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Abstract

Multiple sclerosis (MS) is an inflammatory, demyelinating, central nervous system disease 

mediated by myelin-specific T cells. Environmental triggers that cause a breakdown of myelin-

specific T cell tolerance are unknown. We found that CD8+ myelin basic protein (MBP)-specific T 

cell tolerance can be broken and autoimmunity induced by infection with a virus that does not 

express MBP cross-reactive epitopes and does not depend on bystander activation. Instead, the 

virus activated dual T cell receptor (TCR)-expressing T cells capable of recognizing both MBP 

and viral antigens. These results demonstrate the importance of dual TCR T cells in autoimmunity 

and suggest a mechanism by which a ubiquitous viral infection could trigger autoimmunity in a 

subset of infected individuals, as hypothesized in the etiology of MS.

Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous 

system (CNS) that affects more than one million people worldwide. It is believed to be an 

autoimmune disease in which exposure of genetically predisposed individuals to 

environmental factors triggers a breakdown in T cell tolerance to myelin antigens. The 

specific types of myelin-specific T cells that contribute to the pathogenesis of MS are not 

known. Most studies have focused on the pathogenic role of myelin-specific CD4+ T cells 

because of the relatively strong association of MS susceptibility with major 

histocompatibility complex (MHC) class II alleles. In addition, CD4+ T cells are the primary 

effector T cells in experimental autoimmune encephalomyelitis (EAE), a widely used animal 

model of MS. However, there has been increasing recognition of the potential importance of 

CD8+ T cells in the pathogenesis of MS. CD8+ T cells typically outnumber CD4+ T cells in 

acute and chronic lesions in MS patients, and the CD8+ T cell subset exhibits more evidence 

of antigen-driven activation compared to CD4+ T cells in the CNS and blood of MS 

patients1, 2. The frequency of CNS antigen-specific CD8+, but not CD4+, T cells is also 
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higher in MS patients compared to healthy controls3. Furthermore, depletion of CD4+ T 

cells was not beneficial in MS patients, while depletion of a broader spectrum of leukocytes, 

including both CD4+ and CD8+ T cells, reduced lesion formation and relapses4. Together 

these observations support a role for both CD4+ and CD8+ myelin-specific T cells in the 

pathogenesis of MS.

Conditions leading to a loss of tolerance in either myelin-specific CD4+ or CD8+ T cells are 

not known. Genome-wide association studies have identified numerous MS susceptibility 

alleles, each of which (apart from HLA DR2) appears to contribute only slightly to the risk 

of developing MS5. This genetic complexity, together with the variability in the pathology, 

symptoms and clinical course of MS, suggest the possibility of multiple disease-initiating 

pathways. Disease heterogeneity may account for the difficulty in identifying environmental 

triggers of MS. While viral infections have long been proposed to initiate the disease 

process6–9, linking a particular virus to MS pathogenesis has not yet been achieved. 

Association with a specific infection is particularly difficult for a multifactorial disease like 

MS because a ubiquitous infection may trigger disease in only a small fraction of infected 

individuals depending upon the diverse interactions of their particular susceptibility alleles 

with the environment.

Few animal models exist in which infectious triggers of CNS autoimmunity can be 

investigated. Theilers murine encephalomyelitis virus (TMEV) infection, another model for 

MS, has been shown to induce CNS autoimmunity by causing bystander activation of 

myelin specific CD4+ T cells10. However, no model has been described in which an 

infectious agent abrogates tolerance in myelin-specific CD8+ T cells. Here we utilized a 

MHC class I-restricted TCR transgenic model that generates CD8+ T cells specific for 

myelin basic protein (MBP) to investigate conditions that break CD8+ T cell tolerance and 

induce CNS autoimmunity. We previously generated two TCR transgenic models expressing 

distinct TCRs specific for MBP79-87 associated with the H-2Kk MHC molecule11. Mice 

expressing a transgenic TCR comprised of Vα8 and Vβ6 (referred to as 8.6 mice) exhibit 

both central and peripheral tolerance, consistent with the constitutive presentation of MBP in 

lymphoid and other tissues. In contrast, T cells expressing a transgenic TCR comprised of 

Vα8 and Vβ8 (called 8.8 mice) escape central and peripheral tolerance, although they 

proliferate vigorously to MBP79-87 peptide in vitro. This split tolerance has also been 

observed for several CD4+ MBP-specific TCR transgenic models in which the low avidity 

of the interactions between the MBP-specific T cells and their ligand prevents responses to 

endogenous MBP in vivo, although the T cells can respond to MBP peptide in vitro. 

Tolerance in CD4+ TCR transgenic models is broken at some stochastic frequency as 

spontaneous EAE can occur, especially in the absence of regulatory T cells12, 13. Disease is 

also easily induced in CD4+ TCR transgenic models using immunization protocols that 

induce CD4+ T cell-mediated EAE in wild-type mice. The tolerance exhibited by CD8+ T 

cells in 8.8 mice differs from that of MBP-specific CD4+ T cells in that 8.8 T cells exhibit 

high avidity for their ligand and appear to remove the ligand from APCs without triggering 

T cell activation11. This observation suggested that circumstances leading to the loss of 

tolerance may differ for CD8+ and CD4+ MBP-specific T cells.
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Our studies here show that many conditions that induce disease in CD4+ myelin-specific 

TCR transgenic models failed to break tolerance in CD8+ 8.8 T cells. CNS autoimmunity in 

8.8 mice was triggered by infection with a recombinant vaccinia virus encoding MBP, 

consistent with the ability of viruses to efficiently prime MHC class I-restricted T cells. 

Surprisingly, infection with wild-type vaccinia virus also triggered CNS autoimmunity as 

efficiently as recombinant virus expressing MBP despite a lack of cross-reactivity between 

the 8.8 TCR and viral epitopes. Disease induction by wild-type virus required expression of 

endogenous TCR chains on the 8.8 T cells. Our results demonstrate a role for dual TCRs in 

the initiation of CNS autoimmune disease and suggest a novel mechanism by which a 

ubiquitous viral infection may trigger disease in only a subset of infected individuals.

Results

Tolerance differs in CD8+ and CD4+ MBP-specific T cells

In contrast to MBP CD4+ TCR transgenic models, MBP-specific 8.8 mice did not develop 

spontaneous EAE, even on the Rag2−/− background (0/198 Rag2+/+ and 0/24 Rag2−/− 8.8 

mice observed for more than 12 weeks). This result indicated that regulatory T cells, which 

are absent in Rag2−/− 8.8 mice (data not shown), are not required to prevent 8.8 T cells from 

responding to endogenous MBP. We investigated the susceptibility of 8.8 mice to active 

disease induction using a protocol that efficiently induces EAE in CD4+ MBP-specific TCR 

transgenic models and also induces autoimmune disease in a previously described CD8+ 

TCR transgenic humanized mouse model of MS in which the transgenic T cells recognize a 

MHC class I-restricted epitope of proteolipid protein (PLP)14. No neurological signs were 

observed in 8.8 mice immunized with MBP79-87 in complete Freunds adjuvant (CFA) with 

or without pertussis toxin injections (Supplementary Table 1). To assess whether peptide 

immunization is an efficient protocol for activating CD8+ 8.8 T cells, CFSE-labeled 8.8 and 

8.6 T cells were transferred into Mbp−/− mice that had been previously immunized with 

MBP79-87 in CFA and T cell proliferation was analyzed three days later. Although both 8.8 

and 8.6 T cells proliferated equally well upon stimulation with MBP peptide in vitro, 8.8 T 

cells barely proliferated in vivo in response to adjuvant-activated antigen-presenting cells 

(APCs) presenting exogenous MBP peptide while 8.6 T cells proliferated strongly 

(Supplementary Fig. 1). To determine if 8.8 T cell tolerance could be abrogated by strong, 

widespread activation of the APCs that present endogenous MBP throughout the animal, we 

administered lipopolysaccharide (LPS) and agonistic CD40 antibody to 8.8 mice. Neither 

reagent, alone or in combination, induced disease in 8.8 mice. Likewise, no disease was 

observed in 8.8 mice treated with poly(I:C) (Supplementary Table 1). However, weight loss 

and mild neurological signs were observed in 8.8 mice when MBP peptide was 

simultaneously injected with both LPS and the CD40 antibody (Supplementary Fig. 2 and 

Supplementary Table 1). Injection of MBP peptide alone had no effect. These results 

suggest that both strongly activating APCs in multiple tissues and increasing the 

concentration of ligand above the amount generated from endogenous MBP are required to 

break 8.8 T cell tolerance in vivo.
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Viral infection triggers autoimmunity in 8.8 mice

The conditions for breaking 8.8 T cell tolerance described above suggested that CD8+ T 

cell-mediated autoimmunity might be triggered by a viral infection that causes both 

widespread APC activation and generates de novo expression of a self-antigen mimic. 

Consistent with this hypothesis, we found that 8.8 mice exhibited a 100% incidence of 

autoimmune disease following infection with a recombinant vaccinia virus expressing MBP 

(Vac-MBP). Unexpectedly, we also found that 8.8 mice infected with wild-type vaccinia 

virus exhibited the same incidence and severity of disease (Fig. 1a and Supplementary Table 

1). In both groups of mice, the disease was characterized by weight loss and clinical signs 

such as ataxia, knuckling, difficulty walking and tail weakness. The clinical course of 

disease is depicted as increasing weight loss as this is the most quantitative measure of 

disease progression; however, immunochemical analyses demonstrated infiltration of CD8+ 

T cells and F4/80+ macrophage and activated microglia in both the brain and spinal cord of 

wild-type vaccinia-infected 8.8 mice as expected in autoimmune disease targeting the CNS 

(Supplementary Fig. 3). The disease progressed rapidly and most mice were sacrificed nine 

days post infection. In some experiments, mice survived this acute disease and developed 

chronic neurological symptoms such as walking difficulty and tail weakness (Supplementary 

Video 1). Analyses of viral titers in lymphoid organs and the CNS following infection 

showed that 8.8 mice cleared vaccinia virus as efficiently as wild-type mice, indicating that 

the disease was not due to poor viral clearance in the TCR transgenic mice (data not shown). 

Effective viral clearance in 8.8 TCR transgenic mice was supported by the absence of 

clinical signs in Mbp−/− 8.8 mice infected with wild-type virus (Fig. 1a and Supplementary 

Table 1). Wild-type vaccinia virus infection activated a population of 8.8 T cells in vivo 

identified by decreased MBP–H-2Kk tetramer and CD62L staining and increased CD44 

expression compared to uninfected mice (Fig. 1b). These cells acquired effector function 

because MBP-pulsed splenocytes were specifically lysed when transferred into vaccinia-

infected but not naïve 8.8 mice (Fig. 1c). Accumulation of 8.8 T cells was observed in the 

CNS of vaccinia-infected Mbp+/+ but not Mbp−/− 8.8 mice and correlated with neurological 

symptoms (Fig. 1d). These data indicate that wild-type vaccinia virus infection breaks 8.8 T 

cell tolerance and promotes an autoimmune response directed against endogenous MBP in 

the CNS.

Viral infections have been proposed to trigger autoimmune disease via several mechanisms. 

Bystander activation of self-reactive T cells might occur if a viral infection causes the 

release of sequestered autoantigens into an inflammatory milieu. To test this possibility, 

Mbp−/− 8.8 mice were infected with wild-type vaccinia virus and T cells were analyzed for 

activation markers and the ability to lyse MBP-pulsed splenocytes in vivo. As observed for 

Mbp+/+ 8.8 mice, vaccinia infection induced a population of activated 8.8 T cells in Mbp−/− 

mice that specifically lysed MBP-pulsed target cells in vivo (Fig. 2). These results indicate 

that vaccinia infection does not activate 8.8 T cells via a bystander mechanism because the 

8.8 T cells were activated in the absence of endogenous MBP.

Molecular mimicry could also account for the ability of wild-type vaccinia virus to induce 

disease in 8.8 mice if the 8.8 TCR exhibits cross-reactivity to a viral antigen. In vitro 

experiments did not support this possibility as 8.8 T cells proliferated in response to 
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splenocytes infected with Vac-MBP but not wild-type vaccinia virus (data not shown). To 

explore this possibility in vivo, genetically marked, wild-type splenocytes were transferred 

into Rag2−/− 8.8 mice prior to infection with wild-type vaccinia virus to provide B cells and 

non-transgenic T cells needed for viral clearance. Seven days post infection, splenocytes 

from the infected mice were stimulated in vitro with vaccinia virus-infected target cells and 

T cell responses were analyzed by intracellular staining for interferon-γ IFN-γ) (Fig. 3). 

IFN-γ secretion was detected only in the CD8+ T cell population derived from donor non-

transgenic splenocytes and not in the host Rag2−/− 8.8 T cells, demonstrating the inability of 

the 8.8 TCR to recognize viral antigens.

8.8 T cells are activated via endogenous TCR chains

The lack of IFN-γ production by Rag2−/− 8.8 T cells in response to vaccinia-infected target 

cells suggested that Rag2−/− 8.8 T cells differed from Rag2+/+ 8.8 T cells in that they were 

not activated during vaccinia infection. Therefore, we asked if Rag2−/− 8.8 mice were 

susceptible to autoimmune disease induced by wild-type vaccinia infection. Wild-type 

splenocytes were transferred into Rag2−/− 8.8 mice prior to infection with wild-type vaccinia 

virus and the recipients were monitored for clinical signs. While all control Rag2+/+ 8.8 

mice developed autoimmune disease, none of the Rag2−/− 8.8 recipients developed disease 

(Fig. 4a and Supplementary Table 1). Consistent with the lack of disease induction, Rag2−/− 

8.8 T cells did not acquire effector function as a result of wild-type vaccinia infection as 

MBP-pulsed splenocytes were lysed only after transfer into Rag2+/+ and not Rag2−/− 8.8 

infected recipients (Fig. 4b). This result, together with the fact that the Rag2−/− 8.8 mice 

contained non-transgenic T and B cells prior to infection, implicates an intrinsic difference 

in Rag2−/− versus Rag2+/+ 8.8 T cells in conferring susceptibility to virus-induced 

autoimmunity.

Peripheral T cells in Rag2+/+ 8.8 mice are skewed toward the CD8+ subset, however, some 

CD4+ Vα8+Vβ8+ T cells also develop. In contrast, T cells in Rag2−/− 8.8 mice are all 

CD4−CD8+. To determine if the inability of wild-type vaccinia virus to induce 

autoimmunity in Rag2−/− 8.8 mice was due to the loss of CD4+ 8.8 T cells, Rag2+/+ 8.8 mice 

were treated with anti-CD4 depleting antibody prior to vaccinia virus induction. CD4+ T 

cell-depleted 8.8 mice exhibited a delayed onset and somewhat milder disease, but the 

incidence of autoimmunity was not decreased by the lack of CD4+ T cells (Supplementary 

Fig. 4a and Supplementary Table 1). The decrease in disease severity in CD4+ T cell-

depleted vaccinia-infected 8.8 mice could be due either to a loss of pathogenic CD4+ 8.8 T 

cells or to a loss of help provided by CD4+ T cells to activated CD8+ 8.8 T cells. The later 

possibility is supported by the fact that adoptive transfer of 8.8 T cells that were stimulated 

with MBP peptide in vitro induced autoimmunity only when interleukin 2 (IL-2) was 

administered following T cell transfer (unpublished results). To determine if CD4+ 8.8 T 

cells were pathogenic, CD4+ and CD8+ T cells were purified from Rag2+/+ 8.8 mice, 

stimulated in vitro with MBP peptide and adoptively transferred into naïve recipients 

accompanied by injections of IL-2. While all CD8+ 8.8 T cell recipients succumbed to 

autoimmunity, none of the CD4+ 8.8 T cell recipients exhibited weight loss or clinical signs 

(Supplementary Fig. 4b). These results indicate that the ability of vaccinia virus to induce 

disease in Rag2+/+ 8.8 mice does not depend on the presence of CD4+ 8.8 T cells.
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The other major difference between Rag2+/+ and Rag2−/− 8.8 T cells is the potential for 

Rag2+/+ 8.8 T cells to express endogenous TCR chains because of the incomplete allelic 

exclusion of Tcra and Tcrb gene rearrangements. Indeed, expression of dual TCRs 

containing endogenous TCR β-chains paired with transgenic TCR α-chains or endogenous 

TCR α-chains paired with transgenic TCR β-chains has been observed on peripheral T cells 

in several TCR transgenic models15–18. The possibility that expression of endogenous TCR 

chains on 8.8 T cells is required for susceptibility to wild-type virus-induced autoimmune 

disease suggested the hypothesis that vaccinia virus breaks 8.8 T cell tolerance by triggering 

T cell activation via a virus-specific TCR co-expressed with the MBP-specific TCR on 8.8 T 

cells. If this mechanism is correct, CD8+ T cells co-expressing the 8.8 TCR with particular 

endogenous TCR α- and/or β-chains that confer specificity to viral antigens should be 

enriched in infected compared to uninfected 8.8 mice. To test this hypothesis, we compared 

the expression of a panel of TCR Vβ chains (see Methods) on CD8+ T cells isolated from 

naive versus wild-type vaccinia-infected Rag2+/+ 8.8 mice. While none of the antibodies 

specific for endogenous Vβ chains detected populations >1% of CD8+ T cells in uninfected 

8.8 mice (data not shown), T cells co-expressing Vβ8 and Vβ6 expanded following vaccinia 

infection (Fig. 5a). The absolute number of Vβ8+Vβ6+ T cells in the spleen increased >40-

fold in infected (n = 4) compared to naïve (n = 8) 8.8 mice (P = 0.004). In contrast to 

Vβ8hiVβ6− T cells, Vβ8+Vβ6+ T cells exhibited an activated phenotype in infected mice (Fig. 

5b). To investigate the antigen specificity associated with Vβ6 expression, T cells isolated 

from vaccinia-infected 8.8 mice were restimulated in vitro with vaccinia-infected 

splenocytes or MBP-pulsed splenocytes and analyzed for IFN-γ production and Vβ6 

expression. More than 50% of the T cells that produced IFN-γ in response to wild-type 

vaccinia-infected splenocytes expressed Vβ6, while only 9.6% of T cells that produced IFN-

γ in response to MBP-pulsed splenocytes were Vβ6+, indicating that co-expression of Vβ6+ 

preferentially conferred specificity for viral antigens (Fig. 5c). To determine if 8.8 T cells 

co-expressing particular Vα chains also expanded in response to vaccinia infection, T cells 

exhibiting either a naïve or activated phenotype were sorted from infected 8.8 mice and 

expression of different Vα chains was analyzed by real-time PCR. Expression of Vα11, 13 

and 14 was enriched in activated compared to naïve T cells isolated from infected mice 

(Supplementary Fig. 5). Together these data indicate that T cells co-expressing the 8.8 TCR 

and specific endogenous TCR chains are expanded in response to vaccinia infection and 

activation of these T cells correlates with loss of 8.8 T cell tolerance and induction of 

autoimmune disease. This mechanism predicts that other viral infections would trigger 

autoimmunity in 8.8 mice, which is supported by our finding that adenovirus also induces 

autoimmunity in Rag2+/+ 8.8 mice (Supplementary Table 1).

Vac-MBP activates 8.8 T cells via the MBP-specific TCR

Our experiments administering MBP peptide, LPS and anti-CD40 in vivo demonstrated that 

the 8.8 T cells can be activated via the MBP-specific TCR if the APCs are strongly activated 

and the dose of MBP increases above endogenous amounts. Therefore, we asked whether 

infection with Vac-MBP could induce disease in Rag2−/− 8.8 mice. Rag2−/− 8.8 T cells 

proliferated in response to Vac-MBP-infected, but not Vac-infected, cells in vivo (Fig. 6b). 

In contrast to our results with wild-type vaccinia infection, Rag2−/− 8.8 mice that received 

wild-type splenocytes needed to clear the virus succumbed to autoimmune disease following 
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Vac-MBP infection (Fig. 6b and Supplementary Table 1). This result demonstrates that viral 

infection can break 8.8 T cell tolerance via signaling through the MBP-specific TCR if the 

infection causes both increased expression of MBP and widespread APC activation.

Discussion

In the current study, we demonstrate that viral infection triggers CD8+ T cell-mediated 

autoimmune disease in the CNS by two distinct mechanisms. Infection with Vac-MBP 

induces disease via a “molecular identity” mechanism in which the virus encodes an epitope 

recognized directly by the MBP-specific TCR. In contrast, infection with wild-type vaccinia 

virus breaks tolerance in T cells that express dual TCRs due to incomplete allelic exclusion 

of the Tcra or Tcrb loci. Activation via a co-expressed virus-specific TCR overcomes the 

lack of response of the MBP-specific 8.8 TCR to endogenous MBP such that the T cell is 

able to respond to both the viral epitope and endogenous MBP.

Viral infection has long been postulated to be an environmental factor contributing to the 

etiology of MS. Although several different viruses have been implicated over the years19, 

20, no specific virus has been confirmed as a causative agent in the pathogenesis MS. 

Because MS is a multifactorial disease5, it is possible that multiple viruses influence MS 

susceptibility, and the ability of any particular virus to contribute to the pathogenesis of MS 

may be dependent on the repertoire of susceptibility alleles each individual carries and their 

exposure to other pre-disposing environmental factors. Alternatively, MS may be triggered 

by a common infection that initiates disease in only a small fraction of infected people, as 

suggested by the geographical distribution of MS and the change in risk observed in 

migrants. In particular, a large body of evidence accumulated over the past two decades 

strongly implicates the human herpes Epstein-Barr virus (EBV) as a risk factor in the 

development of MS, operating independently of the risk contributed by the MHC DR15 

allele20–23. Data from many studies show that the risk of developing MS is 15 times higher 

in EBV-positive compared to EBV-negative individuals and is two-threefold higher in 

individuals with a history if infectious mononucleosis compared to individuals that 

experienced asymptomatic infection24, 25.

Animal models of MS induced by viral infection have identified some mechanisms by which 

viruses could trigger CNS autoimmunity. Murine hepatitis virus (MHV) infection induces 

chronic, demyelinating disease that depends only on the activity of virus-specific T cells 

rather than the emergence of myelin-specific T cells during the course of infection26. In 

contrast, TMEV induces CNS autoimmune disease in susceptible mouse strains via 

bystander activation of myelin antigen-specific CD4+ T cells. Bystander activation is 

facilitated by myelin damage that occurs during the initial clearance of virus by CD8+ T 

cells, resulting in presentation of myelin epitopes by APCs to CD4+ myelin antigen-specific 

T cells that were non-specifically recruited to the CNS. This phenomenon of epitope 

spreading from viral antigen-specific CD8+ T cells to self-reactive, myelin-specific CD4+ T 

cells results in a chronic disease resembling MS27. A different mechanism has been 

demonstrated for recombinant TMEVs encoding either a peptide derived from Haemophilus 

influenzae sharing six of 13 amino acids with a peptide from proteolipoprotein (PLP)139–

151, or a peptide derived from MHV sharing only three amino acids with PLP139-151 (refs. 
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28, 29). In these cases, the molecular mimicry between H. influenzae or MHV peptide and 

PLP peptide is sufficient to prime CD4+ PLP139-151-specific T cells, which then initiate 

chronic disease. Autoreactive CD8+ T cell clones have also been isolated from mice infected 

with the DA strain of TMEV, and these clones induce CNS pathology upon adoptive 

transfer into uninfected mice30. However, the self-antigen recognized by these CD8+ T cell 

clones has not been identified. Infection with Semliki Forest virus (SFV) also induces an 

inflammatory, demyelinating disease in the CNS in which both virus-specific T cells and 

antibodies are generated that cross-react with myelin epitopes31.

In contrast to these models, our studies revealed mechanisms by which viral infection breaks 

tolerance directly in CD8+ MBP-specific T cells. Vac-MBP triggers autoimmunity in 

Rag2−/− 8.8 mice by a mechanism analogous to molecular mimicry in that an epitope 

encoded by the virus is specifically recognized by the MBP-specific TCR. The context of 

viral infection was important to break the tolerance that is normally maintained in vivo when 

the 8.8 TCR engages endogenous MBP ligand as immunization with MBP79-87 in CFA was 

not sufficient to induce disease in 8.8 mice. This result differs from findings in a CD8+ PLP-

specific TCR transgenic mice in which neurological signs could be induced by 

immunization with PLP peptide14. The clinical signs induced by PLP immunization were 

very mild and CD4+ T cell activity was required for further disease progression and relapses. 

The differences in the requirement for CD4+ T cells and the severity of disease seen in this 

model compared to our model may reflect differences in the tolerance mechanisms that 

allow the PLP-specific and the MBP-specific 8.8 T cells to circulate in the periphery as 

naïve T cells. Furthermore, CD4+ T cell help is not required to activate naïve CD8+ T cells 

during a viral infection. Administration of LPS and agonistic anti-CD40 also did not induce 

disease in 8.8 mice, even though this method of activating APCs presenting endogenous 

MBP breaks tolerance in some CD4+ MBP-specific TCR transgenic T cells32. Mild disease 

was induced by co-administration of MBP peptide with LPS and agonistic anti-CD40, 

indicating that the epitope stripping that normally maintains 8.8 T cell tolerance can be 

overcome when there is both wide-spread activation of APCs and an increase in the 

concentration of the MBP ligand. These conditions are achieved more efficiently with Vac-

MBP infection, accounting for the stronger ability of Vac-MBP infection to induce disease 

in 8.8 mice compared to co-administration of MBP peptide with LPS plus the CD40 

antibody.

Unexpectedly, we found that infection of Rag2+/+ 8.8 mice with wild-type vaccinia virus 

also induced autoimmunity. In contrast to TMEV, this viral infection does not induce CNS 

autoimmunity by bystander activation or by molecular mimicry. Importantly, wild-type 

vaccinia-infected Rag2−/− 8.8 mice were not susceptible to autoimmune disease. The lack of 

disease in Rag2−/− 8.8 mice does not reflect a requirement for CD4+ 8.8 T cells that are 

eliminated on the Rag2−/− background. Instead, our data show that expression of 

endogenous TCR chains on 8.8 T cells were required for wild-type vaccinia virus to induce 

disease in 8.8 mice. Consistent with the hypothesis that 8.8 T cells are activated via a viral 

antigen-specific TCR that is co-expressed with the 8.8 TCR, a population of T cells co-

expressing the 8.8 TCR and Vβ6 expanded following vaccinia virus infection and this 

population was specifically enriched in T cells that respond to viral antigens. CD4+Vβ6+ T 

Ji et al. Page 8

Nat Immunol. Author manuscript; available in PMC 2011 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells did not expand following infection of 8.8 mice (data not shown), indicating that the 

virus does not function as a superantigen that activates T cells expressing particular Vβ 

chains independent of antigen-specificity. T cells expressing Vα11, 13 and 14 were also 

enriched in activated compared to non-activated T cells following vaccinia infection. We 

conclude from these data that wild-type vaccinia virus breaks 8.8 T cell tolerance by 

triggering T cell activation via virus-specific TCRs that are co-expressed with the 8.8 MBP-

specific TCR.

The ability to activate 8.8 T cells via a second TCR indicates that the effector functions of 

8.8 T cells are intact despite their lack of response to endogenous MBP. Similarly, in mice 

engineered to express two transgenic TCRs, one of which induced strong anergy in vivo 

upon interaction with a neo-self antigen, stimulation via the second transgenic TCR 

activated the anergic T cells33. Our model differs from this in that the 8.8 T cells are 

specific for a bona fide self-antigen implicated in MS pathogenesis and are not subjected to 

clonal deletion or anergy in vivo11.

Although our model utilizes TCR transgenic mice, T cells expressing dual TCRs exist in 

both mice and humans. Dual TCR T cells usually express one TCR β chain and two α chains 

because allelic exclusion is less complete for the Tcra loci. In mice, the percentage of T cells 

reported to express two TCR α chains varies from 2–15%34–36, and a 33% frequency has 

been reported for humans37. The frequency of T cells expressing two TCR β chains was 

estimated to be ~1% in humans and 3% in mice, with the frequency increasing with age16, 

38, 39. While our data do not distinguish the specific pairing of TCR chains comprising 

virus-specific TCRs in 8.8 mice, it is more likely that a second TCR is generated in 8.8 T 

cells by pairing an endogenous α-chain with the transgenic β-chain or an endogenous β-

chain paired with the transgenic α-chain rather than via a failure of allelic exclusion at both 

the Tcra and Tcrb loci in individual transgenic T cells.

Peripheral T cells expressing dual TCRs have been shown to be beneficial by expanding the 

repertoire of T cells that respond to foreign antigens40. Since the first demonstration of T 

cells expressing two α-chains on the cell surface; however, most studies focused on the 

hypothesis that expression of dual TCRs may promote autoimmunity and alloreactivity18, 

41. Support for a significant contribution to alloreactivity was recently provided by studies 

demonstrating that dual TCR T cells play a dominant role in graft-versus-host disease42. In 

contrast, studies using animal models of autoimmune disease including collagen-induced 

arthritis, EAE and diabetes failed to show any role for dual TCR T cells in autoimmunity35, 

43, 44. We previously showed that the frequency of spontaneous EAE in CD4+ MBP-

specific TCR transgenic mice increased when the level of microbial exposure in the 

environment increased12, 45; however, a role for dual TCRs responding to environmental 

antigens could not be established in this model because the loss of regulatory T cells on the 

Rag2−/− background strongly enhances the incidence of spontaneous EAE46. Thus, to our 

knowledge, the studies reported here are the first to reveal a mechanism for triggering 

autoimmune disease that depends on expression of dual TCRs.

These findings suggest a new perspective on the proposed virally induced etiology of MS 

that is consistent with the inability to detect infectious virus in the CNS. As the frequency of 
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T cells co-expressing a myelin-specific and a virus-specific TCR in the peripheral T cell 

repertoire should be low, and will likely vary among individuals, this mechanism may 

represent one way by which a common infection can trigger autoimmunity in a small subset 

of genetically predisposed individuals. The cumulative data regarding a connection between 

EBV infection and MS is consistent with this hypothesis. Despite the association of MS with 

increasing serum titers of EBNA-1 antibodies22 and with increased frequency of EBV-

specific CD4+ and CD8+ T cells21}, the evidence for association of lytic EBV replication 

with MS is controversial. A recent study reported an almost 100% incidence of EBV 

infection in CNS B cells in MS patients, as well as viral reactivation in B cells present in 

CNS follicles accompanied by accumulation of activated CD8+ T cells47, implicating 

reactivation of EBV as a key factor in MS pathogenesis. However, the detection of EBV 

DNA in the CNS of MS patients was not reproduced in another study using highly sensitive 

techniques48, suggesting that the function of EBV as a risk factor for MS is not dependent 

on reactivation of the virus during autoimmune disease. This notion is consistent with our 

conclusion that viral infection can activate T cells expressing dual TCRs, one specific for a 

viral epitope and one for a myelin epitope, that then drive the autoimmune process 

independent of an ongoing immune response against the pathogen. The low probability of 

this event may account not only for the low incidence of autoimmunity among individuals 

infected with one common pathogen, but for the elevated antibody titers in MS patients for 

several other common viruses21.

Methods

Mice

MBP79-87-specific TCR transgenic 8.8 and 8.6 mice on the Mbp+/+, Mbp−/− and Rag2−/− 

background have been previously described11. Thy1.1 C3HeB/FeJ mice were generated by 

backcrossing the Thy1.1 allele onto the C3HeB/FeJ background for twelve generations. All 

mice were bred and maintained in a specific pathogen-free facility at the University of 

Washington (Seattle, Washington). Mice used for EAE induction were female mice between 

8–12 weeks old. All procedures have been approved by the Institutional Animal Care and 

Use Committee at the University of Washington.

EAE induction by vaccinia virus infection

Wild-type (New York City Board of Health (NYCBH)) and recombinant vaccinia virus 

encoding MBP (Vac-MBP) were obtained from Therion Biologics. Vaccinia viruses were 

grown in HeLa cells and titered in BSC-40 cells. Mice were injected i.p. with 1–5 × 106 

PFU of wild-type or Vac-MBP virus. 8.8 Rag2−/− mice were injected i.v. with 2.5 × 106 

naive splenocytes from wild-type mice two weeks prior to viral infection. Mice were 

weighed daily and sacrificed when they lost more than 20% of their original body weight. 

Neurological symptoms, such as ataxia, knuckling, hypersensivity or difficulty in walking, 

usually appeared six days post infection.

Flow cytometry

Splenocytes from naïve mice or mice infected seven days earlier with vaccinia virus, and 

CNS monocuclear cells were isolated from perfused mice as previously described49 and 
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stained with combinations of antibodies specific for CD8 (clone 53–6.7), Thy1.2 (clone 30-

H12), CD44 (clone IM7), CD62L (clone MEL-14), Vβ2 (clone B20.6), Vβ4 (clone KT4), 

Vβ5 (clone MR9-4), Vβ6 (clone RR4-7), Vβ7 (clone TR310), Vβ8 (clone MR5-2), Vβ9 

(clone MR10-2), Vβ10 (clone B21.5), Vβ11 (clone RR3-15), Vβ14 (clone 14-2) (purchased 

from BD Biosciences) or PE-conjugated H-2Kk/MBP79-87 tetramer. The tetramer was 

generated in house using a construct encoding Kk provided by the National Institutes of 

Allergy and Infectious Diseases Tetramer Core Facility and conjugated to phycoerythrin. 

Cells were analyzed on a FACScan, FACScanto, or LSR II (BD Biosciences).

In vivo CTL killing assay

Splenocytes from wild-type mice were incubated with or without 20 μM MBP79-87 peptide 

for 1–2 h at 37 °C in complete RPMI 1640 media (HyClone). The splenocytes were then 

washed with PBS and incubated in 5 μM (peptide-pulsed) or 1.2 μM (non-pulsed) CFSE for 

10 min at 37 °C. After washing three times with PBS, 1 × 107 peptide-pulsed and non-

pulsed splenocytes were mixed together and i.v. injected into mice. Mice were sacrificed 20 

ho later. Spleens were harvested and CFSE-labeled cells were analyzed by flow cytometry.

Intracellular IFN-γ staining

Splenocytes (1 × 106)from infected mice were incubated with 1 × 106 either naïve Thy1.1 

splenocytes, naïve Thy1.1 splenocytes plus 5 μM MBP peptide, or Thy1.1 splenocytes 

infected with vaccinia virus in a 96-well U-shape plate. After incubation overnight at 37 °C, 

cells were further cultured with Golgi Plug (1 μl/ml, BD Biosciences) for 5 h. The cells were 

stained for CD8, Thy1.2, Vβ8, and Vβ6 (for Fig. 5 only). Cells were fixed and permeabilized 

(Cytofix/Cytoperm kit; BD Biosciences) and subsequently stained with anti-IFN-γ (clone 

XMG1.2) or Rat IgG1 isotype antibody (R3–34) (purchased from BD Biosciences). Samples 

were washed and fixed in PBS containing1% paraformaldehyde and analyzed on a FACS 

Calibur or FACS Canto (BD Biosciences).

Quantitative RT-PCR

Total RNA was extracted from sorted cells using the RNeasymini kit (Qiagen), and first-

strand cDNA was synthesized using SuperScript II (Invitrogen) according to the 

manufacturer’s directions. Quantitative PCR was performed on an ABI 7300 Real Time 

PCR System (Applied Biosystems) using Power SYBR Green PCR Master Mix (Applied 

Biosystems). Tcra Vα gene primers and a Cα primer have been previously described50. 

Reactions were run in duplicate, and samples were normalized to the internal β actin control.

Statistical analysis

All P values were calculated with a two-tailed Student’s t-test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Ji et al. Page 11

Nat Immunol. Author manuscript; available in PMC 2011 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

We thank N. Mausolf for animal husbandry and technical assistance, and S. Lee and E. Pierson for critical 
comments on the manuscript. This work was supported by the US National Institutes of Health (AI07272737 to 
J.M.G.).

References

1. Goverman J, Perchellet A, Huseby ES. The role of CD8(+) T cells in multiple sclerosis and its 
animal models. Curr Drug Targets Inflamm Allergy. 2005; 4:239–245. [PubMed: 15853746] 

2. Friese MA, Fugger L. Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? 
Brain. 2005; 128:1747–1763. [PubMed: 15975943] 

3. Crawford MP, et al. High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in 
multiple sclerosis revealed by novel flow cytometric assay. Blood. 2004; 103:4222–4231. [PubMed: 
14976054] 

4. Coles AJ, et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008; 
359:1786–1801. [PubMed: 18946064] 

5. De Jager PL, et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and 
TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet. 2009; 41:776–782. [PubMed: 
19525953] 

6. Cook SD, Dowling PC. Multiple sclerosis and viruses: an overview. Neurology. 1980; 30:80–91. 
[PubMed: 6248821] 

7. Kurtzke JF. Epidemiologic evidence for multiple sclerosis as an infection. Clin Microbiol Rev. 
1993; 6:382–427. [PubMed: 8269393] 

8. Cermelli C, Jacobson S. Viruses and multiple sclerosis. Viral Immunol. 2000; 13:255–267. 
[PubMed: 11016591] 

9. Gilden DH. Infectious causes of multiple sclerosis. Lancet Neurol. 2005; 4:195–202. [PubMed: 
15721830] 

10. Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for 
immunotherapy. Nat Rev Immunol. 2002; 2:85–95. [PubMed: 11910899] 

11. Perchellet A, Stromnes I, Pang JM, Goverman J. CD8+ T cells maintain tolerance to myelin basic 
protein by ‘epitope theft’. Nat Immunol. 2004; 5:606–614. [PubMed: 15146180] 

12. Goverman J, et al. Transgenic mice that express a myelin basic protein-specific T cell receptor 
develop spontaneous autoimmunity. Cell. 1993; 72:551–560. [PubMed: 7679952] 

13. Lafaille JJ, Nagashima K, Katsuki M, Tonegawa S. High incidence of spontaneous autoimmune 
encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. 
Cell. 1994; 78:399–408. [PubMed: 7520367] 

14. Friese MA, et al. Opposing effects of HLA class I molecules in tuning autoreactive CD8+ T cells 
in multiple sclerosis. Nat Med. 2008; 14:1227–1235. [PubMed: 18953350] 

15. Borgulya P, Kishi H, Uematsu Y, von Boehmer H. Exclusion and inclusion of alpha and beta T 
cell receptor alleles. Cell. 1992; 69:529–537. [PubMed: 1316241] 

16. Balomenos D, et al. Incomplete T cell receptor V beta allelic exclusion and dual V beta-expressing 
cells. J Immunol. 1995; 155:3308–3312. [PubMed: 7561023] 

17. Hurst SD, Sitterding SM, Ji S, Barrett TA. Functional differentiation of T cells in the intestine of T 
cell receptor transgenic mice. Proc Natl Acad Sci U S A. 1997; 94:3920–3925. [PubMed: 
9108080] 

18. Heath WR, Miller JF. Expression of two alpha chains on the surface of T cells in T cell receptor 
transgenic mice. J Exp Med. 1993; 178:1807–1811. [PubMed: 8228827] 

19. Munz C, Lunemann JD, Getts MT, Miller SD. Antiviral immune responses: triggers of or triggered 
by autoimmunity? Nat Rev Immunol. 2009; 9:246–258. [PubMed: 19319143] 

20. Salvetti M, Giovannoni G, Aloisi F. Epstein-Barr virus and multiple sclerosis. Curr Opin Neurol. 
2009; 22:201–206. [PubMed: 19359987] 

Ji et al. Page 12

Nat Immunol. Author manuscript; available in PMC 2011 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



21. Pohl D. Epstein-Barr virus and multiple sclerosis. J Neurol Sci. 2009; 286:62–64. [PubMed: 
19361810] 

22. Ascherio A, Munger KL. Epstein-Barr Virus Infection and Multiple Sclerosis: A Review. J 
Neuroimmune Pharmacol. 2010

23. De Jager PL, et al. Integrating risk factors: HLA-DRB1*1501 and Epstein-Barr virus in multiple 
sclerosis. Neurology. 2008; 70:1113–1118. [PubMed: 18272866] 

24. Thacker EL, Mirzaei F, Ascherio A. Infectious mononucleosis and risk for multiple sclerosis: a 
meta-analysis. Ann Neurol. 2006; 59:499–503. [PubMed: 16502434] 

25. Nielsen TR, et al. Multiple sclerosis after infectious mononucleosis. Arch Neurol. 2007; 64:72–75. 
[PubMed: 17210811] 

26. Hosking MP, Lane TE. The Biology of Persistent Infection: Inflammation and Demyelination 
following Murine Coronavirus Infection of the Central Nervous System. Curr Immunol Rev. 2009; 
5:267–276. [PubMed: 19946572] 

27. Miller SD, et al. Persistent infection with Theiler’s virus leads to CNS autoimmunity via epitope 
spreading. Nat Med. 1997; 3:1133–1136. [PubMed: 9334726] 

28. Olson JK, Croxford JL, Calenoff MA, Dal Canto MC, Miller SD. A virus-induced molecular 
mimicry model of multiple sclerosis. J Clin Invest. 2001; 108:311–318. [PubMed: 11457884] 

29. Croxford JL, Ercolini AM, Degutes M, Miller SD. Structural requirements for initiation of cross-
reactivity and CNS autoimmunity with a PLP139-151 mimic peptide derived from murine 
hepatitis virus. Eur J Immunol. 2006; 36:2671–2680. [PubMed: 16981179] 

30. Tsunoda I, Kuang LQ, Kobayashi-Warren M, Fujinami RS. Central nervous system pathology 
caused by autoreactive CD8+ T-cell clones following virus infection. J Virol. 2005; 79:14640–
14646. [PubMed: 16282464] 

31. Mokhtarian F, Zhang Z, Shi Y, Gonzales E, Sobel RA. Molecular mimicry between a viral peptide 
and a myelin oligodendrocyte glycoprotein peptide induces autoimmune demyelinating disease in 
mice. J Neuroimmunol. 1999; 95:43–54. [PubMed: 10229114] 

32. Cabbage SE, et al. Regulatory T cells maintain long-term tolerance to myelin basic protein by 
inducing a novel, dynamic state of T cell tolerance. J Immunol. 2007; 178:887–896. [PubMed: 
17202350] 

33. Teague RM, et al. Peripheral CD8+ T cell tolerance to self-proteins is regulated proximally at the 
T cell receptor. Immunity. 2008; 28:662–674. [PubMed: 18424189] 

34. Alam SM, Gascoigne NR. Posttranslational regulation of TCR Valpha allelic exclusion during T 
cell differentiation. J Immunol. 1998; 160:3883–3890. [PubMed: 9558094] 

35. Elliott JI, Altmann DM. Dual T cell receptor alpha chain T cells in autoimmunity. J Exp Med. 
1995; 182:953–959. [PubMed: 7561698] 

36. Heath WR, et al. Expression of two T cell receptor alpha chains on the surface of normal murine T 
cells. Eur J Immunol. 1995; 25:1617–1623. [PubMed: 7614990] 

37. Padovan E, et al. Expression of two T cell receptor alpha chains: dual receptor T cells. Science. 
1993; 262:422–424. [PubMed: 8211163] 

38. Padovan E, et al. Normal T lymphocytes can express two different T cell receptor beta chains: 
implications for the mechanism of allelic exclusion. J Exp Med. 1995; 181:1587–1591. [PubMed: 
7699339] 

39. Davodeau F, et al. Dual T cell receptor beta chain expression on human T lymphocytes. J Exp 
Med. 1995; 181:1391–1398. [PubMed: 7699325] 

40. He X, et al. Dual receptor T cells extend the immune repertoire for foreign antigens. Nat Immunol. 
2002; 3:127–134. [PubMed: 11812989] 

41. Padovan E, Casorati G, Dellabona P, Giachino C, Lanzavecchia A. Dual receptor T-cells. 
Implications for alloreactivity and autoimmunity. Ann N Y Acad Sci. 1995; 756:66–70. [PubMed: 
7645875] 

42. Morris GP, Allen PM. Cutting edge: Highly alloreactive dual TCR T cells play a dominant role in 
graft-versus-host disease. J Immunol. 2009; 182:6639–6643. [PubMed: 19454656] 

Ji et al. Page 13

Nat Immunol. Author manuscript; available in PMC 2011 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



43. Elliott EA, et al. Treatment of experimental encephalomyelitis with a novel chimeric fusion protein 
of myelin basic protein and proteolipid protein. J Clin Invest. 1996; 98:1602–1612. [PubMed: 
8833909] 

44. Corthay A, Nandakumar KS, Holmdahl R. Evaluation of the percentage of peripheral T cells with 
two different T cell receptor alpha-chains and of their potential role in autoimmunity. J 
Autoimmun. 2001; 16:423–429. [PubMed: 11437490] 

45. Brabb T, et al. Triggers of autoimmune disease in a murine T-cell receptor transgenic model for 
multiple sclerosis. J Immunol. 1997; 159:497–507. [PubMed: 9200491] 

46. Olivares-Villagomez D, Wang Y, Lafaille JJ. Regulatory CD4(+) T cells expressing endogenous T 
cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous 
autoimmune encephalomyelitis. J Exp Med. 1998; 188:1883–1894. [PubMed: 9815266] 

47. Serafini B, et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp 
Med. 2007; 204:2899–2912. [PubMed: 17984305] 

48. Willis SN, et al. Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis 
brain. Brain. 2009; 132:3318–3328. [PubMed: 19638446] 

49. Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM. Differential regulation of central 
nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med. 2008; 14:337–342. [PubMed: 
18278054] 

50. Harrington CJ, et al. Differential tolerance is induced in T cells recognizing distinct epitopes of 
myelin basic protein. Immunity. 1998; 8:571–580. [PubMed: 9620678] 

Ji et al. Page 14

Nat Immunol. Author manuscript; available in PMC 2011 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Wild-type vaccinia virus infection induces autoimmune disease in 8.8 mice. (a) Mbp+/+ 8.8, 

Mbp−/− 8.8, and wild-type mice (7–11 mice/group) were infected with Vac-MBP or wild-

type vaccinia virus on day 0. Mice were weighed daily and the percent weight loss relative 

to day 0 is shown. The difference in weight loss is significant between MBP+/+ 8.8 and 

either Mbp−/− 8.8 (P <0.0001) or wild-type mice (P <0.001) infected with wild-type 

vaccinia virus. Data are compiled from three independent experiments. (b) Splenocytes from 

8.8 naïve or wild-type vaccinia virus-infected mice (seven days post-infection) were stained 

with MBP79-87–H-2Kk tetramer and antibodies specific for CD8, CD44, and CD62L. Flow 

cytometry analyses are gated on CD8+ cells. Down-regulation of MBP79-87–H-2Kk 

tetramer staining routinely occurs on activated 8.8 T cells. (c) 8.8 naïve or wild-type 

vaccinia virus-infected mice (seven days post-infection) were injected with equal numbers 

of wild-type splenocytes pulsed with MBP79-87 peptide (CFSE-bright) and non-pulsed 

(CFSE-dim). Mice were sacrificed 20 h later and CFSE-labeled cells analyzed by flow 

cytometry. Data are representative of two experiments. (d) Mononuclear CNS cells isolated 

from Mbp+/+ 8.8 and Mbp−/− 8.8 mice seven days post infection with wild-type vaccinia 

virus were stained with MBP79-87/H-2Kk tetramer and anti-CD8.
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Figure 2. 
Wild-type vaccinia virus does not stimulate 8.8 T cells via bystander activation. (a) 

Splenocytes from Mbp−/− 8.8 mice, either naïve or infected seven days earlier with wild-

type vaccinia virus, were stained with MBP79-87–H-2Kk tetramer and antibodies specific 

for CD8, CD44, and CD62L. Flow cytometry analyses are gated on CD8+ cells. Data are 

representative of two experiments. (b) Naïve and infected (seven day post infection) Mbp−/− 

8.8 mice were injected with equal numbers of wild-type splenocytes pulsed with MBP79-87 

(CFSE-bright) and non-pulsed (CFSE-dim). Mice were sacrificed 20 h later and CFSE-

labeled cells were analyzed by flow cytometry. Data are representative of three experiments.
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Figure 3. 
The 8.8 TCR is not cross-reactive to wild-type vaccinia virus epitopes. Non-transgenic 

splenocytes (2.5 × 106) from Thy1.1+ C3HeB/Fej mice were transferred into Thy1.2+ 

Rag2−/− 8.8 mice two weeks prior to infection with wild-type vaccinia virus. Seven days 

post infection, splenocytes were harvested and stimulated in vitro for 18 h with either 

vaccinia-infected or MBP79-87-pulsed Thy1.1+ splenocytes. Cells were stained with 

antibodies specific for CD8 and Thy1.2, then permeabilized and stained with anti-IFN-γ. 

Data are representative of two experiments.
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Figure 4. 
Activation of Rag2+/+ 8.8 T cells by wild-type vaccinia virus requires expression of 

endogenous TCR chains. (a) Splenocytes (2.5 × 106) from wild-type mice were transferred 

into Rag2+/+ and Rag2−/− 8.8 mice (five mice/group) and the mice were infected with wild-

type vaccinia virus two weeks later. There is a significant difference in weight loss (P 

<0.0001) between infected Rag2+/+ compared to Rag−/− 8.8 mice. Error bars represent s.e.m. 

(b) The ability of infected Rag2+/+ and Rag2−/− 8.8 mice to specifically lyse MBP peptide-

pulsed splenocytes in vivo was assessed as described Fig. 1c. Data are representative of four 

experiments.
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Figure 5. 
Wild-type vaccinia infection of 8.8 mice preferentially expands CD8+Vβ6+Vβ8 T cells that 

respond to vaccinia virus epitopes. (a) Splenocytes from Rag2+/+ 8.8 mice were harvested 

seven days after wild-type vaccinia virus infection and stained with antibodies specific for 

CD8, Thy1.2, Vβ6, Vβ8, CD44 and CD62L. Splenocytes from naïve 8.8 mice were stained 

with antibodies specific for CD8, Thy1.2, Vβ8 and Vβ6. Flow cytometry analyses show 

expression of Vβ6 and Vβ8 on CD8+-gated cells. Data are representative of five experiments 

with more than 10 mice. (b) CD44 and CD62L expression is shown for the CD8+Vβ6−Vβ8+ 

and CD8+Vβ6+Vβ8+ cells identified in vaccinia-infected mice depicted in (a). (c) 

Splenocytes from the infected mice in (a) were cultured in vitro overnight with either 

unmanipulated, vaccinia-infected or MBP peptide-pulsed splenocytes from Thy1.1 

C3HeB/Fej mice. Cells were then analyzed for CD8, Thy1.2, Vβ6, Vβ8 and IFN-γ 

expression. The data shown is gated on CD8+Thy1.2+ cells and are representative of three 

experiments.

Ji et al. Page 19

Nat Immunol. Author manuscript; available in PMC 2011 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Vac-MBP but not wild-type vaccinia virus activates Rag2−/− 8.8 T cells to induce 

autoimmunity. (a) CFSE-labeled Rag2−/− 8.8 splenocytes (2 × 106) were transferred into 

Mbp−/− mice that were either uninfected or infected one day earlier with either wild-type 

vaccinia or Vac-MBP virus. Splenocytes were harvested three days later and stained with 

anti-CD8, Thy1.2, Vα8 and Vβ8 antibodies. Dilution of CFSE is shown for 

CD8+Thy1.2+Vα8+Vβ8+ cells (black line) and overlaid with that from non-infected mice 

(gray line). (b) Rag2+/+ 8.8 or Rag2−/− 8.8 mice were reconstituted with 2.5 × 106 

splenocytes from naïve wild-type mice and infected with Vac-MBP virus two weeks later. 

Weight loss was monitored as described in Fig. 1a. Numbers in parentheses represent 

disease incidence of total mice. Data are representative of two experiments. Error bars 

represent s.e.m.
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