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Abstract
Exosomes (Exos) have been reported to promote pre-metastatic niche formation, proliferation, angiogenesis and metastasis. 
We have investigated the role of uPAR in melanoma cell lines-derived Exos and their pro-angiogenic effects on human micro-
vascular endothelial cells (HMVECs) and endothelial colony-forming cells (ECFCs). Melanoma Exos were isolated from 
conditioned media of A375 and M6 cells by differential centrifugation and filtration. Tunable Resistive Pulse Sensing (TRPS) 
and Nanoparticle tracking analysis were performed to analyze dimension and concentration of Exos. The CRISPR–Cas 9 
technology was exploited to obtain a robust uPAR knockout. uPAR is expressed in melanoma Exos that are internalized by 
HMVECs and ECFCs, enhancing VE-Cadherin, EGFR and uPAR expression in endothelial cells that undergo a complete 
angiogenic program, including proliferation, migration and tube formation. uPAR loss reduced the pro-angiogenic effects 
of melanoma Exos in vitro and in vivo by inhibition of VE-Cadherin, EGFR and uPAR expression and of ERK1,2 signaling 
in endothelial cells. A similar effect was obtained with a peptide that inhibits uPAR–EGFR interaction and with the EGFR 
inhibitor Gefitinib, which also inhibited melanoma Exos-dependent EGFR phosphorylation. This study suggests that uPAR 
is required for the pro-angiogenic activity of melanoma Exos. We propose the identification of uPAR-expressing Exos as a 
potentially useful biomarker for assessing pro-angiogenic propensity and eventually monitoring the response to treatment 
in metastatic melanoma patients.
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EVs  Extracellular vesicles
MVs  Microvesicles

Exos  Exosomes
MVB  Multivesicular bodies
uPA  Urokinase plasminogen activator
uPAR  Urokinase plasminogen activator receptor
PAI-1  Plasminogen activator inhibitor 1
EGFR  Epidermal growth factor receptor
suPAR  Soluble plasminogen activator receptor
ECFCs  Endothelial colony-forming cells
HMVEC  Human microvascular endothelial cells
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CRISPR  Clustered regularly interspaced short palindro-
mic repeats

TRPS  Tunable resistive pulse sensing
LAMP-1  Lysosomal-associated membrane protein 1
CM  Culture media
siRNA  Small interfering RNA
VE-Cad  Vascular endothelial cadherin
ECM  Extracellular matrix
MMP-12  Matrix metallo-proteinase-12

Introduction

Melanoma is the deadliest skin cancer, with stage IV mela-
noma patients having a 5-year survival rate of less than 15% 
[1]. Despite significant advances in melanoma therapy, inva-
sive melanoma incidence continues to rise worldwide faster 
than any other cancer [2] and it is responsible for approxi-
mately 70% of skin cancer-associated mortality [3]. The 
major cause of melanoma mortality is metastasis to distant 
organs, in lungs and brain [4]. In spite of many advances in 
understanding the cellular and molecular interactions within 
the tumor microenvironment, the underlying mechanism 
contributing to the generation of the pre-metastatic niche at 
distal sites remains elusive. Emerging evidence suggests that 
cancer-derived extracellular vesicles (EVs) play a major role 
not only in conditioning the tumor microenvironment but 
also in preparing the “soil” of the pre-metastatic niche for 
metastasis. [5, 6]. There are several types of EVs: microvesi-
cles (MVs), apoptotic bodies and exosomes (Exos). Exos 
are nano-sized (40–150  nm) membrane-bound vesicles 
that originate from the late endosomal trafficking, are gath-
ered intracellularly into multivesicular bodies (MVBs) and 
released by fusion with the plasma membrane [7]. They are 
critical mediators of intercellular communication between 
tumor and stromal cells via their biologically active pay-
load, including proteins, lipids and metabolites, RNA and 
DNA [8, 9]. Exos are reported to promote proliferation, 
invasion, and chemoresistance of cancer cells, to stimulate 
reprogramming of stromal cells to Cancer-Associated Fibro-
blasts (CAFs) and to promote angiogenesis which is critical 
for tumor cells release in the circulation and their spread to 
distant sites [10–13].

The uPA/uPAR system components (urokinase-type 
plasminogen activator, uPA; uPA receptor, uPAR; uPA 
inhibitor type-1, PAI-1) are actually considered impor-
tant prognostic and predictive markers of malignancy 
[14]. Several malignant tumors show a positive correlation 
between uPAR levels, a more aggressive phenotype and a 
poor prognosis [15]. We have previously shown that uPAR 
is strongly up-regulated in A375 and in metastasis-prone 
M6 melanoma cells with respect to normal melanocytes 
[16]. uPAR overexpression in melanoma cells controls 

an invasive and glycolytic phenotype depending on alpha 
5-beta1 integrin -mediated uPAR connection with EGFR 
[17]. We have also demonstrated that uPAR acquires a 
primary importance in vemurafenib resistance in tumors 
harboring the BRAF V600E mutation: high levels of 
uPAR and EGFR are associated with a lower sensitivity 
to vemurafenib [18]. At the same time, also the soluble 
urokinase-type plasminogen activator receptor (suPAR) 
has been proposed as a biomarker of tumor progression 
in several malignant tumors such as non-small-cell lung 
cancer [19], advanced breast cancer [20], colorectal cancer 
[21], ovarian cancer [22] and prostate cancer [23] and have 
been correlated with a poor prognosis.

Based on the above, in the current study, we aimed at 
addressing the role of uPAR in melanoma-derived Exos. 
We started to investigate the expression of uPAR both in 
ectosomes and Exos and the pro-angiogenic effects of mel-
anoma Exos on human endothelial colony-forming cells 
(ECFCs) and on human microvascular endothelial cells 
(HMVECs). We have observed a quantitative increase 
of VE-Cadherin, EGFR and uPAR, along with a rise of 
EGFR phosphorylation and ERK1,2 signaling. We have 
further assessed the effects of CRISPR–Cas 9-mediated 
uPAR knockdown and of its rescue on the pro-angiogenic 
activity of melanoma-derived Exos in vitro and in vivo.

Materials and methods

Cell lines and culture conditions

The human melanoma cell line A375 (MITF wild type, 
BRAF V600E, NRAS wild type) was obtained from Amer-
ican Type Culture Collection (Manassas, VA) and was 
grown in Dulbecco’s modified Eagle’smedium (DMEM, 
Euroclone, Milano, Italy) containing 2 mM glutamine, 
100 UI/ml penicillin, 100 μg/ml streptomycin and 10% 
FBS (Euroclone, Milano, Italy). A375–M6 melanoma 
cells (M6) were isolated from lung metastasis of SCID 
bg/bg mice i.v. injected with A375 cells and grown in 
the same conditions of A375. A375 and M6 were inde-
pendently validated by STR profiling by the DNA diag-
nostic centre BMR Genomics (Padova, Italy). Cells were 
amplified, stocked, thawed and were kept in culture for a 
maximum of 4 months. ECFCs were isolated from > 50 ml 
human umbilical cord blood (UCB) of healthy newborns 
as described previously [24], were selected as  CD45−, 
 CD34+,  CD31+,  CD105+,  ULEX+,  vWF+,  KDR+ cells 
[24] and were grown in EGM-2 culture medium (Lonza), 
supplemented with 10% FBS. Human Microvascular 
Endothelial Cells (HMVECs) were purchased from Lonza 
and were grown in the same conditions of ECFCs.
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Exosomes isolation

Exos isolation protocol was modified from the previously 
published methods [25, 26]. See details in Supplemental 
Methods.

TRPS (Tunable Resistive Pulse Sensing) analysis

The size distribution and concentration of Exos were 
measured by TRPS analysis using a qNano platform with 
an NP100-rated nanopore (Izon Science, UK). Exosomal 
samples were diluted 1000-fold with PBS and measured 
three times. Data processing and analysis were carried out 
on the Izon Control Suite software (Izon Science, UK).

Nanoparticle tracking analysis

Nanoparticle tracking analysis was performed on a 
NanoSight NS300 (Malvern Panalytical, Westborough, 
MA, USA) equipped with a 488 nm excitation laser and 
an automated syringe sampler. NanoSight technology 
calculates size based on the relationship between Brown-
ian motion and hydrodynamic diameter through the 
Stokes–Einstein equation. Exosomal samples were diluted 
1:500 in PBS and loaded into 1 ml syringes. CSV files 
generated by NTA by software v3.2 were used for compu-
tational analysis.

Transmission electron microscopy (TEM)

Negative staining technique was employed to visualize the 
Exos. An enriched exosomal suspension in filtered DPBS 
(Dulbecco’s phosphate-buffered saline) was dispensed on 
carbon-coated electron microscopy grids on parafilm and 
left to absorb for 10 min at room temperature then trans-
ferred to a drop of Uranyless® solution for 1 min and left 
to air dry. Excess stain was blotted away. Imaging was per-
formed using a JEOL 100CX II transmission electron micro-
scope (TEM) at 100 kV.

PKH67 labeling of Exos and exosomal uptake 
into recipient cells

Melanoma-derived Exos were collected from 80 ml of cul-
ture medium as described above. Exos were labeled using 
PKH67 Fluorescent Cell Linker kit (Sigma-Aldrich, St. 
Louis, MO) according to the manufacturer’s instructions. 
Exos uptake was measured on a FACSCAN LSRII (Bec-
ton–Dickinson, excitation = 490 nm, emission = 502 nm) 

as previously described [27]. See details in Supplemental 
Methods.

Immunofluorescence confocal microscopy

Immunofluorescence was performed as previously described 
[24, 28]. See details in Supplemental Methods.

Cell proliferation assay

12 × 104 HMVECs and ECFCs/well were seeded in six-well 
plates. The day after plating, the standard culture medium 
was substituted with EBM plus 2% FBS in the presence or 
absence of A375- and M6-derived Exos (20 µg/ml) (indi-
cated as A375-Exos and M6-Exos, respectively) at final con-
centration of 20 µg/ml. Cell proliferation was evaluated by 
cell counting at 24 h, 48 h, 72 h and 96 h.

Wound healing assay

12 × 104 HMVECs and ECFCs/well were seeded in six-
well plates and grown to confluency. The standard culture 
medium was then substituted with EBM plus 2% FBS in the 
presence or absence of A375-Exos and M6-Exos at final 
concentration of 20 µg/ml and a wound was produced in 
each well with a 20-μl micropipette tip. Microphotographs 
of the wound were taken at time 0, 6 h and 24 h. Images were 
analyzed with the Image J MRI Wound healing software and 
reported as the percentage of the healing compared to initial 
wound area.

Invasion assays in Boyden chambers

Spontaneous invasion experiments were performed in 
Boyden chambers as previously described [24], with wells 
separated by 8-µm-pore size polycarbonate filters coated 
with Matrigel (50 µg/filter). See details in Supplemental 
Methods.

Capillary morphogenesis

In vitro capillary morphogenesis was performed as described 
[24], in tissue culture wells coated with Matrigel (BD Bio-
sciences). ECFCs and HMVECs were resuspended (18 × 103 
/well in 96-well plates) in EBM 2% FBS in the presence or 
absence of A375-Exos and M6-Exos (20 µg/ml) and incu-
bated for 6 h at 37 °C, 5%  CO2. Results were quantified 
at the end of experiment with Angiogenesis Analyzer tool 
of Image J software, measuring the number of junctions, 
branches, tubules, total length and total tubule length. Six 
to nine photographic fields from three plates were analyzed 
for each point.



3060 A. Biagioni et al.

1 3

Western Blot analyses

Ectosome, Exos and cell aliquots of A375 and M6, as well as 
cell aliquots of control and Exos-treated ECFC and HMVEC 
cultures were processed for Western Blotting analyses. See 
details in Supplemental Methods.

Cell treatment with M25 integrin antagonist 
peptide and Gefitinib

Inhibition of uPAR–integrin interaction was obtained with 
the M25 peptide as previously described [17, 18], while 
EGFR phosphorylation was inhibited with Gefitinib, a spe-
cific inhibitor of the EGFR tyrosine kinase. See details in 
Supplemental Methods.

siRNA for uPAR gene knockdown

Targeting and not-targeting siRNAs were obtained from 
Dharmacon (Carlo Erba Reagents, Milan, Italy). Specific 
silencing of uPAR gene was performed, as previously 
described [17, 18]. See details in Supplemental Methods.

Double Nickase Cas9 PLAUR  gene knockout

A complete PLAUR  gene knockout was obtained, as previ-
ously described [29], by transfection of A375 and A375-M6 
with two CRISPR/Cas9 D10A plasmids, each one bearing a 
specific sgRNA designed by the manufacturer to generate a 
double strand break in uPAR exon 3. For uPAR expression 
rescue experiments, cells were stably transfected using an 
Okayama–Berg vector containing uPAR cDNA and selected 
with G418 as resistance marker (0.5 mg/ml) as previously 
reported [29, 30].

In vivo Matrigel plug assay

All procedures involving animals were performed in accord-
ance with the ethical standards and according to the Decla-
ration of Helsinki and to national guidelines approved by 
the ethical committee of Animal Welfare Office of Italian 
Health Ministry and conformed to the legal mandates and 
Italian guidelines for the care and maintenance of labora-
tory animals. Five hundred µl of Matrigel (BD Biosciences) 
mixed with (20 µg/ml) Exos from wild type, uPAR ko- and 
uPAR rescued M6 was injected subcutaneously in the ventral 
region of nude mice (12 mice, 4 animals for each condition) 
(Charles River). After 7 days, the Matrigel was excised and 
then fixed with formalin overnight, embedded in paraffin, 

Fig. 1  Characterization of M6-derived exosomes and ectosomes. a 
Particles size distribution and concentration by TRPS of M6-Exos. 
b, c Nanoparticles Tracking Analysis of exosomes (Exos) and ecto-
somes (Ectos), respectively, by Nanosight technology. d Morphology 
and dimension of M6-Exos under a transmission electron microscopy. 

Scale bar: 200  nm. e Western blotting analysis of exosomal marker 
proteins (including ALIX, CD63, CD81, CD9). f Western Blotting of 
uPAR in M6-Exos and ectosomes. CD81 was used as loading control. 
MW molecular weight; Exos exosomes; Lys total lysate; Ectos Ecto-
somes; UC ultracentrifugation; F filtration
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and sectioned to obtain slides. The plugs were stained with 
hematoxylin and eosin (H&E) and visualized using the Zeiss 
inverted microscope (Zeiss, Germany). In vivo neovasculari-
zation was quantified by blood vessel density using Image 
J software.

Statistical analysis

Statistical analyses of the data were performed using one-
way ANOVA, and p ≤ 0.05 was considered a statistically 
significant difference; while p ≤ 0.01, a very statistically 
significant difference.

Results

Isolation and characterization of melanoma‑derived 
Exos

Melanoma-derived Exos were isolated from culture media 
(CM) of A375 and M6, the metastatic clone of A375, after 

48 h incubation in serum-free media by differential centrifu-
gation and filtration. In order to identify the purified Exos, 
we characterized our population by TRPS and Nanoparticle 
tracking analysis. TRPS analysis (Fig. 1a) showed the distri-
bution and concentration of M6-Exos. The size of M6-Exos 
was approximately ranging from 50 to 150 nm, concord-
ant with the previously reported exosomal size distribution 
[26]. Similar results were obtained with Nanoparticle track-
ing analysis performed by Nanosight (mean: 96.9 ± 1.2 nm) 
(Fig.  1b). Nanoparticle tracking analysis of ectosomes 
(Fig. 1c) showed several components with different dimen-
sion. The mean size of this distribution was 291.5 ± 4.3 nm 
according to the previous observations [31]. TEM analysis 
revealed, as evident in Fig. 1d, that M6-Exos have a round-, 
cup-shaped morphology with a diameter ranging from 50 
to 150 nm, consistent with the data of TRPS and Nano-
particle tracking. Western Blotting analyses indicate that 
M6-Exos were positive for the characteristic exosomal sur-
face marker proteins (CD9, CD63, and CD81, members of 
tetraspanin family) and ALIX, a component of Multivesicu-
lar Body (MVB), expressed only in Exos [10], confirming 

Fig. 2  Internalization of M6-Exos into ECFCs and HMVECs. a 
Localization by confocal microscopy analysis of PHK67-labeled 
M6-Exos in ECFCs and HMVECs stained with TRITC-labeled 
phalloidin. The green-labeled Exos were visible in the perinuclear 
region of HMVECs and ECFCs. Scale bar: 20  µm. Histograms on 

the right represent the PHK67 mean fluorescence intensity of ECFCs 
and HMVECs after 4-h and 24-h incubation with stained exosomes 
(+(Exos) or an exosome-negative control (-Exos). b Confocal micros-
copy analysis of PHK67-labeled M6-Exos and LAMP-1, a lysosome 
marker. Scale bar: 10 µm
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the efficacy of purification methods (Fig. 1e). Similar results 
were obtained in A375-Exos (Supplementary Fig. S1, panels 
A, B, C and D).

uPAR expression in melanoma‑derived Exos

uPAR is an important prognostic and predictive marker in 
melanoma progression [16, 17]. We have previously shown 
that uPAR is strongly up-regulated in A375 and M6 mel-
anoma cells with respect to human melanocytes [16]. To 
investigate the expression of uPAR in melanoma-derived 
EVs, we analyzed uPAR levels in both ectosomes (collected 
from CM after 12000×g centrifugation) and Exos (collected 
from CM after filtration and 100,000×g ultracentrifugation). 
Western Blotting analyses (Fig. 1f) show that uPAR is pre-
sent only in Exos but not in ectosomes and, in particular, 
we observed an enrichment of uPAR in the smaller vesi-
cles obtained by ultracentrifugation combined with filtra-
tion compared to those collected after ultracentrifugation 
only. CD81 was used as loading control. Similar results were 
obtained in A375 (Supplementary Fig. S1, panel E).

Internalization of A375‑ and M6‑Exos by HMVECs 
and ECFCs

After melanoma Exos characterization, we assessed the 
effects of A375- and M6-Exos on the angiogenic activities 
of endothelial cells in vitro. First, we determined whether 
melanoma Exos could be internalized into endothelial cells. 
To this purpose, A375- and M6-Exos were labeled by a 

Fig. 3  Effects of M6-Exos on proliferation, migration and inva-
sion of ECFCs and HMVECs. a Cell proliferation in the presence or 
absence of M6-Exos analyzed by cell counting at 24, 48, 72 and 96 h. 
Results are reported as mean ± SD of three different experiments. b 
Wound healing assays in the presence or absence of M6-Exos. Micro-
photographs (× 10) at 0 and 24  h from the wound are shown. His-
tograms represent the percentage of the healing (the mean of three 
different experiments ± SD is reported) measured after incubation 
with or without M6-Exos. * shows statistical significance (p < 0.05) 

compared to untreated cells. c Spontaneous invasion. 2.5 × 104 cells 
were suspended in the reference media in the presence or absence of 
M6-Exos and placed in the upper well. Fresh EBM was placed in the 
lower well. Data are reported as the number of migrated cells after 
incubation with M6-Exos suspended in EBM, compared to those 
migrated after incubation with fresh EBM alone. All histograms 
represent the mean of three different experiments ± SD. Representa-
tive microphotographs (× 10) of migrated cells are shown under the 
respective histogram

Fig. 4  Effects of M6-Exos and A375-Exos on tube formation and 
angiogenesis-related signaling in ECFCs and HMVECs. Capil-
lary morphogenesis assays in the presence or absence of M6-Exos 
(a) and A375-Exos (b). Representative microphotographs (× 10) 
of capillary-like structures are shown. Quantification of capillary 
network by Angiogenesis Analyzer Image J tool. Histograms repre-
sent the mean number of master junctions, branches, tubules, total 
length, and total tubule length, respectively. Data are representative 
of measures obtained from at least nine fields. * Shows statistical sig-
nificance (p < 0.05) compared to untreated cells. c Western Blotting 
analyses of KDR, VE-Cad, EGFR, uPAR, pERK, ERK1,2. GAPDH 
and tubulin were used as a loading control. Densitometric quantifi-
cation of the immunoblots normalized to the relative internal control 
and expressed respect to untreated (- M6 and A375 exos) ECFCs and 
HMVECs is reported on the right. MW molecular weight

◂
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green fluorescent lipophilic dye (PHK67) and HMVECs 
and ECFCs were incubated with green Exos for 4 and 24 h, 
then stained with phalloidin and analyzed by immunofluo-
rescence for LAMP-1, a lysosome marker. After 24 h, the 
labeled M6-Exos were evident in the perinuclear region of 
endothelial cells at the lysosomal compartment, indicating 
that M6-Exos were efficiently internalized into ECFCs and 
HMVECs. (Fig. 2a and b. To quantify the exosome uptake in 
endothelial cells, we performed flow cytometry analysis. The 
results (Fig. 2a, on the right) confirmed our previous micros-
copy observations and showed that the uptake of exosomes 
was time dependent. Indeed, the mean fluorescence inten-
sity of PHK67 + endothelial cells results increased after 24-h 
incubation with M6-labeled exosomes. Similar results were 
obtained with A375-Exos (Supplementary Fig. S2).

Pro‑angiogenic effects of A375‑ and M6‑Exos 
on endothelial cells

To explore the functional role of melanoma Exos on angio-
genesis, HMVECs and ECFCs were treated with A375- and 
M6-Exos for a series of in vitro angiogenesis-related assays: 
proliferation, migration and invasion. The effect of M6-Exos 
on the proliferation was analyzed by cell counting at 24, 48, 
72 and 96 h. M6-Exos significantly enhanced (about 50% for 
ECFCs and 40% for HMVECs, respectively) the prolifera-
tion of HMVECs and ECFCs compared to untreated cells at 
any time of observation (Fig. 3a). A scratch wound healing 
assay was performed to assess the effect of M6-Exos on the 
migration of endothelial cells. The results of wound closure 
quantification (% of healing) showed in Fig. 3b demonstrated 
that exosomal treatment remarkably increased the motility of 
endothelial cells. Similar results were obtained in Matrigel 
invasion assay in Boyden chambers (Fig. 3c). Indeed, Exos-
treated ECFCs and HMVECs showed an increase of invasion 
properties compared to untreated cells. Likewise, A375-Exo 
treatment enhanced ECFC and HMVEC proliferation and 
motility (migration and invasion) (Supplementary Fig. S3).

Lastly, to investigate the effect of A375- and M6-Exos 
on the angiogenic tubule formation, we performed capil-
lary morphogenesis assays in Matrigel, in the presence or 
absence of A375- and M6-Exos. As shown in Fig. 4a and 
b, the number of master junctions, branches, tubules, total 
length e total tubule length were significantly increased 
in Exo-treated HMVECs and ECFCs and a better capil-
lary network was observed compared to untreated cells. 
Therefore, taken together, our in vitro functional assays 
indicate that A375- and M6-Exos could activate a pro-
angiogenic response in recipient endothelial cells. To 
investigate the mechanism through which A375- and 
M6-Exos could modulate endothelial cell function, we 
analyzed by Western Blotting the cell signaling transduc-
tions involved in angiogenesis. Figure 4c shows that Exos 
treatment induced a relevant increase of uPAR, EGFR and 
VE-Cadherin protein levels and a slight increment of KDR 
expression. These features were coupled with an increase 
of ERK1,2 (p42/44) phosphorylation in both ECFCs and 
HMVECs. Both morphological and signaling differences 
induced by A375- and M6-Exos were inhibited by the 
integrin antagonist peptide M25, that uncouples integrin-
mediated uPAR–EGFR interaction, as previously shown 
[18] (Fig. 5, panels a, b and c). To prove the direct role of 
EGFR in Exo-mediated angiogenesis, we performed cap-
illary morphogenesis in the presence or absence of Gefi-
tinib, an EGFR inhibitor which interrupts the signaling 
through EGFR in target cells. As shown in Fig. 6 panel 
a, Gefitinib reduced the pro-angiogenic effects of A375- 
and M6-Exos in ECFCs and HMVECs. In parallel, in the 
presence of Gefitinib, we observed an inhibition of Exos-
mediated EGFR phosphorylation. (Fig. 6 panel b). Taken 
together, these data indicate that the uPAR interactome 
transferred by melanoma exos in target endothelial cells 
could play a prominent role in melanoma-associated tumor 
angiogenesis by control of EGFR signaling.

uPAR is required for the pro‑angiogenic activity 
of A375‑ and M6‑Exos

To establish a direct correlation between uPAR expression 
in melanoma Exos and their pro-angiogenic effects, we 
performed siRNA-mediated uPAR silencing in M6. After 
validation of uPAR down-regulation by Western Blotting 
(Supplementary Fig. S4A), we purified Exos from siCON-
TROL and siPLAUR M6 CM, respectively. Supplemen-
tary Fig.S4B shows a consistent inhibition of capillary-like 
structures in siPLAUR-Exos-treated compared to siCON-
TROL-Exos-treated ECFCs. To further validate the evidence 
that uPAR is critical for the Exos-mediated angiogenesis, 
we have exploited the CRISPR–CAS9 technology to obtain 
a robust irreversible uPAR gene knockout in A375 and M6 
(Fig. 7a, left panel), as recently published [29]. In parallel, 

Fig. 5  Activity of M25 peptide on the pro-angiogenic effects of 
melanoma- Exos. Capillary morphogenesis assays of M6-Exo and 
A375-Exo-treated ECFCs and HMVECs in the presence of absence 
of M25 peptide. a Representative microphotographs (× 10) of capil-
lary-like structures are shown. b Quantification of capillary network 
by Angiogenesis Analyzer Image J tool. Histograms represent the 
mean number of master junctions, branches, tubules, total length, and 
total tubule length, respectively. Data are representative of measures 
obtained from at least nine fields. * Shows statistical significance 
(p < 0.05) compared to untreated cells. c Western Blotting analyses of 
p ERK and ERK1,2. Tubulin was used as a loading control. Densito-
metric quantification of the immunoblots normalized to the relative 
internal control and expressed respect to untreated (- M6 and A375 
exos) ECFCs and HMVECs is reported on the right. MW molecular 
weight

◂
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to directly demonstrate the role of uPAR, we performed 
an experiment of expression rescue (Fig. 7a, right panel). 
Exos were collected from CM of uPAR ko and uPAR Res-
cue (uPAR+) A375 and M6 and capillary morphogenesis 
assays were performed. We observed a significant reduction 
of capillary network in the presence of uPAR ko-Exos both 
in HMVECs and in ECFCs that was restored in the pres-
ence of uPAR+ -Exos (Fig. 7b). The levels of VE-Cad and 
pERK1,2 (Fig. 6c) were remarkably reduced in ko-Exos-
treated HMVECs and ECFCs compared to control and, on 
the other hand, increased in uPAR + -Exo-treated endothelial 
cells. Similar results were obtained in A375 (Supplementary 
Fig. S5). These results suggest that uPAR is critical for the 
pro-angiogenic effects of melanoma-derived Exos through 
a ERK1,2-mediated pathway.

uPAR + melanoma Exos promote angiogenesis 
in vivo

To validate our observations in vivo, we further assessed the 
angiogenic potential of Exos by examining the recruitment 
of endothelial cells and vasculature formation within subcu-
taneously implanted Matrigel plugs containing Exos derived 
from wild type, uPAR ko and uPAR Rescue (uPAR+) M6 
and A375. The plugs containing uPAR+ -Exos become more 
vascularized than implants with uPAR ko- and wild-type 
Exos (Fig. 8a). Histological examination by Hematoxy-
lin and Eosin staining indicates that Matrigel plugs with 
uPAR+ -Exos showed more micro-vessels compare to plugs 
containing uPAR ko and wild-type Exos. Indeed, the vascu-
lar density of Matrigel plugs (Fig. 8b) with uPAR+ -Exos 
was significantly higher than those containing uPAR ko, that 
not contain blood vessels, and wild-type Exos. These data 
suggest that wild-type and uPAR+ -Exos play an evident role 
for endothelial cells recruitment and vascular organization 
in vivo. So, uPAR expression is important for the angiogenic 
potential of A375- and M6-Exos both in vitro and in vivo.

Discussion

Accumulating evidence indicate that Exos are important in 
melanoma progression, supporting pro-tumoral processes 
including angiogenesis, immune regulation and modifica-
tion of tumor microenvironment [11]. In addition, Exos may 
also vehiculate pro-angiogenic molecules that promote neo-
angiogenesis and ECM remodeling [32]. The formation of 
a new vascular network and remodelling of the extracellu-
lar space are crucial for the detachment of melanoma cells 
from the primary site, which represents the first steps of the 
metastatic cascade.

In the present study, we have investigated the role of 
uPAR in Exos derived from melanoma cells and their pro-
angiogenic effects in HMVECs and ECFCs. First, we have 
isolated Exos from A375 and M6, derived from a lung 
metastasis of A375, by ultracentrifugation and filtration. 
Then, we have characterized the purified Exos in terms of 
dimensions, integrity and the typical protein markers expres-
sion. A375- and M6-Exos appeared as round-, cup-shaped 
EVs, ranging from 50 to 150 nm, and expressing CD63, 
CD81, CD9 and Alix. These data are consistent with what 
has been reported for Exos from other melanoma cell lines 
[33]. In addition, we analyzed the expression of uPAR, an 
important prognostic and predictive marker of malignancy in 
melanoma cells [14, 16]. Here, we demonstrated that uPAR 
is expressed in Exos but not in ectosomes. A possible expla-
nation of this differential expression may be found in uPAR 
localization in specialized membrane microdomains, called 
lipid rafts. We have previously shown that the angiogenic 
properties of ECFCs depend on the integrity of caveolae 
and on the presence of full-length uPAR in such structures 
[24]. We have also demonstrated that uPAR binds preferen-
tially to ganglioside GM1-enriched membranes, promoting 
invasion and capillary morphogenesis in ECFCs [34]. As 
reported by Thuma F. et al. [35], uPAR associates with pal-
mitoylated claudin7, a major component of tight junctions, 
located in tetraspanin-enriched microdomains, similar to 
glycolipid-enriched microdomains (GEM). These special-
ized membrane regions, prone for internalization [36, 37], 
are recruited into early endosomes and these complexes 
are maintained and recovered in Exos [38–40]. In addition, 
Endo-Munoz L et al. [41] have observed that, in metastatic 
osteosarcoma, uPA was secreted in an active Exos-bound 
form, influencing metastatic behavior via locally secreted 
uPA and at distant sites via uPA-containing Exos. Therefore, 
it is likely that uPAR may reside in Exos rather than in ecto-
somes. After their characterization, we studied the ability 
of melanoma Exos to stimulate an angiogenic program in 
endothelial cells. We have shown that A375- and M6-Exos 
are internalized and are able to promote the angiogenic prop-
erties of endothelial cells stimulating in vitro proliferation, 

Fig. 6  Anti-Exos pro-angiogenic activity of Gefitinib and inhibition 
of Exos-dependent EGFR phosphorylation. Capillary morphogenesis 
assays of M6-Exo and A375-Exo-treated ECFCs and HMVECs in the 
presence of absence of Gefitinib 10 µm. a Representative micropho-
tographs (× 10) of capillary-like structures are shown. b Quantifica-
tion of capillary network by Angiogenesis Analyzer Image J tool. 
Histograms represent the mean number of master junctions, branches, 
tubules, total length, and total tubule length, respectively. Data are 
representative of measures obtained from at least nine fields. * Shows 
statistical significance (p < 0.05) compared to untreated cells. c West-
ern Blotting analyses of pEGFR and EGFR. Tubulin was used as a 
loading control. MW molecular weight
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migration, invasion and capillary-like structure formation 
both in HMVECs and ECFCs. Considering the effect of 
A375 and M6-Exos in vivo, we observed that Exos from 
both parental cell lines promote endothelial cells recruitment 
and vascular organization within Matrigel plugs.

The uPA/uPAR system is essential for the endothelial 
function and for a correct angiogenic program. Indeed, we 
have previously reported that full-length uPAR is required 
for the angiogenic response of ECFCs [24]. At the same 
time, we have also shown that the MMP12-dependent uPAR 
cleavage is responsible for an angiogenesis impairment in 
HMVECs [42]. Here, to study the uPAR function in Exos, 
we exploited the CRISPR–Cas 9 technology to obtain a 
complete uPAR knockout, as recently published [29]. In this 
study, we reported that the uPAR silencing and, even more, 
the CRISPR-mediated knockout abrogate the pro-angiogenic 
potential of melanoma Exos both in vitro and in vivo. On the 
other hand, the pro-angiogenic ability of melanoma Exos is 
recovered by uPAR rescue, demonstrating a direct correla-
tion between exosomal expression of uPAR and the pro-
angiogenic properties of Exos.

During angiogenesis, adhesion molecules are important 
to provide connections between endothelial cells and to 
maintain the integrity of vascular tubes [43, 44]. The Vas-
cular Endothelial Cadherin (VE-Cadherin) is a key adhe-
sion molecule actively involved in the formation and sta-
bilization of intercellular adherens junctions in endothelial 
cells and in modulating signaling cascades within endothe-
lial cells during angiogenesis, vessel morphogenesis and 
vascular development [44]. Accordingly, also VEGF/

VEGFR2 interaction activates VE-Cadherin expression 
and the signaling pathway ERK/MAPK [45]. Here we have 
shown that the A375- and M6-Exos treatment induced an 
increase of VE-Cadherin, uPAR and EGFR protein levels 
both in mature and progenitor endothelial cells, in parallel 
with an increment of ERK1,2 phosphorylation, a signaling 
pathway that is inhibited by the peptide M25 which uncou-
ples integrins-dependent uPAR interactions with receptor 
tyrosine kinases (RTKs), including EGFR [17, 18]. These 
data are in agreement with the paper of LaRusch GA et al. 
in which a β1-integrin peptide that binds uPAR blocks 
FXII-induced angiogenesis inhibiting the ERK1,2 and Akt 
phosphorylation in human umbilical vein endothelial cells 
(HUVEC) [46].

In the presence of Exos from uPAR knockout parental cell 
lines, we observed a reduction of VE-Cadherin, and uPAR 
and EGFR expression, in parallel with a decrease of ERK1,2 
phosphorylation. Again, VE-Cadherin, uPAR and EGFR lev-
els and ERK1,2 signaling were restored in endothelial cells 
after uPAR rescue. Our data on Exos-dependent endothelial 
cell expression of EGFR, its phosphorylation and Gefitinib-
dependent inhibition of Exos-induced capillary morphogen-
esis (Fig. 6) are supported by several evidences that stimu-
lation or inhibition of EGFR has significant consequences 
on tumor angiogenesis, a feature that involves both a direct 
effect and an interplay with VEGF [47–51]. In light of our 
results, it could be speculated that the reported abundance 
of EGFR (Erb-B1) on endothelial cells of tumor vessels [49, 
50] could depend on an enrichment mediated by the release 
of Exos by the malignant cells.

Moreover, the crosstalk between uPAR and VE-Cadherin 
has been previously shown. Brunner et al. observed that 
in initial phases of angiogenesis, uPAR undergoes down-
regulation by density-enhanced phosphatase-1 (DEP-1) in 
confluent endothelial cells [52]. The up-regulation of DEP-1, 
with increasing cell density, inhibits the ERK1,2 pathway 
and uPAR expression in confluent endothelial cells, through 
VE-Cadherin/B-catenin interaction [53].

Collectively, our findings demonstrate that uPAR is criti-
cal for the Exos-mediated angiogenic program in human 
malignant melanoma and that the evaluation of exosomal 
uPAR expression and the complete uPAR knockout by gene 
editing technique may be a potential approach for monitoring 
and treatment of human melanoma. As a future perspective, 
this study provides new insights for a possible use of uPAR 
as a helpful biomarker in exosomal preparations obtained 
from the liquid biopsy in metastatic melanoma patients.

Fig. 7  Effects of uPAR knockout on the pro-angiogenic activities of 
melanoma Exos. a Western Blotting analysis of uPAR in M6-ko and 
M6-wt Exos (on the left) and in M6-ko and M6 u PAR+Exos (on 
the right). CD81 was used as loading control for exosomal samples. 
b Capillary morphogenesis assays in the presence of M6 wild-type 
Exos (M6-wt Exos), M6 uPAR Ko Exos (M6 Ko Exos) and uPAR 
rescued-Exos (M6 uPAR+Exos). Upper part: representative micro-
photographs (× 10) of capillary-like structures are shown. Lower part: 
quantification of capillary network by Angiogenesis Analyzer Image 
J tool. Histograms represent the mean number of master junctions, 
branches, tubules, total length, and total tubule length, respectively. 
Data are representative of measures obtained from at least nine fields. 
* Shows statistical significance (p < 0.05) compared to untreated 
cells. # shows statistical significance (p < 0.05) compared to M6-wt 
Exos. c Western blotting analyses of VE-Cad, p ERK1,2, ERK1,2 
and Tubulin in ECFCs and HMVECs in control conditions (ctrl) and 
treated with wild-type Exos (M6-wt Exos), M6 uPAR Ko Exos (M6 
Ko Exos) and uPAR rescued-Exos (M6 uPAR+Exos). Densitometric 
quantification of the immunoblots normalized to the relative inter-
nal control and expressed respect to untreated (- M6 and A375 exos) 
ECFCs and HMVECs is reported on the right. MW molecular weight
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