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Abstract The stability mechanism and thermal properties of
the system alumina–anionic polyacrylamide (PAM) was stud-
ied. The polymer’s adsorption properties in dependence on the
following parameters solution pH (in the range 3–9), temper-
ature (in the range 15–35 °C), and carboxyl groups’ content in
the PAM chains (in the range 5–30 %) were examined. The
turbidimetry method was applied for determination of the sus-
pension stability of alumina in the presence of PAM. The
obtained results indicate that the polymer addition improves
significantly Al2O3 suspension stability at pH 6 and 9 (in the
whole examined temperature range). PAM containing a larger
number of carboxyl groups stabilizes solid particles more ef-
fectively (due to greater contribution of electrosteric interac-
tions). Moreover, the polymer adsorption on the alumina sur-
face causes changes in the thermal stability of the examined
systems. In dependence on temperature, the higher the content
of carboxyl groups in the PAMmolecules, the greater the total
mass loss. This is due to increased adsorption of polyacryl-
amide whose chains contain numerous –COOH groups.

Keywords Anionic PAM .Alumina surface .

Thermogravimetric analysis . Temperature effect . Carboxyl
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Introduction

The adsorption process of different substances (simple ions,
small molecules, surfactants, macromolecular compounds)
takes place in many industrial and ecological operations. It
can occur at various types of interfaces: gas–liquid, gas–solid,
liquid–solid, or liquid–liquid. Adsorption in a solid–liquid
system differs substantially from this process in a gas–solid
system. This results from the fact that in the former case, the
solution is adsorbate (i.e., in the simplest system—binarymix-
ture of solvent and solute). The competition between the two
components of the solution for active sites on the surface
occurs. The adsorption process at gas–solid and liquid–solid
interfaces finds widespread applications in the environmental
protection. Different kinds of adsorbents are used in order to
reduce atmospheric emissions of harmful gases and vapors
[1–4], as well as for removal of poisonous chemical com-
pounds dissolved or dispersed in wastewaters [5–12].

The ability of polymers to modify surface properties of
solids promoted their use in stabilization or destabilization of
colloidal particles. For this reason, they are widely used in
many fields of industry, technology, medicine, and ecology
[13–17]. Nevertheless, adsorption of the polymer on the solid
surface is a very complex process which differs significantly
from the adsorption of small molecules [18]. Macromolecules
binding with the surface of the adsorbent particles are associ-
ated with the decrease in free energy of components in the
system. This involves multipoint connections of the polymer
functional groups to the solid surface. However, not all poly-
mer segments are directly bound to the solid surface. The

Electronic supplementary material The online version of this article
(doi:10.1007/s00396-016-3906-7) contains supplementary material,
which is available to authorized users.

* Stanisław Chibowski
stanislaw.chibowski@poczta.umcs.lublin.pl

1 Department of Radiochemistry and Colloid Chemistry, Faculty of
Chemistry, Maria Curie-Sklodowska University, M.
Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland

2 Department of Physicochemistry of Solid Surface, Faculty of
Chemistry, Maria Curie-Sklodowska University, M.
Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland

3 Department of Physical Chemistry—Interfacial Phenomena, Faculty
of Chemistry, Maria Curie-Sklodowska University, M.
Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland

Colloid Polym Sci (2016) 294:1511–1517
DOI 10.1007/s00396-016-3906-7

http://dx.doi.org/10.1007/s00396-016-3906-7
http://crossmark.crossref.org/dialog/?doi=10.1007/s00396-016-3906-7&domain=pdf


polymer adsorption process is possible when the system ex-
ceeds the critical adsorption energy value. In such a case,
entropy effects counteract attraction forces between the poly-
mer and the surface.

The polymer adsorption kinetics is determined in the fol-
lowing stages of this process: (a) polymeric chains transport
toward the solid surface (depending on the convection and
diffusion processes), (b) rate of polymer binding to the adsor-
bent surface (depending on the height of activation energy
barrier), (c) reconformation of adsorbed macromolecules
which minimizes their free energy, and (d) desorption of
shorter polymer chains by longer ones (for polydisperse poly-
mers) [19]. Each of these stages is specific to a given poly-
mer–solid system. Accordingly, the polymer adsorption de-
pends, among others, on the molecular weight of the polymer
and its distribution (polydispersity), initial polymer concentra-
tion, pH and ionic strength of the solution, temperature, sol-
vent type, as well as mixing degree of the individual compo-
nents of the system.

The addition of the polymer to a colloidal suspension may
result in its stabilization or destabilization [20]. The total cov-
erage of the particle surface by polymer film (usually at a high
polymer concentration) results in the steric stabilization. It
involves the presence of two effects. The first one—entro-
pic—refers to the reduction of the macromolecule conforma-
tional entropy by decrease of the surface area available for
polymer segments. The second one—mixing—is associated
with the increase of polymeric segment concentration in the
area of the mutual penetration of polymer adsorption layers
and changes in osmotic pressure. The particles whose surfaces
are covered by the adsorbed polymer repel due to the Gibbs
energy increase. When the stabilizing polymer is a polyelec-
trolyte, the electrostatic repulsion between polymeric layers
(possessing the same charge) can also occur.

When a small amount of polymer (that does not guarantee
complete coverage of the surface) is added to the dispersion,
one polymer chain can adsorb onto two or more colloidal
particles forming polymer bridges between them. These brid-
ges are formed when the length of loops and tails of the
adsorbed macromolecules is greater than the range of electro-
static repulsions between the colloidal particles. As a result,
flocks undergo sedimentation and the system destabilization
occurs.

Polymers which do not adsorb on the solid surface (high
affinity of the polymer for the solvent, complete coverage of
the colloidal particles by the surfactant molecules) cause de-
pletion stabilization or flocculation.

The main aim of this study was the determination of the
stability properties of anionic polyacrylamide (PAM; with a
differing content of carboxyl groups) in the aqueous suspen-
sion of aluminum(III) oxide in the temperature range 15–
35 °C. Thermogravimetric analysis of the examined systems
was also performed to obtain the additional information about

PAM adsorption mechanism. The temperature impact on the
conformation of adsorbed macromolecules is significant
[21–23] due to modification of interactions between the poly-
meric chains and the solvent molecules. The ability to influ-
ence the structure of polymeric adsorption layer by tempera-
ture change is closely related to the suspension stability.
Nevertheless, this problem is marginally described in the sci-
entific literature [24–26]. Therefore, the presented studies can
supplement incomplete knowledge of this topic.

Materials and methods

Aluminum(III) oxide—Al2O3 (Merck)—with the specific sur-
face area 155 m2/g was used as an adsorbent. This metal oxide
was washed with doubly distilled water to achieve the super-
natant conductivity below 2 mS/cm. The mean particle diam-
eter of the solid was 469 nm (Zetasaizer 3000, Malvern
Instruments). High surface area, minimal solubility, and high
mechanical strength promoted to Al2O3 use in the
experiments.

Anionic PAM (Korona) was applied as an adsorbate.
Polymer samples differed in contents of carboxyl groups (5,
20, and 30 %). These anionic groups remained in macromol-
ecules as a result of incomplete hydrolysis of a number of the
amide groups during the PAM preparation. Carboxyl groups
underwent dissociation with the increasing pH value and are a
source of negative charge of the polyacrylamide chains [27,
28]. The characteristics of the polyacrylamide samples are
listed in Table 1. pKa values of PAM were determined using
the potentiometric titration method. Knowing the pKa value,
calculation of dissociation degree (α) of the polymer carboxyl
groups was possible. Table 1 presents the values of these pa-
rameters. At pH 3, 16.6 % of anionic groups are ionized,
whereas at the pH values 6 and 9, the dissociation is practi-
cally complete.

All measurements were carried under the following condi-
tions: pH range 3–10, temperature range 15–35 °C, and
supporting electrolyte—NaCl with the concentration
0.01 mol/dm3.

Stability measurements of the alumina suspensions (with-
out and with PAM) were carried out with Turbiscan LabExpert

with the cooling module TLAb Cooler (France). This appara-
tus registers light (with the initial wavelength 880 nm) passing
through both the examined system and scattered by the solid
particles dispersed in the liquid medium. The computer pro-
grams (TLab EXPERT 1.13 and Turbiscan Easy Soft) work-
ing with a turbidimeter present the obtained data in the form of
transmission and backscattering curves (so-called scans). On
the y axis, the intensity of transmission (or backscattering) is
marked, whereas on the x axis, the suspension level in the
measurement vial is shown. The suspension was added into
the glass vial (70 mm long) to about 40 mm of its height.
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Changes in the suspension stability were monitored for 15 h,
and single scans were collected every 15 min (appropriate
colors of scans correspond to particular times of the
experiment).

The backscattering data are also used for calculation of the
stability coefficient Turbiscan stability index (TSI) according
to the equation:

TSI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

xi−xBSð Þ2

n−1

v

u

u

u

u

t ð1Þ

where xi is the average backscattering for each minute of
measurement, xBS is the average x1, and n is the number of
scans.

The suspension with 0.02 g of aluminum(III) oxide in
20 cm3 of NaCl solution was sonicated for 1 min (Sonics,
LABO PLUS). Then, the required pH of the solution was
adjusted (3, 6, or 9 ± 0.1) using pH Φ360 pH/Temperature/
mV Meter (Beckman). The suspension was shaken in a water
bath (OLS 200, Grant) for 30 min, and during this time, its pH
was checked. The probes of the alumina suspension contain-
ing polyacrylamide were prepared in a similar way. An appro-
priate volume of the stock PAM solution (with the concentra-
tion 1100 ppm), providing its final concentration 100 ppm,
was added to the suspension directly before stability test.
After that, the system pH was checked and the measuring vial
with the suspensionwas immediately placed in the thermostat-
ed chamber of turbidimeter.

Adsorption experiments were made by the static meth-
od in the polymer concentration range 5–120 ppm at the
pH values 3, 6, and 9 (±0.1) using 0.05 g of Al2O3. Such
prepared suspensions were shaken in the water bath OLS
200 Grant for 24 h. After that, the solids were centrifuged
using a microcentrifuge (type MPW-223e, MPW Med
Instruments). The reaction of polyacrylamide with hyamine
proposed by Crummet and Hummel [28] was applied. The
solution turbidity was measured after 15 min using the
ultraviolet-visible (UV-VIS) spectrophotometer (Carry
1000; Varian) at 500 nm. To determine the amount of
adsorbed polyacrylamide, the difference between the initial
PAM concentration and that after the adsorption process
was calculated (using the calibration curve obtained
earlier).

The probes for thermal analysis were prepared by adding
0.1 g of Al2O3 to 25 cm3 of NaCl or NaCl with PAM
(CPAM = 200 ppm) solutions. Due to the fact that anionic
PAM shows the greatest adsorption on the alumina surface
at pH 3, this value of pH was adjusted in the examined sus-
pensions. Then, they were shaken in a water bath for 24 h, and
meanwhile, their solution pH was checked. After this time,
these probes were centrifuged and the solid (with or without
the polymer) was dried.

Thermal analysis was carried out on a STA 449 Jupiter F1,
Netzsch (Germany) under the following operational condi-
tions: heating rate of 10 °C/min, a dynamic atmosphere of
synthetic air (50 mL/min), temperature range of 30–950 °C,
sample mass ~25 mg, and sensor thermocouple type S TG-
DSC. As a reference, empty Al2O3 crucible was used. The
gaseous products emitted during decomposition of the mate-
rials were analyzed by QMS 403CAeölos (Germany) coupled
online to the STA instrument. The QMS data were gathered in
the range from 10 to 300 amu.

Results and discussion

The calculated values of TSI stability coefficients are
listed in Table 2. Their analysis requires knowledge of
the fact that TSI assumes values in the range 0–100.
Small TSI values indicate high stability of the examined
suspension, whereas increase in the TSI value corresponds

Table 1 PAM probe
characteristics Molecular weight/Da Carboxyl group

content/%
Symbol pKa α/% pH 3

11,000,000 5 11_5% 3.7 16.6

14,000,000 20 14_20% 3.7 16.6

14,000,000 30 14_30% 3.7 16.6

Table 2 Stability coefficient TSI for all examined systems,
CPAM = 100 ppm

Al2O3 suspension Temperature/°C TSI

pH 3 pH 6 pH 9

Without PAM 15 33.65 19.91 54.23

35 38.75 55.14 63.45

With PAM 11_5% 15 20.93 16.71 17.09

35 35.14 29.97 47.20

With PAM 14_20% 15 28.91 8.88 9.48

35 35.1 20.72 12.47

With PAM 14_30% 15 23.12 3.89 8.97

35 31.57 19.29 18.59
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to deterioration of system stability conditions. As can be
seen, alumina suspension without the polymer is succes-
sively unstable (for both examined temperatures)—TSI
values change in the range 33–63 (with the exception of
the system at pH 6 and 15 °C). Generally, the anionic
polyacrylamide addition improves stability of the dispersed
solid particles (at fixed pH and temperature, the decrease
of TSI values for the system containing PAM in relation
to that without polymer is observed).

To explain stability changes of the alumina particles
dispersed in the polyacrylamide solution, the informa-
tion about polymer adsorption is necessary. These data
are discussed in detail in our previous paper [29], and
in the present manuscript, a few relevant results are
presented in Figs. 1 and 2. Their analysis indicates that
adsorption of anionic PAM on the Al2O3 surface in-
creases with the rise of temperature (besides PAM
11_5%) and carboxyl group content in macromolecules,
whereas its decrease is observed with the increasing pH.

Solution pH affects both dissociation of the PAM car-
boxyl groups and alumina surface charge. The pHpzc

(point of zero charge (pzc)) of Al2O3 in the NaCl solution
changes in the range 7.46–8.07 (in the temperature range
15–35 °C) [29]. The greatest adsorption of anionic PAM
at pH 3 is a result of electrostatic attraction between the
positively charged solid surface and the minimally nega-
tively charged PAM macromolecules (which assumes more
coiled conformation assuring their dense packing on the
solid surface). The formation of hydrogen bonds between
the polymer functional groups (both carboxyl and amide)
and the solid surface sites is also possible [30]. The total
dissociation of polymer anionic groups at pH 6 and 9
leads to development of polymeric chains, which occupy
a larger surface area (adsorption decrease at pH 6) or

repulse electrostatically with the negatively charged metal
oxide surface (the lowest adsorption level at pH 9).

The temperature increase promotes more extended confor-
mation of polymer chains (increase of hydrodynamic radius of
polymer coil) [22]. At a fixed pH value and at higher exam-
ined temperature, a thicker adsorption layer, composed of
macromolecules expanded perpendicularly to the alumina sur-
face, was formed. As a consequence, the greater number of
polymeric molecules can adsorb on the solid surface area unit
(adsorption increase).

Only in the case of PAM 11.0_5% (whose chains con-
tain the smallest amount of carboxyl groups), the highest
adsorption level was observed at 25 °C. Conformation
changes of its macromolecules due to temperature in-
crease are not enhanced so effectively by a negatively
charged carboxyl groups in polymer chains as is in the
case of other polymer samples (with a higher content of
anionic groups).

The polyacrylamide-adsorbed amount increase with the
rise of carboxyl group content is also observed. More numer-
ous anionic groups cause more expanded conformation of
polymeric chains. Such structure of adsorbing macromole-
cules favors their higher adsorption in the alumina–polymer
solution system.

Based on the turbidimetric and adsorption results, a more
probable mechanism of suspension stability in the polymer
presence can be proposed.

At pH 3, there is a slight influence of PAM adsorption on
the Al2O3 suspension stability (for both examined tempera-
tures). It is probably caused by the greatest polymer adsorp-
tion and formation of a densely packed polyacrylamide layer
on the colloidal particle surfaces. This results in the appear-
ance of steric repulsion between the solid particles which leads
to slight improvement of the solid suspension stability in the
PAM presence.

Fig. 1 Adsorbed amounts of PAM on the alumina surface at 15 °C for
different solution pH values and anionic group content in polymer chains;
CPAM = 100 ppm

Fig. 2 Adsorbed amounts of PAM on the alumina surface at pH 3 for
different temperature values and anionic group content in polymer chains;
CPAM = 100 ppm

1514 Colloid Polym Sci (2016) 294:1511–1517



Improvement of stability of the alumina suspension
in the presence of polyacrylamide is more pronounced
at two other pH values. TSI coefficient for the samples
containing PAM assumes significantly lower values
(compared to the oxide suspension without the poly-
mer). The greater the improvement of suspension stabil-
ity is, the higher content of carboxyl groups in the
polyacrylamide chains is found.

At pH 6, the adsorbed macromolecules assume a
more extended conformation. Despite less adsorption
of the polymer (in comparison to that at pH 3), the
alumina suspension stability increases due to the rise
of repulsive interactions between the solid particles cov-
ered with polymeric layers. The mechanism of stabiliza-
tion is electrosteric.

A similar effect occurs in the systems at pH 9 at
which the adsorption of PAM is significantly lower
(electrosteric forces between alumina particles). Because
of low adsorption of the polymer, some depletion inter-
actions (caused by unadsorbed PAM chains) can be of
importance.

For detailed analysis of processes taking place during
the thermal degradation of the examined samples, mea-
surements of the presence of gaseous products by mass
spectrometry were performed. The intensity profiles of
main decomposition products (H2O, CO2) are presented
in Figs. 3 and 4. The analysis of m/z = 18 (characteristic
of H2O) indicates small changes obtained for the alumina
samples modified by PAM in relation to the solid sample
without the polymer. This demonstrates that the binding
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process of polymer with solid is of the surface character.
This behavior is confirmed by slight differences in enthal-
py values calculated from the peak profiles on the DSC
curves (Fig. 10, Supplementary Information section)—for
desorption of physically (ΔHI) and chemically (ΔHII)
bound water (Table 3). Only in the temperature range
350–450 °C, the appearance of additional peak is observed
[31–37]. The presence of this peak is associated with the
organic hydrogen oxidation.

In the case of m/z = 44 (characteristic of CO2), the appear-
ance of distinct peaks in the temperature range 250–600 °C
with the maximum at about 400 °C was observed. This is an
evidence of organic substance decomposition. The obtained
effects depend mainly on the adsorbate molecule structure and
its adsorbed amount (changes in ΔHIII values).

The influence of temperature, at which alumina surface
modification with anionic PAM was performed, on the ther-
mal characteristics of examined systems is shown in Fig. 5. It
represents the TG and derivative thermogravimetric (DTG)
curves obtained for alumina with adsorbed PAM 14_30% at
15 and 35 °C. The analysis of these curves indicates that the
total mass change is greater in the case of the sample prepared
at 35 °C. This is a result of greater adsorption level of PAM
obtained at the highest examined temperature.

Conclusions

Adsorption of anionic PAM on the surface of aluminum(III)
oxide decreases with the rising pH. At pH 3, there is a small
dissociation of PAM carboxyl groups, and therefore, the ad-
sorption proceeds by hydrogen bond formation and slight
electrostatic attraction. At pH 3, there is a slight influence of
PAM adsorption on the Al2O3 suspension stability (for both
examined temperatures).

Stronger electrostatic attraction between the negatively
charged macromolecules and the positively charged Al2O3

surface is mainly responsible for the polymer adsorption at
pH 6. Despite less adsorption of the polymer (in comparison
to that at pH 3), the alumina suspension stability increases due
to the rise of repulsive interactions between the solid particles
covered with polymeric layers (electrosteric stabilization).

The smallest polymer adsorption at pH 9 is a result of
repulsion between the PAM chains and Al2O3 particles (both
negatively charged). Because of low adsorption of the poly-
mer, some importance of suspension stability improvement
can have depletion interactions (caused by unadsorbed PAM
chains).

The higher the content of anionic carboxyl groups is in
macromolecules and temperature, the larger the amount of
adsorbed polyelectrolyte is. This is due to the conformational
changes of macromolecules manifested by adopting a more
developed structure in the adsorption layer.

The adsorption of anionic PAM causes noticeable decrease
in thermal stability of the alumina. The greater the total mass
losses are, the higher the polymer adsorption is (i.e., the higher
is the temperature of this process and is carboxyl groups’
content in the PAM chains). For the alumina samples with
the polymer, the additional minimum on the DTG curves ap-
pears at about 402 °C (thermo-oxidation of the organic H
atoms and carbonized polymer residue).

Table 3 The heat values of main stages of thermal degradation of
samples determined by DSC analysis

Sample ΔHI/J/g ΔHII/J/g ΔHIII/J/g

Al2O3 16.37 64.15 –

Al2O3/PAM 11_5% 18.97 62.42 −1.12
Al2O3/PAM 14_20% 18.79 63.04 −18.9
Al2O3/PAM 14_30% 16.32 61.68 −16.2

Fig. 5 TG and DTG curves for alumina systems modified by PAM 14_30% at pH 3: adsorbed at 15 °C (1) and adsorbed at 35 °C (2)
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