]. It can be anticipated that further human studies will continue

to be proposed and performed.

As metagenomics finds continued application, it is desirable that

studies are well planned and that appropriate procedures are

developed for the analysis of the data. The development of

computational and statistical procedures for evaluating data

collected in metagenomics experiments is ongoing [33], and is

not the direct focus of this paper. Rather, we are concerned with

basic properties of the assembly that can be derived from first

principles and used to guide experimental protocols.

For sequencing experiments in which the genome of a single

isolated organism is analyzed, a number of results relating read

count to expected coverage and depth of coverage have been

obtained (e.g. [34–36] as summarized by [37], Chapter 5.1) and

adding to this body of knowledge continues to be an area of active

research [38–43]. In the field of metagenomics, investigations into

experimental design methodology have focused on extending the

Lander-Waterman coverage model [35] to handle pools of species

[33]. While this provides one possible metric for experimental

design, it is unclear that full control over the number of reads per

species is reasonable due to uncertainty regarding the number of

species present in an uncontrolled sample of organisms and the

degree to which genetic heterogeneity between organisms of the

same species exists. In particular, if the number of species

represented by organisms or genetic heterogeneity between

organisms in the pool is greater than anticipated coverage and

depth of coverage will be less than otherwise expected.

Alternatively, if the number of reads is set to achieve a given

depth of coverage on a hypothetical species with low abundance

PLoS ONE | www.plosone.org 1 July 2010 | Volume 5 | Issue 7 | e11652



then high abundance species can be substantially oversampled [5].

Irrespective of the technical and practical issues related to

extending the Lander-Waterman approach for use on metage-

nomics problems, it is unclear that the coverage/depth of coverage

metric is an appropriate one for all experiments. In particular, for

experiments designed to assess numbers of species represented in a

sample or discover the presence of novel species in a sample

containing primarily organisms from known species, it may be

deemed unnecessary to achieve a high degree of coverage. Instead,

simply discovering contigs of appropriate size representative of

individual species in the sample or obtaining a single reasonably

sized contig from a novel species may be desired.

In this paper, we propose that the probability of obtaining at

least one contig of a minimum specified size without restriction

based on depth of coverage from the genomic assembly of reads

corresponding to a given novel species provides a metric

representative of a desirable outcome for metagenome sequencing

studies in which relatively small numbers of reads per species can

be anticipated. We obtain an approximate measure of this

probability for single genome studies, and present four applications

of it to hypothetical metagenome sequencing studies of increasing

difficulty. In the first, we design an experiment in which the goal is

to obtain a contig of a given minimal size from a single novel

species of specified genome length that is represented by organisms

pooled in equal proportion with those from a large number of

known species of identical genome size. In the second we design an

experiment in which the goal is to obtain appropriately sized

contigs simultaneously from each of a large (but specified) number

of novel species of equal genome size and representation in a pool

of organisms containing no known species. We extend this result to

experiments in which genome sizes and abundances vary across

species, and then further to allow the pool size to be regarded as

random and genome sizes and abundances to be collectively

distributed according to specified measures. We verify both our

approximation of the distribution of maximum contig sizes for the

assembly of a single genome and experimental designs for random

pools and distributed genome sizes/abundances by simulation.

Results

Largest contig size probabilities for a single genome
Let B be the length of a candidate genome, and let fR,Lg be the

anticipated number of reads of that genome and length of an

individual read. The probability of obtaining at least one contig of a

minimum specified size k from the assembly of those reads is equal

to the probability that the longest contig is at least size k, and letting

C be the size of the longest contig in the assembly Pr(C§k) is to be

assessed. To do so, we utilize recent results by Wendl [41] that

model coverage by discretizing the genetic sequence into BL{1

read-sized bins (Fig. 1) and assuming reads to be equally distributed

amongst those bins. This approximation was originally used to

obtain a measure of coverage probability, which provides an

alternative sequencer experiment design paradigm from the

expectation-based metrics more typically considered (e.g. [35]).

To determine whether direct use of the occupancy approxima-

tion can be used to obtain maximum contig size probabilities, we

compared simulated distributions of maximum contig sizes from

reads assembled on a hypothetical genome before and after

discretization. A single iteration of the simulation of a non-

discretized genome operated by defining an array of bases,

accumulating reads of a defined length onto that array, and

computing the size of the largest contiguous region of occupied

bases. The sample cumulative distribution function of the largest

observed contiguously occupied region sizes over all iterations was

then plotted. The simulation of the discretized genome operated

analogously, with an array of BL{1 bins and an accumulation of

reads of length 1 into those bins. Fig. 2 compares the resulting

distribution functions of maximum contig size (measured in

read lengths) from the non-discretized (green) and Wendl

discretization (red) genome simulations for the case B~200000,

Figure 1. Discretizations of shotgun genome sequencing. In the non-discretized model, reads (red) are derived from a genome (green) and
assembled into contigs (blue). Contig assembly relies on overlap between reads. In the Wendl (2006b) discretization, the genome is partitioned into a
number of read-sized bins. Reads are distributed amongst these bins, and a contig can be regarded as a sequence of occupied bins. In the
expectation overlap tiling, a secondary set of read-sized bins overlap those from the Wendl discretization, and a contig of size defined in an integer
number of bins can be obtained from a sequence of occupied Wendl or overlap bins independently.
doi:10.1371/journal.pone.0011652.g001
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R[f1000,500,250g, L~200 (this selection of genome size

corresponds to that of a generic virus, and the read length

approximates that from a 454 pyrosequencer) over 1000 iterations.

It is apparent that the discretization proposed by Wendl

substantially overestimates Pr(C§k).

To obtain an improved approximation to the actual distribution

of longest contig sizes, we propose an alternative discretization of

the genetic sequence into a~2BL{1{1 bins, oriented such that

each neighboring pair of the BL{1 bins obtained using the Wendl

distribution are overlapped by an additional bin (Fig. 1). This

discretization is motivated by the principle that the average

overlap between two reads that form a single contig is sized at half

the length of a read, and so we refer to it as ‘‘expectation overlap

tiling.’’ After expectation overlap tiling, contigs of size k in read-

lengths are obtained by achieving a k-long sequence of

neighboring bins in either the original Wendl discretization or

the overlap bins. (k-long contigs formed by alternating between a

total of 2k{1 Wendl and overlap bins are a subset of k-long

sequences of bins in either the Wendl or overlap bins, and need

not be considered.) To determine whether this procedure yielded

maximum contig size distributions with better fidelity to those

obtained in the nondiscretized case, we conducted a simulation in

the same manner as those previouly described. Fig. 2 provides the

cumulative distribution of maximum contig sizes from the

expectation overlap tiled genome in blue. It is clear that it

reasonably approximates that of the non-discretized case.

A formal expression for Pr(C§k) can be obtained using the

expectation overlap tiling by assuming that reads are equally

distributed amongst bins and then deriving appropriate occupancy

and run length probabilities, as in [41]. We suppose that each read

is mapped to bin b[f1,2,:::,ag with probability a{1, and that

the probability that bin b contains contains at least one read is

b~1{(1{a{1)R. Let hW ~log1=b((BL{1{1)(1{b)z1) and

hT~log1=b((BL{1{2)(1{b)z1). Then:

Pr(C§k)&1{exp({bk(b{hW zb{hT ): ð1Þ

can be derived as described in Methods.

To demonstrate the accuracy of Eq. 1, we compared longest

contig size probabilities determined analytically to those obtained

through simulations similar to those used in Fig. 2. In these

simulations, maximum contig sizes were estimated from 10000

simulated assemblies of the non-discretized genome (the desired

standard) and the expectation overlap tiled genome. Fig. 3 provides

the results of this analysis for the previously studied virus sequencing

problem (B~200000, R[f1000,500,250g, L~200). Additionally,

we consider a problem analogous to sequencing a bacterium at a

higher level of coverage than the virus problem (B~2000000,

R[f10000,20000,40000g, L~200) in order to study the perfor-

mance of the model for both larger genomes and greater coverage

levels. The results of this analysis are provided in Fig. 4.

In Fig. 3, simulation-based maximum contig size probabilities

from the non-discretized and expectation overlap tiling discretized

genomes are in green and blue dashed lines respectively. and red

dashed lines represent analytically determined probabilities. We

note that Eq. 1 accurately represents maximum contig size

probabilities obtained from the simulation of the expectation

overlap tiled genome, demonstrating that the analytical model

operates as anticipated. Consistent with this and what was observed

in Figure 2, maximum contig size probabilities from either the

expectation tiled genome simulation or Eq. 1 slightly overestimate

the true probabilities. More detailed investigation suggests that the

size of overestimation is approximately one contig (i.e. the

probability of obtaining a contig of at least length k as determined

by Eq. 1 is approximately equal to the probability of obtaining a

contig of at least length k{1 in the non-discretized genome

simulation). Fig. 4 yields similar results for the cases in which low

numbers of reads (R[f10000,20000g) are utilized, although for

R~20000 Eq. 1 actually slightly underestimates maximum contig

sizes. The underestimation of maximum contig sizes becomes

extreme when R~40000, which represents a 46coverage level of

the genome and suggests a technical limitation of the model to those

cases in which a relatively small number of reads per genome are

available. Because metagenomics sequencing studies are typically

anticipated to yield a relatively small number of reads per individual

genome or species, Eq. 1 is appropriate for use in approximating the

distribution of maximum contig sizes in such problems.

Detecting a single novel species in a pool of known
species

To design an experiment in which the goal is to obtain a contig

of at least a given size from a single novel species that is pooled

Figure 2. Simulated maximum contig size distributions. Fig. 2 presents sample cumulative distribution functions of maximum contig sizes
obtained through simulations of contigs assembled from 1000, 500 and 250 reads of length 200 on a hypothetical genome of 200000 bases. The
green, red and blue lines represent samples from the non-discretized genome, Wendl-discretized genome, and expectation overlap tiled genome
respectively. The Wendl discretization yields substantial overestimates of the probability of obtaining contigs of at least a desired size. The
expectation overlap tiling yields an improved approximation.
doi:10.1371/journal.pone.0011652.g002
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with a large number of known species, we suppose that there are S
known species in the pool, all species in the pool (including the

novel one) are of length B, and that reads are of length L. For

convenience, we assume that all species have the same relative

abundance and for a given number of total reads R marginally

RSz1~R(Sz1){1 reads are expected to be allocated to the novel

species. R is to be set such that a contig of at least size k� from the

novel species will be observed with probability p. As described in

Methods, R will meet this design goal if it is such that:

b(RSz1)k�{h(RSz1)~{
ln(1{p)

2
: ð2Þ

where h~hW , and b is expressed as a function of read count.

Although Eq. 2 does not offer a closed form solution, an

algorithm for obtaining R such that the equality is met can be

implemented in a straightforward manner. To demonstrate this,

we consider a multiple virus sequencing problem in which S~100

species of length B~200000 are to be sequenced with reads of

length L~200. Suppose that there is a single additional novel

virus in the pool for which a contig of at least length k�~4 is to be

observed with probability p~95%. This problem corresponds to

those analyzed previously, and as demonstrated in Fig. 3

RSz1&500 and a total number of experimental reads R~
101|500~50500 is expected to be needed to achieve this goal.

Fig. 5 provides the relationship of the left and right sides of Eq. 2

(blue and green lines respectively) as a function of R. Equality is

obtained at R~47213, and RSz1~47213=101~467.

Obtaining contigs representative of a pool of species
We continue our application of Eq. 1 by using it to design an

experiment in which the goal is to obtain an appropriately sized

contig from each of a large number of novel species simultaneously.

We suppose that there are S novel species of equal commonality

and length B in the pool, and that reads are of length L. For a given

number of total reads R marginally Rs~RS{1 reads are expected

Figure 4. Maximum contig size probabilities, bacterium sequencing. Fig. 4 provides estimated and analytically determined probabilities of
maximum contig sizes for genomes of 2000000 bases sequenced using 10000, 20000 and 40000 reads of length 200. The green, red and blue lines
represent probabilities determined using simulations of the non-discretized and expectation overlap tiled genomes, and Eq. 1 respectively. For
relatively low coverage levels Eq. 1 accurately estimates actual maximum contig size probabilities as determined by simulations of the non-discretized
genome. However, it is inaccurate when the number of reads is 40000, corresponding to a 46depth of coverage.
doi:10.1371/journal.pone.0011652.g004

Figure 3. Maximum contig size probabilities, virus sequencing. Fig. 3 provides estimated and analytically determined probabilities of
maximum contig sizes for genomes of 200000 bases sequenced using 1000, 500 and 250 reads of length 200. The green, red and blue lines represent
probabilities determined using simulations of the non-discretized and expectation overlap tiled genomes, and Eq. 1 respectively. Eq. 1 accurately
represents maximum contig size probabilities determined from the expectation overlap tiled genome, and slightly overestimates true probabilities as
determined by the non-discretized model.
doi:10.1371/journal.pone.0011652.g003
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to be allocated to each. R is to be set such that a contig of at least size

k� will be obtained from each species with with probability p. Based

on this, the condition analogous to Eq. 2 is:

b(Rs)
k�{h(Rs)~{

ln(1{p1=S)

2
ð3Þ

(see Methods for derivations).

As previously, an algorithm for obtaining R such that the equality

in Eq. 3 is met was implemented and tested on a virus sequencing

problem with S~100 species of length B~200000, sequenced with

reads of length L~200. The design problem is to calculate the total

number of reads R such that contigs of at least length k�~4 would

be obtained from each species in the pool with with probability

p~95%. Again, this problem corresponds roughly with those

previously examined, although the requirement that appropriately

sized contigs were to be obtained from each species in the pool

rather than a single species is anticipated to increase the number of

reads per species necessary. Fig. 5 provides the relationship of the

left and right sides of Eq. 3 as a function of R. Equality is obtained at

R~62402 and Rs~624 per species, approximately a 30% increase

from that required to achieve the same performance from our single

species problem. This increase in the required number of reads can

be attributed to the necessity of obtaining a contig of the desired size

from each species in the sample, rather than only a single novel

species. To further study the behavior of experimental designs using

Eq. 3, we calculated designs for a number of different hypothetical

viral and bacterial metagenome experiments. The results of our

calculations as a function of fS,B,k�g are provided in Tables 1 and

2. We note that as might be reasonably anticipated, increases in S, B
and k� all yield increases in the number of reads necessary to obtain

contigs of the desired size from each species in the pool with 95%

probability.

Fixed pool sizes with distributed genome sizes and
abundances

A general extension of the result described in Eq. 3 to problems

with varying genome sizes and abundances can be obtained,

although it does not result in an easily managed experimental

design criterion such as in Eq. 3. For species s~1,:::,S let Bs be

the genome size and As the percentage abundance (
PS

s~1 As~1).

Let B~
PS

s~1 AsBs be the abundance normalized total genome

size. The criteria to be met for obtaining contigs of at least size k�

from all species with probability p is:

P
S

s~1
(1{exp({2b(As, Bs, B, R)k�{h(As , Bs , B, R))~p ð4Þ

where b(As, Bs, B, R)~1{(1{a(Bs)
{1)RAsBsB{1

, h(As, Bs, B,

R)~ log1=b(As , Bs , B, R) ((BsL
{1{1)(1{b(As, Bs, B, R))z1), a(Bs)~

2BsL
{1{1, and the number of reads allocated to each species is now

dependent on its proportional representation in the total genome

(see Methods).

To use Eq. 4 to derive experimental designs, individual genome

sizes and abundances must be specified. Treating these quantities

as random variables would lead to an intractable integral, and

therefore we choose to collectively set them such that desired

aggregate genome size and abundance distributions are met across

the pool. We begin by noting that substantial variability in genome

size distributions has been observed in previous metagenomic

studies (e.g. [44,45]). In order to avoid issues with the shape of the

selected distribution, we suppose that genome sizes are to be

collectively uniformly distributed and we let Bs, s~1:::S be the

s=(Sz1)th quantiles of a Uniform(B,B) distribution. Next, we let

As~A0
s (
PS

s~1 A0
s ){1 where A0

s , s~1,:::,S are species abundanc-

es normalized to the commonality of the least abundant species.

We suppose that fA0
sg are Pareto-distributed with scale and shape

parameters 1 and kA respectively, and we let A0
s be the

1{s=(Sz1)th quantiles of that distribution. We note that this

assignment of abundances of species models a case in which large

genomes are relatively rare compared to small genomes, and

letting A0
s be the s=(Sz1)th quantile would model the opposite. In

our implementation of a solver for Eq. 4, selection of either

abundant large or small genomes is provided as an option.

Derivations performed in Methods are for general genome size

and abundance distributions, and changes in such assumptions can

be made without a substantial change in our methodology.

Figure 5. Experimental designs for detecting a single species and obtaining contigs representative of a pool of genomes.
Intersection between the left (blue) and right (green) sides of Eqs. 2 and 3 indicate the number of length 200 reads necessary to have 95% confidence
of obtaining at least one contig with minimal size of 4 reads from a novel genome of length 200000 bases pooled with 100 like-sized genomes, and
from each of 100 pooled genomes of length 200000 respectively. Detecting a single novel species requires 47213 reads, expected to allocate 467 to
the novel species. Detecting contigs representative of the pool of genomes requires 62402 reads, expected to allocate 624 to each species. These
results are consistent with those described in Figs. 3 and 4.
doi:10.1371/journal.pone.0011652.g005
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After designing an algorithm for obtaining R such that the

equality in Eq. 4 is met, we tested it on a virus sequencing problem

with S~100 species and lengths uniformly distributed with between

50000 and 350000 bases. This corresponds to virus genome size

bounds described by [46] and is such that the mean size was

200000, consistent with what was previously examined. Abundanc-

es were supposed to be Pareto(1,3.5). The selection of scale

parameter for the abundance distribution was made such that the

most abundance species represented 2.72% of the sample, which is

consistent with previous metagenomic analyses [11]. Contigs of at

least length k�~4 were to be obtained from each species in the pool

with with probability p~95% using reads of length L~200. This

problem specification yielded a design with R~62166, a 0.4%

decrease from the number of reads required for the same

performance if genome lengths were held constant with

B~200000 and abundances were assumed to be equal. (The fact

that the two designs are equal can be likely attributed to the inverse

relationship between abundance and genome size, combined with

the small size of the population.) We additionally computed

equivalent designs for the experiments described in Tables 1 and

2. In these experiments, as the number of species was increased kA

was reset so as to maintain an approximate 2.5% representation of

the most abundant species. (We continued to use a Uni-

form(50000,350000) distribution of genome sizes.) For the cases

considered, assuming distributed genome lengths and abundances

yielded designs that used 99.6%–139% of the number of reads than

those computed for experimental designs assuming constant

genome lengths and abundances. The differences between the

two designs increase for larger pool sizes, k� and genome sizes.

Stochastic pools with distributed genome sizes and
abundances

We conclude our applications of our model of maximum contig

size probabilities by extending our previous results to weaken the

requirement of specifying a fixed pool size, in order to more

realistically represent the uncertainties in actual metagenomics

experiments. We do so by modeling pool size as a random

variable. Let S be distributed Poisson with mean lS . We suppose

Table 1. Designs for viral metagenome experiments.

S (lS) k� Eq. 3 Reads Eq. 4 Reads Eq. 5 Reads (5,50,95)% minimax

100 4 62402 62166 67109 3.38, 3.68, 3.94

200 4 128399 135996 142673 3.32, 3.60, 3.80

400 4 263645 303155 310081 3.24, 3.49, 3.72

100 5 88636 89303 96992 4.43, 4.85, 5.15

200 5 181745 196402 206985 4.28, 4.70, 5.04

400 5 371999 438059 449314 4.23, 4.56, 4.78

100 6 113767 115738 126271 5.63, 6.16, 6.50

200 6 232749 255203 269879 5.39, 5.92, 6.27

400 6 475413 569204 585113 5.17, 5.73, 6.04

Table 1 provides the numbers of reads of size L~200 determined to give 95% probability of assembling contigs of at least size k� in viral (B = 200000,
UB = Uniform(50000,350000)) metagenomics problems as a function of the number of species S or lS in the pool. Calculations are provided for models using fixed pool
and equal genome sizes and abundances (Eq. 3), fixed pool sizes with distributed genome sizes and abundances (Eq. 4) and stochastic pool sizes with distributed
genome sizes and abundances (Eq. 5). (5, 50, 95)% minimax contig size quantiles from simulated assemblies of S species with uniformly distributed genome sizes and
Pareto distributed abundances using stochastic pool size/distributed genome size and abundance experimental designs are provided for verification. Larger numbers of
reads are required to obtain a given level of performance as pool sizes increase, the required performance level increases, if an assumption of equal genome sizes and
abundances is replaced with one of distributed genome sizes/abundances with equivalent mean genome sizes, or if a fixed pool size is replaced with a stochastic pool.
Consistent with previous observations, minimax contig size quantiles are slightly (less than one read length) lower than planned.
doi:10.1371/journal.pone.0011652.t001

Table 2. Designs for bacterial metagenome experiments.

S (lS) k� Eq. 3 Reads Eq. 4 Reads Eq. 5 Reads (5,50,95)% minimax

100 4 313476 336963 365122 3.33, 3.49, 3.65

200 4 642683 766366 807394 3.27, 3.44, 3.59

400 4 1315088 1764672 1806689 3.21, 3.38, 3.51

100 5 489834 535031 584071 4.32, 4.51, 4.75

200 5 1000506 1217621 1290028 4.17, 4.43, 4.61

400 5 2040273 2800352 2877594 4.13, 4.37, 4.59

100 6 669257 739677 811931 5.26, 5.63, 5.92

200 6 1363646 1683594 1791344 5.20, 5.57, 5.83

400 6 2774570 3868329 3986651 5.06, 5.36, 5.59

Table 2 provides the numbers of reads of size L~200 determined to give 95% probability of assembling contigs of at least size k� in bacterial (B = 2000000,
UB = Uniform(1000000,3000000)) metagenomics problems as a function of the number of species S or lS in the pool. Calculations and relationships between both
experimental terms and the required number of reads and planned and observed contig sizes are as described in Table 1.
doi:10.1371/journal.pone.0011652.t002
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that conditional on S~s, genome sizes and commonality

normalized abundances will be uniformly and Pareto-distributed

as previously, with kA a function of S such that the maximum

percentage abundance is equal to A. The total number of reads R
such that a contig of at least size k� will be obtained from each of

the random number of species with with probability p meets the

following condition:

X?
s~1

P
s

z~1
(1{exp({2b(As

z, Bs
z, Bs, R)k�{h(As

z, Bs
z, Bs, R))

� �

exp({l)
ls

s!
~p

ð5Þ

where the dependence of individual abundances and genome sizes

on S~s is made explicit; such dependence is due to the use of

quantiles of distributions to set these values. See Methods for

derivations using general distributions of S.

Building on previous analyses, we designed and tested an algorithm

for obtaining R such that the equality in Eq. 5 is met on a virus

sequencing problem with lS~100 species with lengths uniformly

distributed with between 50000 and 350000 bases and abundances

meeting a Pareto distribution such that the maximum abundance is

2.5%, ordered such that smaller genomes have greater abundance.

Contigs of at least length k�~4 were to be obtained from each species

in the pool with with probability p~95% using reads of length

L~200. This problem specification yielded a design with R~67109,

an 8% increase from the number of reads required for the same

performance if pool size was held constant at S~100. We computed

equivalent designs for the experiments described in Tables 1 and 2,

again using Poisson-distributed pool sizes, uniformly distributed

genome sizes and Pareto distributed abundances such that the most

prevalent genome represented 2.5% of the total sample. For the cases

considered here, this yielded a 2%–10% increase in the number of

reads than those computed for experimental designs assuming fixed

pool sizes and distributed genome lengths and abundances.

To determine whether experimental designs obtained from Eq. 5

could be expected to perform appropriately, a final simulation

experiment was performed. For each of the experimental designs

described in Tables 1 and 2, we performed 100 simulated assemblies

of the number of reads suggested by the stochastic pool and

distributed genome size and abundance model on the expected

number of species used to calculated the design with genome sizes

and abundances distributed according to the assumed model. In

each simulated assembly, individual reads were randomly assigned

to species and accumulated onto genomes in the manner described

for simulations of non-discretized genome assemblies. After all reads

were assigned, maximum contig sizes were computed for each

genome, normalized to read lengths, and the minimum of these

(referred to here as the minimax contig size) was recorded. The

minimax contig size corresponds to the targeted contig size used in

the experimental design, and therefore was anticipated to be

approximately equal to k� with a bias towards being slightly smaller,

consistent with what was observed in Figs. 3 and 4. Tables 1 and 2

provide 5%, 50% and 95% quantiles of the observed minimax

contig sizes, and Fig. 6 plots the distributions of minimax contig sizes

for three viral metagenome designs. As anticipated, minimax contig

sizes were typically under the designed contig length, but only

slightly (less than one read length) so.

Discussion

In metagenomics experiments, large samples of genomic

material from organisms representing a number of different

species are simultaneously sequenced and assembled. Although

such analyses have some similarities to more typical sequencing

experiments in which a single genome is studied in isolation, the

change in problem context justifies an evaluation of the body of

analytical and computational technique that has been developed

for single organism problems, and where appropriate the

development of new tools. Currently, some research effort is

being put towards developing such tools for the analysis of

sequence data after is has been collected. This paper is concerned

with analytical technique that can be used to plan such collections.

For single genome sequencing studies, Lander and Waterman

[35] have provided useful experimental design metrics based on

expected coverage and depth of coverage that continue to be in

use today, and in the metagenomics community some attention

has been paid to appropriately extending their results. However,

the metrics of expected coverage and depth of coverage may be

argued to not be appropriate for all metagenomics experiments.

Rather, for some experiments it may be desirable to obtain results

that relate experimental protocols to the probability of obtaining a

given level of coverage (as obtained by Wendl for single genome

studies) or a contig of at least a given size from a particular species,

as studied here. Such probability-based metrics may be used on

Figure 6. Minimax contig sizes observed for simulated viral
metagenome assemblies. For a viral metagenome experiment
design based on a Poisson number of species, uniformly distributed
genome sizes and Pareto distributed abundances (lS = 100, UB =
Uniform(50000,350000), kA = 3.5), R = 67109, 96992 and 126271 were
calculated to have 95% probability of yielding assembled contigs of at
least size k� = 4, 5 and 6 for all species respectively. In Fig. 6, we show
the distribution of minimax contig sizes obtained from 100 simulations
of an assembly of these numbers of reads on a pool of S = 100 species
with Uniform(50000,350000)-distributed genome sizes and Par-
eto(1,3.5)-distributed abundances (solid lines) vs. their targeted sizes
(dashed). Consistent with previous observations for this case, the actual
contig sizes obtained are slightly smaller than the targeted length. The
median minimax contig sizes are 3.68, 4.85 and 6.16 (in read lengths,
which is 92–103% of the target length), and 95% of all experiments
yield contigs of length 3.38, 4.43 and 5.63 from all species (85–94% of
the target length). The slight undersizing of contigs is consistent with
previous observations (e.g. Figs. 3 and 4).
doi:10.1371/journal.pone.0011652.g006
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their own, or combined with expectation-based metrics to obtain a

fuller perspective of the relationship between the planned number

and size of reads and the results of a proposed sequencer-based

metagenomics experiment.

In this paper, we showed that the probability of obtaining a

contig of a minimum specified size from an assembly of a

relatively small number of reads from a single genome can be

obtained by discretizing the genome into read sized bins in a

modified version of the discretization suggested by Wendl [41],

and then applying Poisson approximation. We verified the

accuracy of this calculation in several simulation studies, and we

used it to solve a number of experimental design problems

representative of those addressed in metagenomics experiments.

In increasing order of difficulty, we considered: 1) the design of

an experiment in which the goal is to discover evidence of a

novel species that is pooled with a large number of organisms

from known species; 2) the design of an experiment that is

intended to ascertain the number of species in a pool of equally

sized and abundant previously unobserved species; 3) an

extension of (2) in which genome sizes and abundances were

collectively uniformly and Pareto-distributed; 4) an extension of

(3) in which the pool size was regarded as random and Poisson-

distributed. The derivations leading to (3) and (4) were

performed for general distributions of pool and genome sizes,

such that experimental designs could be obtained for other cases

than examined here. As anticipated, the number of reads

required to obtain a given level of performance generally

increased with problem difficulty.

Presently we are investigating the extension of these results to

further experimental designs as well as their utility for data

analysis. All codes used in the process of writing this paper are

publicly available. They are written in the R programming

language and are provided in File S1 of the paper, at http://

www.bioinformatics.org/maxcontigprob or by contacting the

author.

Methods

Largest contig size probabilities for a single genome
Let W and T be binary random vectors representative of bin

occupancy for the Wendl and overlap discretization bins

respectively, and CW and CT random variables representing the

size of the largest run of occupied bins in W and T . We note that:

Pr(C§k)~1{Pr(Cvk) ð6Þ

~1{Pr(fCW vkg|fCTvkg) ð7Þ

&1{Pr(CW vk)Pr(CTvk) ð8Þ

where the approximation is due to dependence between CW and

CT not modeled here. To obtain the distribution of CW and CT

we utilize the application of Poisson approximation to the

calculation of runs in sequences of Binomial random variables

by [47] as described in [48] Section 4.2. Let hW ~log1=b

((BL{1{1)(1{b)z1) and hT~log1=b((BL{1{2)(1{b)z1).

Then Pr(CW vk)~exp({bk{hW ), Pr(CTvk)~exp({bk{hT )
and:

Pr(C§k)&1{Pr(CW vk)Pr(CTvk) ð9Þ

~1{exp({bk(b{hW zb{hT ): ð10Þ

Detecting a single novel species in a pool of known
species

Practially, hW&hT and Eq. 1 can therefore be simplifed:

Pr(C§k)&1{exp({bk� (b{hW zb{hT ) ð11Þ

~1{exp({2bk�{h) ð12Þ

where h~hW . Then the condition that is to be met is:

1{exp({2b(RSz1)k�{h(RSz1))~p ð13Þ

where b is expressed as a function of read count. Simplifying, the

condition in Eq. 13 is met if:

b(RSz1)k�{h(RSz1)~{
ln(1{p)

2
: ð14Þ

Obtaining contigs representative of a pool of species
Conditional on Rs the probabilities of reads corresponding to

each species assembling into a contig of at least length k� are

independent across species:

Pr(fC1§k�g|:::|fCS§k�g)~Pr(C1§k�)| :::|Pr(CS§k�):ð15Þ

Based on this, the condition analogous to that provided in Eq. 13

is:

(1{exp({2b(Rs)
k�{h(Rs))S~p, ð16Þ

which simplifies into:

b(Rs)
k�{h(Rs)~{

ln(1{p1=S)

2
: ð17Þ

Non-constant genome sizes and abundances
For species s~1, :::,S let Bs be the genome size and As the

percentage abundance (
PS

s~1 As~1). (Other measures of abun-

dance can be used and transformed to percentage abundance.) Let

B~
PS

s~1 AsBs be the abundance normalized total genome size.

Working from Eq. 15:

Pr(C1§k�)| ::: |Pr(CS§k�)~ P
S

s~1
Pr(Cs§k�) ð18Þ

~ P
S

s~1
(1{exp({2b(As, Bs, B, R)k�{h(As, Bs, B, R)) ð19Þ

where b(As, Bs, B, R)~1{(1{a(Bs)
{1)RAsBsB{1

, h(As, Bs, B,

R)~log1=b(As , Bs , B, R)((BsL
{1{1)(1{b(As, Bs, B, R))z1), a(Bs)~

2BsL
{1{1, and the number of reads allocated to each species is
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now dependent on its proportional representation in the total

genome.

To assign abundances and genome size to meet marginal

distributional specifications, suppose FA,B(a,b) to be their joint

distribution (where A and B are now random variables).

FA,B(a,b)~FADB(aDb)FB(b), where FADB is the distribution of

abundance conditional on genome size and FB is the marginal

distribution of genome sizes. For species s~1, :::, S, assigning

Bs~F{1
B (s=(Sz1)) is sufficient for the sample to meet the

genome size distribution requirement. If a conditional distribution

of abundance conditional on genome size is proposed, then one

reasonable approach would be to assign As~E½ADB~Bs�.
However, we consider the case in which assigned abundances

are to be marginally distributed FA, with no information regarding

the dependence of A on B. We note that any assignment of the

S=(Sz1)th quantiles of FA to species in the pool will meet the

desired criterion. Two natural assignments to consider are 1)

greater abundances to smaller genomes (As~F{1
A (1{s=(Sz1)))

and 2) greater abundances to larger genomes (As~F{1
A

(s=(Sz1))). We utilize the former in this paper’s examples,

although the latter is provided as an option in our software

implementation.

We conclude by noting that the use of differing abundances

across species can result in substantial variability of coverages

across organisms. Depending on the particular assignments of As

and Bs, this can lead to cases in which contig size probabilities are

substantially underestimated for species with high coverages (e.g.

Fig. 4), which can lead to difficulties in determining a design for a

desired experiment. To resolve this, in our codes for solving Eq. 4

we assign species with high coverage measures a 100% probability

of obtaining a contig of the specified size. This is likely to be

reasonable, considering the particulars of the metagenomics

experimental design problem considered here.

Stochastic pools, distributed genome sizes and
abundances

To extend the results in Eqs. 15–19 to a pool of species that is

regarded as random but characterized by a distribution, we

condition on S~s and integrate Eq. 19:

Pr(|S
s~1fCs§k�g)~

X?
s~1

Pr(|S
s~1fCs§k�gDS~s)Pr(S~s) ð20Þ

~
X?
s~1

P
s

z~1
(1{exp({2b(As

z,Bs
z,Bs,R)k�{h(Az ,Bz,B,R))

� �
Pr(S~s) ð21Þ

where genome sizes and abundances are as previous, but now

conditional on S~s due to the use of quantile assignment. Eq. 21

is the basis for the experimental design condition provided in Eq. 5

for Poisson distributions of S.

Supporting Information

File S1 R scripts for performing computations described in

Stanhope (2010).

Found at: doi:10.1371/journal.pone.0011652.s001 (0.00 MB GZ)
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