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Abstract: The use of machine learning to estimate joint angles from inertial sensors is a promising
approach to in-field motion analysis. In this context, the simplification of the measurements by using
a small number of sensors is of great interest. Neural networks have the opportunity to estimate joint
angles from a sparse dataset, which enables the reduction of sensors necessary for the determination
of all three-dimensional lower limb joint angles. Additionally, the dimensions of the problem can be
simplified using principal component analysis. Training a long short-term memory neural network
on the prediction of 3D lower limb joint angles based on inertial data showed that three sensors placed
on the pelvis and both shanks are sufficient. The application of principal component analysis to the
data of five sensors did not reveal improved results. The use of longer motion sequences compared
to time-normalised gait cycles seems to be advantageous for the prediction accuracy, which bridges
the gap to real-time applications of long short-term memory neural networks in the future.

Keywords: gait kinematics; inertial measurement unit; LSTM neural network; model order reduction;
proper orthogonal decomposition

1. Introduction

The analysis of human motion is of great interest to many different applications: it can be used to
identify injury risk or to increase performance during sports-related tasks [1], but also in many clinical
applications [2,3]. In particular, with regard to daily life, wearable technology has shown its feasibility
in both sports [4] and clinical applications [5]. Using these systems might help to prevent injuries or
the onset of motion related diseases. For this purpose, easy-to-use feedback systems are necessary to
inform the user of potential risks [6,7].

In order to realise such systems in daily life, a certain level of accuracy is required to provide
adequate feedback. The level of accuracy is highly dependent on the application and therefore needs
to be evaluated for each particular research question. Lebleu et al. [8] stated an error of less than 5◦ to
be acceptable for clinical gait analysis, but the errors reported using IMU systems to range between
5 and 18.8◦. These inaccuracies regarding the determination of joint angles can be related to a drift
of the signals over time, perturbations in the magnetometer readings and the calibration procedure
necessary to align the sensor to the segment to set up the anatomical model [8–11].

To overcome these limitations, different approaches have been suggested. Besides manually
aligning sensor and segment axes, functional calibration movements can be used for the alignment.
The manual alignment assumes the segment and sensor axes to be parallel. For the functional

Sensors 2020, 20, 4581; doi:10.3390/s20164581 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-6624-2895
https://orcid.org/0000-0002-4833-1306
https://orcid.org/0000-0002-8587-6591
https://orcid.org/0000-0002-9741-7202
https://orcid.org/0000-0001-7893-6229
http://dx.doi.org/10.3390/s20164581
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/16/4581?type=check_update&version=3


Sensors 2020, 20, 4581 2 of 15

calibration, the user needs to be able to execute the required position of movement. Expert
knowledge is necessary for both methods to ensure a meaningful and repeatable calibration [8,12].
Lebleu et al. [8] achieved mean RMSE values for functional calibrations of 2.0 to 4.1◦. Another
approach is the exploitation of kinematic joint constraints to determine joint angles. This approach is
for now limited to the determination of the 2D joint angles [13,14]. The use of machine learning, in
particular, artificial neural networks, is gaining more and more relevance in biomechanical time-series
estimation and has recently been reviewed by Gurchiek et al. [15]. They found hybrid approaches
incorporating domain knowledge by feature selection into the model to be helpful for accurate
predictions. Different approaches were used to automatically derive the most relevant information
from the data and reduce redundancy: an exhaustive greedy algorithm [16] has been used to find the
most relevant features to predict the centre of pressure trajectory [17] or the 3D ground reaction force
using pressure insoles [18]. The correlation between different inputs has been determined to exclude
highly correlated input features from 3D segment angles for the prediction of the knee adduction
moment [19]. Ardestani et al. [20] performed a Fisher discriminant analysis to recognise relevant EMG
signals and a partial correlation-kernel mutual information technique to select independent marker
trajectories for the prediction of the knee contact force. Principal component analysis (PCA) was
regularly used to reduce the number of features in EMG signals for the prediction of joint kinematics
[21,22] or muscle force [23]. However, Chen et al. [24] presented deep belief networks to outperform
PCA for feature selection in EMG signals. Oh et al. [25] used a self-organising map first to exclude
highly correlated features from marker trajectories, and subsequently, a general regression neural
network to find those inputs that were highly correlated to the outputs to finally predict the ground
reaction force. To estimate running kinematics, Gholami et al. [26] used a forward sequential algorithm
and a genetic algorithm to determine the best input features from strain data. Ziai and Menon [27]
heuristically reduced the input parameters for the prediction of joint moments from EMG data and
compared the results. They found an increased error for a reduced number of input channels. For the
application of inertial sensors, the number and placement of sensors used was in general based on a
priori decisions [28–34]. Shahabpoor et al. [35] used correlation techniques to find the optimum inertial
sensor positions for the prediction of the ground reaction force. They achieved the highest accuracy
using one sensor at the L5 vertebra and two sensors on the thighs.

However, none of the aforementioned studies analysed the influence of feature selection on
the prediction by comparing the results to those without feature selection. The minimisation of the
number of sensors necessary for getting accurate predictions is of high relevance because it simplifies
the application during daily life and reduces the costs of wearable systems. Additionally, the use of
fewer sensors will reduce the risk of misalignment. Errors in the sensors’ rotation especially cause
inaccurate results [36]. For that reason, this study aimed to analyse which combination of sensors is
favourable for the prediction of the 3D lower limb joint angles. Additionally, PCA was applied to
the data. Thereby, the number of input features was reduced further while accounting for orientation
errors. Since the amounts of inertial sensor data and the simultaneously measured marker-based data
were limited, inertial sensor data were simulated based on optical motion capture data to enlarge
the database. The validity of simulated data was presented and evaluated previously. The accuracy
was rpelvis = 0.95± 0.08, rright thigh = 0.88± 0.12,rle f t thigh = 0.91± 0.08, rright shank = 0.91± 0.11,
rle f t shank = 0.92± 0.10 [12]. Long short-term memory (LSTM) neural networks were trained on the
different input data. We hypothesised that the use of three instead of five sensors placed on the pelvis
and lower limbs would not decrease the prediction accuracy of the neural network significantly and
that the application of a PCA would have a regularising effect on the network. This might encourage
the use of less sensors and help to account for problems with regard to random orientation errors.

In the following Materials and Methods section an overview on the dataset is given, followed by
a brief description of feature selection, LSTM neural networks and the data analysis performed. In the
Results section, an overview of the contributions of single components to the principal component
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analysis is given, as is the prediction accuracy. Subsequently, the results are discussed, limitations are
identified and a final conclusion is drawn.

2. Materials and Methods

An overview of the workflow is displayed in Figure 1 and detailed descriptions of each step are
given in the following sections.

5 sensors: pelvis, 
thighs, shanks
3 sensors: pelvis, 
thighs

3 sensors: pelvis, 
shanks

1 sensor: pelvis 

5 principal compo-
nents of all sensors

LSTM network
predicted 
joint angles.c3d files

IMU data

joint angles

ta

tx

ta = f(tW[t-1a,tx]+b)

Figure 1. Scheme of the workflow. The marker trajectories of gait trials, saved as .c3d files, were used
to calculated inertial sensor data and the joint angles of the lower limbs. The inertial data were divided
into five subsets and used as input to train long short-term memory neural networks that were used to
predict the joint angles. To adapt its weights and biases for the prediction, the network received the
calculated joint angles as target values.

2.1. Data Set

The dataset used for this study pools data of different studies [10,12,37,38]. All data were collected
at the German Sport University Cologne. The studies were approved by the Ethical Committee of
the German Sport University Cologne and all participants provided their informed written consent.
The dataset comprised 115 participants (50 females, 37.0 (18–75) years). A number of 24 participants
underwent knee arthroplasty 1.8 ± 0.4 years post-surgery prior to gait analysis. Each participant
executed level walking trials at self-selected speeds ranging from 0.8 to 2.0 m s−1. The motion was
recorded using an optoelectronic motion capture system (VICONTM, MX F40, Oxford, UK, 100–125 Hz).
The joint angles were calculated using a custom MATLAB script based on the recommendations of the
International Society of Biomechanics [10,39]. The inertial sensor data—tri-axial linear acceleration
and angular rate—were simulated as detailed in [12]. IMU data were simulated for the pelvis, both
shanks and both thighs. The joint angles were calculated for the hip, knee and ankle joints of both legs
in all three dimensions. For evaluation a five-fold cross-validation was performed. For this purpose,
one fixed test set was split from the complete dataset, as were five different validation sets. The training
set contained approximately 65% of the data, the validation set 15% and the test set 20%. The splits
were undertaken randomly, ensuring that no overlapping between the sets occurred and no data of
one participant were split between datasets (see Table 1).
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Table 1. Split of the dataset.

CV No. of Training Subjects (Samples) No. of Validation Subjects (Samples) No. of Test Subjects (Samples)

1 73 (56,764) 15 (14,398) 27 (16,905)
2 70 (60,145) 18 (11,017) 27 (16,905)
3 71 (59,823) 17 (11,339) 27 (16,905)
4 73 (57,270) 15 (13,892) 27 (16,905)
5 73 (58,190) 15 (12,972) 27 (16,905)

2.2. Feature Selection

For feature selection, two different approaches have been performed. First, the number of
(simulated) sensors was reduced manually. For this purpose four different LSTM neural networks
were trained and their parameters were optimised for the best estimation of the joint angles:

• 5 sensors: pelvis, right thigh, left thigh, right shank, left shank (PTS-net)
• 3 sensors: pelvis, right thigh, left thigh (PT-net)
• 3 sensors: pelvis, right shank, left shank (PS-net)
• 1 sensor: pelvis (P-net).

Additionally, the dimensions of the PTS-net input data were reduced before optimising and
training another LSTM network using the proper orthogonal decomposition (POD) [40,41]. The POD
provides an optimal low-dimensional, uncorrelated description of a high-dimensional, correlated
process (the gait dataset with n input vectors) using a set of l POD basis vectors. Hereby, the goal was
to make the number of input vectors significantly smaller than the required number of POD basis
vectors n (l � n) so that a low-dimensional description of the high-dimensional complex systems
could be possible. Without loss of generality, the transformation is expressed as:

x ≈ x(l) =
l

∑
i=1

Φiqi = Φq . (1)

The problem is specified by the condition

E
{
‖x− x(l)‖2

}
≤ E

{
‖x− x̂(l)‖2

}
, (2)

where x is identified as a random vector, which is, in our case, the measured data at a certain time
instant. Condition (2) ensures that the POD approximation using l basis vectors x(l) is always better
than the approximation using any other possible basis x̂(l). This leads to the objective function for the
mean square error ε that depends on the chosen number of basis vectors included

ε(l)2 = E
{
‖x− x(l)‖2

}
−→ min (3)

subject to the orthonormality condition

ΦiΦj = δij , i, j = 1 . . . l . (4)

The POD can be realised using the principal component analysis (PCA), the singular value
decomposition and the Karhunen Loève decomposition. In this paper, we realise the POD using the
PCA, which can be used to reduce a model with linear dependencies in the data [24]. In dynamical
systems it is observed that indeed a surprisingly small number of POD basis vectors is sufficient for
an accurate description of the full system [42]. In other words, the main features of the system can,
generally, be described by a few degrees of freedom in a low-order subspace. Moreover, in this paper
we must note that the first five principal components described about 95% of the variance of each
sample. Hereby, the 30 features recorded from five IMU sensors were reduced to five features using
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PCA. Thereafter, sequences of these features of lengths varying from 100 to 1000 time steps constituted
the inputs to the PCA-net.

2.3. Long Short-Term Memory Neural Network

A fully-connected feedforward neural network network layer l needs a large number of
parameters Wl and bl , because the shape of the weight tensor Wl scales quadratically with the
dimensions of the layers. For time series, wherein it is common practice to flatten the sequence
axis when using fully-connected networks, this means that the time dependency of the data is taken
away, increasing the number of inputs. For this reason, it becomes difficult to find the most relevant
time-dependent patterns in the data, despite the large number of parameters [43].

To overcome this, alternative, recurrent networks have been developed for the prediction of
time series data and the preservation of time dependencies (Figure 2). While fully-connected neural
networks need consistent sequence lengths as inputs and outputs, recurrent neural networks can learn
from arbitrary sequence lengths. They process only the preceding time steps and not the complete
sequence (Figure 3). In contrast to fully-connected neural networks, they have time-delayed inner
recursions and inner states that serve as memory. Unfortunately, the memory of RNNs suffers from
exploding or vanishing gradients during the back-propagation, which leads to distinct errors during
the learning process. For detailed information on this, see (Goodfellow et al. [43], pp. 396–399).

(a)

al−1

al = f (Wlal−1 + bl)

al
(b)

xt

at = f (W [at−1,xt] + b)

at

Figure 2. A standard fully-connected feedforward neural network (a) and a recurrent neural
network (b). The recurrent neural network is extended by an additional loop.

at−1 = f (W [at−2,xt−1] + b) at = f (W [at−1,xt] + b) at+1 = f (W [at,xt+1] + b)
at−2 at−1 at at+1

xt−1 xt xt+1

at−1 at at+1

Figure 3. Unfolded view on a recurrent neural network. The neural network is extended by an
additional loop which allows the use of previous information for the subsequent prediction.

One specific recurrent neural network is the long short-term memory neural network, which was
introduced to overcome the long-term dependency problem [44,45]. The difference between an LSTM
and a standard recurrent neural network is the presence of gate layers the LSTM, which consist of four
different layers that decide how to update the cell state for the next recursion. The gate layers ensure
that relevant information from the past can be memorised and information only relevant for a short
time can be dismissed. Three different gates are used to update the cell state and thereby calculate the
activation for the next recursion (Figure 4) [43].
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a
(f)
t = sig

(
W(f)x̄t + b(f)

)
ã
(i)
t = sig

(
W(i)x̄t + b(i)

)
ãt = f (Wx̄t + b) a

(o)
t = sig

(
W(o)x̄t + b(o)

)

a
(i)
t = ã

(i)
t ◦ ãt

c̃t−1 = a
(f)
t ◦ ct−1 ct = a

(i)
t ◦ c̃t−1 at = f (ct) ◦ a

(o)
t

x̄t = [xt,at−1]

ct−1

ct at

forget gate input gate state update output gate

Figure 4. Overview of an LSTM cell. In each cell, four different networks are trained (bottom line) to
be able to memorise relevant information over long time. According to the information, the internal
cell state ct and the activation at are updated and used as further inputs during the next recurrence.

For each sensor combination one LSTM neural network was trained. To achieve the best results,
the architecture and hyperparameters of each network were optimised for the underlying dataset using
a hyperband search [46]. For the PT-net, PS-net and PCA-net, the architecture after the hyperparameter
search was 512-1024, while for the PTS-net and P-net the best architecture was 256-256. For all networks,
the optimal learning rate was 3e-4 and the dropout rate 0.4.

2.4. Data Analysis

The correlation of single sensor readings to the five principal components used for training the
PCA-net was evaluated.

To compare the prediction accuracy, the root mean squared error (RMSE) and correlation
coefficient between the predicted and target values for all 18 joint angles were calculated. Since the test
dataset that was analysed was chosen to be similar for all five models, a repeated measures ANOVA
was calculated on the RMSE values to find differences between the single models. In case of differences,
a post-hoc paired t-test with Bonferroni correction was evaluated.

3. Results

3.1. Principle Component Analysis

The PCA was calculated individually for each sample to reduce the model’s complexity and
reduce it to its main features. The first five principal components of each sample described 94.6%
of the variance in the data—42.9% described by the first, 22.6% by the second, 14.6% by the third,
10.0% by the fourth and 4.5% by the fifth. The analysis of the PCA loadings (Figure 5) revealed larger
correlations between the sensor readings and the first two PCA components than for the last three.
The strongest correlations between the sensor readings and the first PCA component were found for
the pelvis angular rate around the medio-lateral (z) axis (r = −0.716) and vertical (y) axis (r = 0.746),
both thigh sensors’ vertical (y) axes (right r = 0.847, left r = 0.777) and both shank sensors’ medio-lateral
(z) accelerations (right r = 0.749, left r = −0.896). Additionally, the angular rate of the left shank
around the anterior-posterior (x) axis (r =−0.861) and medio-lateral (z) axis (r =−0.823) showed strong
correlations. For the right shank the correlations were only moderate (anterior-posterior r = 0.588,
medio-lateral r = −0.660). In general, the angular rate readings showed a stronger correlation with the
PCA components than the acceleration.
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Figure 5. Correlation of each sensor’s reading (accx, accy, accz, ωx, ωy, ωz) with the first five PCA
components. The correlation strength of the acceleration is, in general, less than that the correlation of
the angular rate with the single components. The pelvis and shank sensors show stronger correlations
with the PCA components than the thigh sensors.

3.2. Prediction Accuracy

All networks showed good accuracy with correlation coefficients larger than 0.8, indicating strong
correlations, and RMSE values smaller than 3◦. The mean prediction accuracy was lowest for the
PCA-net (r = 0.826± 0.066, RMSE = 2.81± 0.66) and P-net (r = 0.879± 0.050, RMSE = 2.29± 0.62),
while the other networks showed similar accuracies—the PS-net being most accurate (PTS-net
r = 0.921± 0.039, RMSE = 1.71 ± 0.55, PT-net r = 0.918 ± 0.041, RMSE = 1.78 ± 0.63, PS-net
r = 0.924± 0.038, RMSE = 1.60± 0.57). Figures 6 and 7 display single examples of the ground
truth and predicted joint angles for the PCA-net and PS-net. In particular, in the sagittal plane,
the agreement between the ground truth and predicted values is high, while it is distinctly lower in
both other motion planes.

In Figure 8, the distributions of the correlation coefficients for all networks, motion planes,
joints and the left and right side are depicted separately. The mean accuracy was similar for both sides.
Hence, left and right were summarised for clarity in Tables 2 and 3, which display the mean correlation
coefficients and RMSE values. The prediction of the PCA-net showed a higher variance than the
other networks. The sagittal joint angles were predicted with very high accuracy. Only the prediction
of the ankle joint angle showed a lower accuracy using the PCA-net. In general, the deviations
were larger for the prediction of the ankle joint angle than for the other joints. The variance in the
prediction accuracy was higher in the non-sagittal motion planes than in the sagittal, main motion
plane, although the mean correlation coefficient still indicated strong correlations for all angles besides
the hip transverse plane. The largest RMSE values were found in the sagittal planes for the prediction
using the PCA-net. For all other models, the RMSE was smaller in the sagittal plane than in the minor
motion planes, not exceeding 3◦, except for the prediction of the knee joint angle in the transverse
plane using the P-net.



Sensors 2020, 20, 4581 8 of 15

The repeated measures ANOVA showed differences between the RMSE values of the different
networks (p < 0.001). The post-hoc paired t-test with Bonferroni correction revealed significant
differences (p < 0.001) between all networks besides the PTS-net and PT-net.
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Table 2. Mean (standard deviation) of the correlation coefficient for the five-fold cross-validation using
the different input parameters. The joint angles predicted for the left and right have been summarised.

PCA-Net PTS-Net PT-Net PS-Net P-Net

hip sagittal 0.891 (0.047) 0.985 (0.006) 0.988 (0.007) 0.989 (0.006) 0.979 (0.010)
frontal 0.747 (0.104) 0.935 (0.034) 0.938 (0.031) 0.942 (0.032) 0.908 (0.037)
transverse 0.408 (0.229) 0.677 (0.207) 0.653 (0.190) 0.646 (0.188) 0.459 (0.238)

knee sagittal 0.925 (0.032) 0.992 (0.003) 0.990 (0.004) 0.993 (0.003) 0.978 (0.007)
frontal 0.934 (0.043) 0.947 (0.036) 0.940 (0.039) 0.950 (0.032) 0.928 (0.052)
transverse 0.894 (0.072) 0.929 (0.059) 0.926 (0.057) 0.936 (0.054) 0.913 (0.063)

ankle sagittal 0.760 (0.088) 0.927 (0.035) 0.920 (0.040) 0.937 (0.033) 0.873 (0.050)
frontal 0.941 (0.023) 0.952 (0.041) 0.956 (0.022) 0.965 (0.018) 0.938 (0.036)
transverse 0.934 (0.036) 0.947 (0.041) 0.951 (0.029) 0.958 (0.028) 0.939 (0.033)

Table 3. Mean (standard deviation) of the RMSE for the five-fold cross-validation using the different
input parameters. The joint angles predicted for the left and right have been summarised.

PCA-Net PTS-Net PT-Net PS-Net P-Net

hip sagittal 4.11 (0.96) 1.74 (0.54) 1.70 (0.58) 1.62 (0.55) 2.31 (0.62)
frontal 1.67 (0.38) 0.95 (0.28) 0.91 (0.28) 0.87 (0.30) 1.16 (0.26)
transverse 2.77 (0.87) 2.13 (0.86) 2.13 (0.91) 2.12 (0.92) 2.72 (0.97)

knee sagittal 4.60 (1.06) 1.77 (0.38) 1.98 (0.51) 1.69 (0.44) 2.97 (0.55)
frontal 2.16 (0.71) 1.58 (0.66) 1.77 (0.82) 1.54 (0.72) 2.18 (0.85)
transverse 3.49 (1.10) 2.62 (1.06) 2.85 (1.25) 2.48 (1.09) 3.36 (1.27)

ankle sagittal 2.49 (0.31) 1.50 (0.36) 1.58 (0.43) 1.35 (0.37) 2.01 (0.35)
frontal 2.17 (0.56) 1.71 (0.72) 1.76 (0.72) 1.51 (0.62) 2.21 (0.72)
transverse 1.79 (0.38) 1.39 (0.47) 1.39 (0.48) 1.21 (0.41) 1.68 (0.47)

4. Discussion

This study compared an unsupervised and a heuristic feature selection technique for the
determination of joint angles during gait based on simulated inertial sensor data. As an unsupervised
technique, PCA was chosen to reduce the input features from 30 sensor readings to five principle
components. Regarding the heuristic approach, four different sensor combinations were investigated:
(1) sensors placed on the pelvis, both thighs and both shanks, (2) sensors placed on the pelvis and
both thighs, (3) sensors placed on the pelvis and both shanks and (4) a single sensor placed on the
pelvis. With the heuristic approach a minimisation of the required physical number of sensors becomes
possible, which improves the applicability of the system due to reduced costs and less effort for daily
life usage. The PCA approach can reduce computational costs and can have an regularising effect by
accounting for different sensor orientations.

The analysis of the RMSE values showed differences between all five networks trained besides
the PTS-net and PT-net. The PS-net, i.e., the three-sensor configuration, outperformed the network
reliant on all five sensors. This indicated that the use of five sensors is not necessary and underlines
our initial statement that the use of five sensors is not advantageous over the use of three sensors only.
These findings match the analysis of the PCA loadings (Figure 5). The strongest correlations between
the sensor readings and the first five principle components could be found for the pelvis and shank
sensors, while the correlation for the thigh sensors was lower. From a mechanical perspective,
these results are not surprising. The pelvis sensor records the motion of the centre of mass—a common
reference point in gait analysis. The shank sensors record the motion of the entire leg. The thigh sensor
records the motion of only the upper leg with respect to the reference point. Hence, the combination of
information on the pelvis and shank motion spans two of the three analysed joints, the hip and knee,
while the information on the knee joint is not directly available from the thigh sensors. The use of
only a single sensor placed at the pelvis revealed good results, especially with regard to the sagittal
motion plane. For practical applications, wherein lower accuracy is acceptable in return for a simple
measurement setup, the use of this single sensor might be a good compromise. Interestingly, the neural
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network trained on the first five principle components of the sensor data performed worst. As there
was information taken away from the input data, no perfect accuracy could be expected, but as there
was information of all 30 sensor readings in the data, we hypothesised the PCA-net would perform
better than the neural networks based on less sensors. We assumed the PCA to have a regularising
effect on the neural network. We could not find this in our results, but observed an increased variance
in the accuracy over all joints and motion planes. This might be attributed to the application of a PCA
on each sample instead of finding one set of principle components for all samples.

The prediction of the joint angles in the sagittal plane is generally very good for all networks,
showing the smallest variance in the prediction accuracy. For the minor motion planes, the variance in
prediction accuracy is increased, which might result in samples showing large errors (e.g., the knee
frontal plane angle depicted in Figure 6). This can be attributed to the larger variance in these
motion planes in general and the fact that smaller movements might be detected adequately by
inertial sensors. If a sample shows a large deviation from the mean of the dataset, the prediction
accuracy is decreased. By enlarging the dataset and the variance in the training data, the prediction
accuracy might be improved.

This study was—to the authors’ knowledge—the first that used an LSTM neural network for
the prediction of joint angles from data of complete motion sequences of arbitrary lengths instead
of sequences that sdfd time-normalised to 100% stance phase or gait cycle. With this approach,
preprocessing of the data needs less effort and the gap to real-time applications of neural networks
becomes smaller. In a previous study based on the same dataset [12], we used a fully-connected
feedforward neural network for the prediction of joint angles based on simulated IMU data for
time-normalised gait phases. We achieved a mean correlation coefficient of r = 0.87. The weakest
correlation was found for the knee joint frontal plane angle. For the sagittal plane, all joint moments
could be predicted with a correlation coefficient r > 0.95. The mean RMSE value was 4.1◦,
not exceeding 6◦ [12]. In another study, we compared the use of a fully-connected feedforward
network and an LSTM network on a smaller dataset with time-normalisation to gait cycles. The results
of this study compared to those of the previous study are displayed in Table 4. The longer sequences
seem to be advantageous for the prediction of the minor motion plane joint angles, but the sagittal
plane correlation coefficients were slightly lower in the recent study. The RMSE was smaller compared
to the previous study.

Table 4. Results of the RMSE and the correlation coefficient r achieved in [29].

FFNN LSTM PS-Net
RMSE r RMSE r RMSE r

sagittal 1.31 0.999 1.74 0.997 1.62 0.989
hip frontal 1.25 0.980 1.30 0.965 0.87 0.942

transverse 2.48 0.864 2.70 0.889 2.12 0.646
sagittal 1.37 0.997 1.92 0.997 1.69 0.993

knee frontal 1.55 0.793 1.92 0.681 1.54 0.950
transverse 1.74 0.957 3.73 0.945 2.48 0.936
sagittal 1.56 0.983 1.80 0.983 1.35 0.937

ankle frontal 1.31 0.892 1.35 0.912 1.51 0.965
transverse 1.76 0.891 2.14 0.920 1.21 0.958

The use of machine learning for the prediction of motion kinematics based on raw IMU data
is subject of current research. Hence, the comparison to other studies is difficult. Using kinematic
constraints, Seel et al. [47] achieved RMSE values of 3.3◦ and 1.6◦ for the prediction of sagittal knee and
ankle joint angles. These values are higher than those achieved in this study. Based on the common
approach using Kalman Filters [48] for sensor fusion, accuracy in a similar range to this study could be
achieved [49,50] using more sensors. Whether the achieved accuracy is sufficient is highly dependent
on the application and needs to be carefully evaluated. As the accuracy is in the same range as the
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accuracy of commercial systems, the application of machine learning methods for this task should be
considered, because it has the major advantage that the anatomical model—which most measurement
deviations in inertial sensor-based joint angle calculations can be attributed to [10]—is intrinsically
learned. Hence, no calibration movements, postures or very accurate sensor-to-segment alignment are
necessary, if the training dataset is large enough and shows sufficient variance [12].

The major limitation of the current study was the use of simulated IMU data only.
Further validation based on a measured IMU dataset should be undertaken in future work.
Nevertheless, previous studies showed good agreement of simulated and measured data, and a
comparable prediction accuracy of neural networks on both. Hence, we assume that the use of
measured data resulted in a comparable level of accuracy [12,51,52].

In future work it might be worthwhile to investigate the use of sensors placed on the feet. Thereby,
all three joints would be covered, which might improve the prediction accuracy. On the other hand,
the additional degrees of freedom in this model could also limit its prediction accuracy. Additionally,
the use of PCA for the data should be further evaluated. If the PCA could be performed online instead
of during the preprocessing, the information of the complete dataset could be covered and lead to
more general principal components which might improve the usability of this approach.

5. Conclusions

The use of machine learning to estimate joint angles from inertial sensors is a promising approach
to in-field motion analysis. Since no distinct physical connection between the input and output data
is necessary, neural networks have the opportunity to estimate joint angles from a sparse dataset.
This enables the reduction of sensors necessary for the determination of all three-dimensional lower
limb joint angles. The use of longer sequences of motion compared to time-normalised gait cycles
seems to be advantageous for the prediction accuracy, which bridges the gap to real-time applications
of LSTM networks in future work.
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