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Abstract: In the last two decades, thanks to the data that have been obtained from the Human
Genome Project and the development of next-generation sequencing (NGS) technologies, research
in oncology has produced extremely important results in understanding the genomic landscape
of pediatric cancers, which are the main cause of death during childhood. NGS has provided
significant advances in medicine by detecting germline and somatic driver variants that determine
the development and progression of many types of cancers, allowing a distinction between hereditary
and non-hereditary cancers, characterizing resistance mechanisms that are also related to alterations
of the epigenetic apparatus, and quantifying the mutational burden of tumor cells. A combined
approach of next-generation technologies allows us to investigate the numerous molecular features
of the cancer cell and the effects of the environment on it, discovering and following the path of
personalized therapy to defeat an “ancient” disease that has had victories and defeats. In this paper,
we provide an overview of the results that have been obtained in the last decade from genomic
studies that were carried out on pediatric cancer and their contribution to the more accurate and
faster diagnosis in the stratification of patients and the development of new precision therapies.

Keywords: pediatric cancer; Human Genome Project; next-generation sequencing; personalized
medicine; cancer predisposition syndromes

1. Introduction

There are an estimated 400,000 new diagnoses of cancer in children and adolescents
(0–19 years), worldwide, every year [1,2]. According to the International Classification of
Childhood Cancer (ICCC), the most common types of pediatric cancers include leukemias,
lymphomas, and central nervous system cancers [3,4]. According to the Surveillance,
Epidemiology, and End Results (SEER) more than 50% of pediatric cancers are rare, with
there being an annual incidence of <200 cases [5].

In the pre-chemotherapy era, most cancers were treated with surgery and radiation
and the cure rate of childhood cancer was <25% [6]. After the 1960s, with the introduction
of chemotherapy and the advent of new diagnostic measures and the development of
new therapies, a peremptory increase in survival was observed [6–10]. Over the last
two decades, the data that have been obtained from the Human Genome Project and the
development of next-generation sequencing technologies (NGS) with the advent of -omic
sciences, in particular genomics, have clarified various molecular and genomic mechanisms
of pediatric oncology, thus finding that the genomic landscape of cancer is very diverse
and, in many cases, quite distinct from that of common adult cancers, e.g., in the etiology
and tumorigenic mechanisms [6,7,11–13].

Studies that applied NGS technologies to cohorts of patients with pediatric cancer have
highlighted the importance of having a genetic predisposition, as it has been estimated that
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the rates of pathogenic germline variants approach 10% and in some cases, such variants
clearly contribute to the origin of the patient’s cancer, as in Li-Fraumeni syndrome; while in
other cases, the contribution is ambiguous [14–16]. To date, over 100 cancer susceptibility
genes have been described and most of the associated pathogenic germline variants are loss-
of-function variants or variants that fall to the level of genes encoding DNA double-strand
repair proteins [12,16–19].

The onset and progression of the tumorigenesis derives from a complex interaction
between events affecting the germline and somatic events that rewrite the transcriptional
landscape of the tumors, thus highlighting the importance of transcriptomics [20–22].

The cure rate of pediatric cancer is based on a chemotherapeutic and radiotherapeutic
approach, which is often associated with side effects that can reduce the survivors’ quality
of life [23]. In the process of investigating the molecular pathways that are involved in
the development of pediatric cancer, new targets could be revealed for developing new
therapies [6,7,15]. These latest findings would have a positive impact, in particular, on
patients with relapsing/refractory tumors to conventional treatment, thus resulting in more
effective and less toxic therapeutic protocols [7,24–27].

In this review, we discuss the results that have been obtained in the last decade from
genomic studies that were carried out on pediatric cancer and their relevance from a clinical,
diagnostic, prognostic, and therapeutic standpoint. The important amount of data that have
been obtained in the field of genomics requires the integration of large-scale -omic data sets
that are generated through an international professional network and a multidisciplinary
approach that allows the sharing of individual professional skills to formulate multiaxial
diagnostic evaluations and personalized therapeutic plans and to maximize the power of
the data-driven approaches to advance pediatric cancer research (Figure 1).
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2. Next-Generation Sequencing Promises a New Era in Pediatric Oncology: Impact on
the Patient from Diagnosis to Prognosis

The advent of NGS technologies has had a positive impact on patient management as
the mutational profiles of tumors play an important role in their diagnosis, risk stratification,
and prognosis, particularly in central nervous system (CNS) tumors [28]. Hematological
malignancies were the first conditions to be assigned a diagnostic value, a classification,
and a risk stratification related to the characterized genomic alterations [29].

From a diagnostic and research aspect, the use of a sequential NGS approach is essen-
tial, e.g., the use of targeted NGS testing can be followed by a WES or WGS procedure in the
case of a negative result occurring as the knowledge and analysis of tumor alterations can
be pathognomonic, in particular, in patients with amplifications, point mutations, or gene
fusions. This inevitably leads to changes in the patient’s prognosis and therapy [30–37].
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Over the past decade, NGS studies have shown that the application of the combined
approaches of these revolutionary technologies is needed to guide the discovery of new
variants and driver genes in pediatric cancer [11,14,38–45].

2.1. Large-Scale Next-Generation Sequencing in Pediatric Cancer Patients

The first large-scale sequencing studies of pediatric tumors underline a low overall
mutational burden and they have allowed the identification of new driver genes, although,
for some high-risk and highly aggressive tumors, a gene or a driver pathway was not iden-
tifiable [38–41]. A Whole-Genome Sequencing (WGS) analysis of pediatric cancer patient
cohorts found that germline variants accounted for approximately 10% of cancer causative
variants, although the frequency varied by tumor type, one example being osteosarcomas
and neuroblastomas which have a higher and lower frequency, respectively [14–16].

In patients with T-cell acute lymphoblastic leukemia (T-ALL), acute myeloid leukemia
(AML), and Wilms tumor, WGS approaches have enabled the identification of subtype-
specific driver genes and the interactions between germline and somatic variants in the
cancer’s development [46–48].

WES has determined that there is a minimal frequency of pathogenetic variants
(approximately three variants per tumor) in children that are under the age of 5 years
with hepatoblastoma (HB) [49–51], while in the first case of hepatocellular carcinoma
(HCC), a high mutational degree and the coexistence of pathogenic variants in CTNNB1
(Catenin Beta 1) and NFE2L2 (NFE2 Like BZIP Transcription Factor 2) were detected by a
WES analysis [52]. A study in 35 cases of rhabdoid tumor (RT) patients identified that
there was a very low mutational rate, with variants recurring only in SMARCB1 (SWI/SNF
related, matrix-associated, actin-dependent regulator of chromatin, subfamily B, member 1), which
appeared to contribute to the tumorigenesis [53].

The NGS studies found that the frequency of fusion genes is higher than it had been
previously thought to be, and that previously unidentified gene rearrangements could be
playing a driver role [15,16]. RNA sequencing (RNA-seq) analyses reliably detected the
fusions of the pathognomonic genes and provided information on the activity of the gene
transcription [54]. Indeed, common gene fusion events are important because they can
be pathognomonic for a specific diagnosis, for example, EWS-FLI1 in Ewing’s sarcoma
(EWS) and PAX-FOXO1 in rhabdomyosarcoma (RMS) and can help to determine the op-
timal therapies. For example, CNS gliomas presenting the V600E point variant in BRAF
(B-Raf Proto-Oncogene, Serine/Threonine Kinase) are more likely to respond to specific BRAF
inhibitors, while gliomas with fusion genes involving BRAF are more likely to respond
to drugs that inhibit the downstream Mitogen-Activated Protein Kinase 1 (MAPK) path-
way [55]. RNA-seq, as previously mentioned, is a powerful tool for the detection of gene
fusions; it has been used to detect the presence of the NUTM1 (NUT midline carcinoma family
member 1) rearrangement in B-ALL patients, which appears to be associated with a favor-
able prognosis [56]. Richarte-Filho et al. found by analyzing the tissues from 26 Ukrainian
patients from Chernobyl with thyroid cancer that were 10 years old, that 22 tumors har-
bored fusion oncogenes arising mainly through intrachromosomal rearrangements and 23
of the oncogenic drivers that were identified in this cohort activated abnormally the MAPK
pathway, including the two somatic rearrangements resulting in the fusion of the ETV6
(ETS Variant Transcription Factor 6) gene with NTRK1 (Neurotrophic Receptor Tyrosine Kinase
1), and the fusion of AGK (Acylglycerol Kinase) with BRAF [57]. For sarcomas and leukemias,
in particular, fusion genes can occur between the oncogenes or genes that regulate the ex-
pression of the oncogenes, thus playing a central role in carcinogenesis. However, for other
childhood cancers that are primarily characterized by structural variants, functional fusion
genes are not produced. The mechanisms by which these recurrent structural changes
have oncogenic effects have been identified for osteosarcoma (translocations limited to the
first intron of TP53) and medulloblastoma (structural variants that juxtapose sequences
of GFI1 (Growth Factor Independent 1 Transcriptional Repressor) or GFI1B (Growth Factor)
Independent 1 Transcriptional Repressor B) that are proximal to the enhancer elements [58,59].
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LaHaye et al. demonstrated that the combination of fusion-calling pipeline algorithms and
a practice-based filtration strategy which was applied to the data that were obtained from
RNA-seq allowed them to quickly and accurately identify 67 relevant gene fusions in their
study cohort with a diagnostic yield of 29.3%, which included RBPMS-MET, BCAN-NTRK1,
and TRIM22-BRAF gene fusions [60].

2.2. Combined NGS Approach, a Strong Strategy Underlying the Synergy between Research and
Diagnostics

The application of combined approaches of next-generation sequencing techniques
(WGS, WES, and RNA-seq) in the study of pediatric oncology has allowed the formulation
of the diagnostic framework—upstream—and the prognostic and therapeutic one for young
patients—downstream—through the identification of genomic alterations that are related to
the predisposition of the development of a specific tumor, the detection of variants of phar-
macogenetic significance, and the discovery of new therapeutic targets [14–16,42,43,61–64].
Gröbner et al. performed a WGS in 547 samples and a WES in 414 pediatric cancer samples
(24 different histotypes), thus identifying a low overall incidence of single nucleotide vari-
ants (SNVs), with the exception of high-grade gliomas with line variants, biallelic germline
in DNA repair genes, MSH6 (MutS Homolog 6) or PMS2 (PMS1 Homolog 2, Mismatch Repair
System Component); these rare tumors harbored more than 10 mutations per megabase [12].

Integrated studies of WGS and RNA-seq in ependymoma (PE) patients demonstrated
the means by which these data can improve patient diagnosis and prognosis [65]. One study
identified 11 ependymoma subgroups, including a subgroup that is characterized by a
c11orf95-RELA fusion gene [66]. Instead, in another study on ependymomas, the regulatory
super-enhancers of cancer-associated genes such as PAX6 (Paired Box 6) were identified, and
in studies on mice, it was observed that the inhibition of these super-enhancers in 60% of
them was correlated with a positive impact on their survival [67]. The integration of WGS
and RNA-seq contributes to the classification of tumors and also to the stratification that
Is related to the risk of side effects, e.g., medulloblastoma [68,69]. Clarke et al. (2020) [70]
performed a large study on a cohort of 241 cases of high-grade glioma (HGG) in children
that were under the age of four. They used a variety of sequencing platforms including
WGS, WES, and RNA-seq, thereby highlighting that high-grade childhood gliomas in
the brain hemispheres comprise new subgroups, with a prevalence of ALK gene fusions
NTRK1/2/3, ROS1 (ROS Proto-Oncogene 1, Receptor Tyrosine Kinase) or MET (MET proto-
oncogene, receptor tyrosine kinase) [70].

Overall, the discoveries that have been made employing next-generation technologies
allow for the identification of new driver genes and carcinogenic pathways, also formulat-
ing a histotypic classification of pediatric cancers. Furthermore, these studies underline
the value of the germline analysis method and the identification of variants in cancer
predisposition genes.

3. Germline Variants and Cancer Predisposition Genes

The identification of the germline alterations in cancer predisposition genes is essen-
tial for understanding the etiology of the cancer, optimizing the initial therapy, and for
developing surveillance protocols using cascade testing in families.

Several variants of the germline are characteristic of known predisposing syndromes
such as DICER1 (Dicer 1, Ribonuclease III) for pleuropulmonary blastoma (PPB), RB1
for retinoblastoma (RB), TP53 for adrenocortical carcinoma (ACC), and SMARCB1 and
SMARCA4 for rhabdoid tumor and small cell ovarian cancer (SCCO), respectively [16]. The
process of screening for germline variants of SMARCB1 is recommended in children who
are diagnosed with an atypical teratoid/rhabdoid tumor (AT/RT), as well as in relatives
who may be unaffected carriers of it [71,72]. Rare cases of SMARCB1 germline mosaicism in
parents of affected patients have been described in the literature [71,73–76]. The germline
variants of SMARCB1 have been documented in patients with one or more primary brain
and/or kidney tumors, according to them having a predisposition to the development of
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rhabdoid tumors [71,77]. Approximately one-third of patients with rhabdoid tumors have
germline variants in SMARCB1 [71,73]. In most of the cases, the variants are de novo and
the mean age for the diagnosis of children with rhabdoid tumors that present with a variant
or a germline deletion is younger (6 months) than that of children with an apparently
sporadic disease (18 months) [72].

Paparella et al. identified a POLR2A (RNA Polymerase II Subunit A) germline variant
in a patient with ependymoma. To date, ependymoma has never been reported in patients
that are hosting pathogenic variants of POLR2A, consequently, this report opens the way
for further studies to explore the possibility of a differential, clinical and functional impact
of the different classes of these variants and their possible contribution to the predisposition
to ependymomas [78].

The genomic studies of familial cases of Wilms tumor have allowed the identification
of germline variants in the DICER1, WT1 (WT1 Transcription Factor), CHEK2 (Checkpoint
Kinase 2), and PALB2 (Partner And Localizer Of BRCA2) genes [46,79,80]. TRIM28 (Tripartite
Motif Containing 28) is a gene that is associated with an autosomal dominant form of
inherited Wilms tumor predisposition, which accounts for approximately 8% of familial
Wilms tumors and 2% of sporadic Wilms tumors. In a mutational study of 33 individuals,
21 of them had a variant in TRIM28, and all ten of the inherited variants were maternally
transmitted [81]. A study was conducted to identify the variants in the REST (RE1 Silencing
Transcription Factor) gene in nine out of five hundred and nineteen (1.7%) individuals with
Wilms tumor and in their parents, who did not have a family history of overt disease, thus
supporting the role of REST as a Wilms tumor predisposition gene [82].

Down syndrome (DS) is the most common cancer predisposition syndrome that has
a higher risk of developing acute leukemia and a lower incidence of solid tumors. Boni
et al. [83] identified a variant in CTNNB1 that is associated with the WNT subgroup that is
usually associated with a good prognosis in a patient with Down syndrome who presented
with a medulloblastoma with focal aplasia and early metastatic recurrence [83]. In this
study, Boni et al. highlight that the NOTCH/WNT dysregulation in DS—which is likely
to be associated with an increased risk of leukemia—suggests that it has a pivotal role in
the pathogenesis of MB; therefore, this condition should be further investigated in future
studies using molecular characterizations [83].

Miele et al. carried out a study on 13 children that were diagnosed with adrenocortical
tumors, a rare type of endocrine neoplasms. Twelve patients were disease free and one
had a stable disease at the time of the study [84]. The genetic analyzes revealed that there
were germline variants in TP53 in 75% of the patients—five were inherited and one was de
novo. One patient presented with Beckwith–Wiedemann syndrome, with a mosaic paternal
uniparental disomy of chromosome 11 being detected in both the neoplastic and healthy
adrenal tissue [84]. The results of the study demonstrated that there was an excellent
prognosis, with an overall 5-year survival rate of 100% and a 5-year disease-free survival
rate of 84.6%, and this supports the indication for genetic testing and family counseling for
adrenocortical tumors [84].

An international genomic study of over 1200 patients with osteosarcoma found that
there were pathogenic or possibly pathogenic germline variants in autosomal dominantly
inherited cancer susceptibility genes in 18% of the patients. The frequency of these can-
cer susceptibility gene variants was higher in the children that were aged 10 years and
younger [85].

A study of 150 children with solid tumors reported that there was a germline muta-
tional prevalence of 10% [15]. A research group at the Memorial Sloan Kettering Cancer
Center identified the pathogenetic or likely pathogenic variants in the cancer predisposition
genes in 18% of the pediatric patients with solid tumors. These differences in mutational
prevalence reflect differences in the patient cohorts, the genes that were analyzed, and the
criteria for the inclusion of the variants affecting genes that are associated with autosomal
recessive cancer predisposition syndromes [86].
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Wang et al. analyzed the impact of the germline mutations in the cancer predisposition
genes in long-term pediatric cancer survivors and reported that there was a prevalence of
germline mutations of 5.8% in the study of 3006 survivors who were enrolled in the Saint
Jude Lifetime Cohort Study (SJLIFE) [87,88]. Furthermore, the Childhood Cancer Survivor
Study (CCSS) study identified BRCA2 as a predisposition gene for pediatric or adolescent
non-Hodgkin’s lymphoma [88].

In conclusion, these studies allow us to understand the importance of the knowledge
of cancer predisposition and the awareness of the indications for the germline test based
on the patient’s age and the phenotype of the patient, their family history, the presence of
two or more primary tumors in the patient or the diagnosis of a rare tumor that is highly
associated with a cancer predisposition gene.

4. Alterations in the Genes That Encode Proteins Involved in Epigenetic Regulation

Many diagnosed pediatric cancers are characterized by variants at the level of genes
that code for epigenetic proteins which in turn regulate gene expression.

Several studies have been conducted on the proteins that are involved in epigenetic
regulation, such as the SWI/SNF complex, which plays a role in chromatin remodeling.
Alterations (gene fusions, deletions, etc.) at the level of the genes encoding this complex
lead to the production of the non-functioning proteins that are identified in a multitude
of pediatric and adult cancers, including synovial sarcoma, medulloblastoma, and kidney
cancers [75,89].

A central component of this complex is encoded by the SMARCB1 gene, and studies
on patients with rhabdoid tumors have proven that they have a causative role for the
pathogenic variants in this gene [53,90].

Wilms tumors have recurrent variants in their genes that are mostly involved in early
renal development or epigenetic regulation (e.g., chromatin and miRNA modifications).
Most of the cases of Wilms tumors with AMER1 (APC Membrane Recruitment Protein 1)
alterations have epigenetic abnormalities [91]. AMER1 alterations are equally distributed
between males and females, and AMER1 inactivation has no apparent effect on the clinical
presentation or prognosis [92]. Approximately 3% of children with Wilms tumors have
epigenetic or genetic germline changes at the growth regulatory locus 11p15.5 without
there being any clinical manifestation of an overgrowth. Like those children with Beckwith–
Wiedemann syndrome (BWS), these children have a higher incidence of bilateral Wilms
tumors or familial Wilms tumors [93].

Schwartzentruber et al. sequenced the exomes of 48 pediatric GBM samples and
identified the mutations in the H3.3-ATRX-DAXX chromatin remodeling pathway in 44%
of the tumours (21/48) [94]. Recurrent mutations in H3F3A, which encodes the replication-
independent histone 3 variant H3.3, were observed in 31% of tumours, and this led to amino
acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) that
are involved in key regulatory post-translational modifications [94]. Similarly, diffuse
intrinsic pontine gliomas are characterized by having frequent alterations in the gene
encoding histone H3F3A [95].

About 20% of patients that are suffering from onco-hematological diseases are charac-
terized by having variants in the genes that are encoding the CREB-binding protein, which
is associated with alterations in histone acetylation [96].

Alterations in another gene that codes for proteins of the epigenetic apparatus, SETD2,
are also common in all of the relapsed patients [97].

In more of 1000 pediatric cancer genomes, it was identified that there were NSD2
(Nuclear Receptor Binding SET Domain Protein 2) histone methyltransferase alterations
(p.E1099K), and in 14% of these, a t(12;21) ETV6-RUNX1-containing ALLs was detected [98].
Jianping et al. discovered that p.E1099K drives the mechanism of relapse in pediatric
ALL [99]. In addition, most of the cases (up to 80%) of infant ALL and a few cases
(5%) of childhood ALL are associated with the rearrangements of the KMT2A (Lysine
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Methyltransferase 2A) gene that encodes for a histone methyltransferase, which confers a
poor prognosis [100–103].

In conclusion, the high frequency of the variants in genes that code for the regulators
of the epigenetic apparatus suggests that there is a unique etiological function of pediatric
cancers and also an important role in relapsing forms.

5. From the Origin of Carcinogenesis to Relapse: The Importance of the Mutational
Signature

The analysis of the genetic fingerprint that is involved in the initiation of carcinogenesis
and the understanding of its evolution has highlighted that there are, upstream, new
scenarios in the relapsing cancer landscape, and downstream, the development of new
preventive and therapeutic approaches.

In a study that was carried out on two cohorts of 26 adults and four pediatric patients
with neuroblastomas, the COSMIC 18 signature that is associated with the exposure to reac-
tive oxygen species (ROS) was identified [104]. Subsequently, an independent study found
that COSMIC 18 manifests itself in the early stage of the carcinogenesis of neuroblastoma,
and this signature is associated with a high expression of the mitochondrial genes of the
ribosome and the electron transport chain, thus suggesting that there is a link between
COSMIC 18 and ROS [105].

A signature that is associated with ultraviolet light exposure in melanoma has been
found in a subgroup of patients with acute B-cell lymphoblastic leukemia [11,106,107].
Instead, an analysis of the patients with diffuse large B-cell lymphoma showed that 30%
of them are under the age of 14, with them having a genetic signature that is similar to
Burkitt’s lymphoma/leukemia [108,109].

A multitude of studies have focused on cisplatin therapy-induced signatures that are
identified in patients with solid tumors, osteosarcoma, and brain tumors [106,110].

On the other hand, the most relevant analyses on the relapsing forms were carried out
on patients who were suffering from onco-hematological diseases since the samples were
easily available and therefore, more monitorable. Two concurrent mutational signatures in
CSF3R (Colony Stimulating Factor 3 Receptor) and CEBPA (CCAAT Enhancer Binding Protein
Alpha) that are related to higher relapse rates have been identified in patients with acute
myeloid leukemia. In the latter, survival was not adversely affected by the administration
of reduction therapy and stem cell transplantation [111].

Relapsing pediatric ALL are also characterized by variants in the NT5C3 gene, which
makes leukemia cells resistant to 6-mercaptopurine [112,113]. While the variants in the
CREBBP gene of the relapsing patients confer that there is a resistance to glucocorti-
coids [114]. A study of relapsing pediatric ALL identified two new signatures, COSMIC 86
and 87, that are related to therapy; one was resulting from thiopurine treatment that was
used during maintenance therapy. These were present in 27% of patients and accounted
for 46% of the acquired resistance mutations in TP53, NR3C1, PRPS1, and NT5C2 [115],
which may explain the reported increased risk of relapse with intensified thiopurine main-
tenance [116].

Waanders et al. [117] published the results of a genomic analysis on the somatic
alterations in a large cohort of relapsed pediatric ALLs which revealed that there are several
mechanisms which are implicated in the hypermutations in relapsed ALL, including the
alterations of MMR (mismatch repair) genes. Biallelic mutations in one of the MMR genes
and high levels of single-base insertions or deletions in simple repeats may represent a
mechanism of MMR-induced resistance to thiopurines in ALLs [117,118]. In addition, Fan
et al [119] showed that in relapsed ALL-acquired TP53 R248Q the mutations originate from
the cooperation of a thiopurine treatment and an MMR deficiency and are associated with
an increased risk of treatment failure [119].

Furthermore, therapy-induced variants are likely to induce secondary tumors in
children, as demonstrated in a study in which patients with myoid malignancies that were
treated with cisplatin and thiopurine had variants in the TP53 and RAS pathways following
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their exposure to cytotoxic therapy. [120]. Finally, it has been shown that many patients
have multiple subclones at the point of diagnosis, but that a single subclone can acquire
additional mutations that confer resistance to therapy [121].

Antić et al. [122] assessed the clinical relevance and prognostic value of subclonal
alterations in the relapse-associated genes IKZF1, CREBBP, KRAS, NRAS, PTPN11, TP53,
NT5C2, and WHSC1 in 503 ALL cases. The researchers identified 660 genomic alterations
subclonal in 285 diagnosis samples. At the point of relapse, most of these subclonal
mutations are lost, suggesting that their selective advantages over the wild-type clones
during treatment is limited. In conclusion, for the genes that have been tested, there is
no basis to consider subclonal alterations that are detected at the point of diagnosis as
a prognostic marker [122]. In addition, in this study, the researchers indicate that the
RAS pathway mutations were common, particularly in the minor subclones, and the
comparisons between the RAS hotspot mutations revealed that there were differences in
their capacity to drive clonal expansion in ALL [122].

Jerchel et al. [123] addressed the clinical value of the mutations in 13 key members of
the RAS pathway in a cohort contained 461 newly diagnosed cases. This study showed that
clonal mutations in NRAS, KRAS, PTPN11, and FLT3 are associated with therapy resistance.
Given that the clonal mutations at the initial stage of diagnosis were retained at the point
of relapse and that the subclonal mutations often expanded at the point of relapse, RAS
pathway mutations may serve as a biomarker to identify the patients that are eligible for
MEK/ERK targeted therapy [123].

In conclusion, these data suggest the need to develop new therapeutic approaches in
pediatric cancer patients to prevent the recurrence of secondary cancers.

6. Genomic Studies on Pediatric and Adult Cancers

The genomic studies of pediatric cancer that have been conducted highlighted that
there are a variety of genetics differences between it and adult cancers. These studies
identified the frequency of mutated genes and the formulation of the risk stratification and
consequently, the most suitable therapies.

A whole exome sequencing (WES) on the DNA from bioptic samples in a cohort of
patients with an average age of 10 years and who were affected by low-grade NF1 gliomas
showed that they had a reduced number of mutations versus the adults [124].

Recent studies have shown that there is a high frequency of the variants in genes,
such as TP53 (Tumor Protein P53), IDH1 [Isocitrate Dehydrogenase (NADP (+)) 1] and
ATRX (Alpha Thalassemia/Mental Retardation Syndrome X-Linked) in younger patients
with glioma, and that these variants have an age-dependent prognostic role, such as ATRX
variants in patients with low-grade glioma who have shorter survival rate than adult
patients do [125–128].

In pediatric solid tumors, an example of the stratification criteria is the subtype of
the WNT pathway which is related to a good prognosis in children with medulloblastoma,
who will receive less intensive care, consequently decreasing the short- and long-term side
effects of the treatment [129–131]. Similarly, a stratification criteria for adult solid tumours is
found in the colorectal subtypes: MSI-high subtypes are associated with favorable survival,
whereas BRAF-mutated, KRAS-mutation-negative subtypes are associated with the highest
rate of mortality [132].

Genomic studies of cancer are also important for developing new personalized thera-
pies in pediatric cancer; an example of this is that the use targeted drugs for ALK alterations
has shown excellent results in the treatment of anaplastic large cell lymphoma (ALCL) and
childhood inflammatory myofibroblastic tumors [133].

Instead, for adults’ solid tumors, which are a larger and more widely studied cohorts,
targeted therapy has been more frequently applied in their clinical management; an example
of this is Imatinib, the first selective inhibitor of thyrosin-kinase to be approved for the
treatment of leukemia. Today it is used as a neoadjuvant (preoperative) and adjuvant
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therapy (postoperative) for patients with gastrointestinal stromal tumors that are presenting
mutations in proto-oncogene KIT [134].

Ma et al. [11] carried out a pan-cancer genome study and transcriptomic analysis on
1,699 pediatric patients with leukemia and solid tumors, and they found that the somatic
alterations are mainly found at the level of TP53, KRAS (KRAS Proto-Oncogene, GTPase),
NRAS (NRAS Proto-Oncogene, GTPase), CDKN2A (Cyclin Dependent Kinase Inhibitor 2A),
or NOTCH1 (Notch Receptor 1) [11]. They identified 142 probable driver genes, of which
only 45% matched those that were found in the pan-oncology studies of adults [135–138],
thus demonstrating that the copy number of alterations and the structural variants con-
stitute the majority (62%) of the events [11]. Furthermore, among the neuroblastomas, at
least one driver gene was identified in 72% of the tumors that were analyzed by WGS in
comparison to there only being at least one driver gene in 26% of the samples that were
analyzed by WES [11]. The WGS analysis also demonstrated the presence of chromothripsis
(massive rearrangements that are caused by a single catastrophic event) in 11% of the sam-
ples [11]. De Rooij et al. performed a WES and RNA-seq on the samples from 99 patients
(75 pediatric and 24 adults) to better understand the genomic landscape of non-Down
syndrome acute megakaryoblastic leukemia (non-DS-AMKL) patients [139]. Their results
demonstrated that pediatric non-DS-AMKL is a heterogeneous malignancy that can be
divided into seven subgroups with varying outcomes. These subgroups are characterized
by chimeric oncogenes with cooperating mutations in the kinase and epigenetic signaling
genes. Taken together, these data shed light on the etiology of AMKL and provide useful
information for treatment personalization practices [139].

Iacobucci et al. [140] compared the genomic characteristics of 159 pediatric and adult
acute erythroleukemia (AEL) cases with non-AEL myeloid disorders and defined five
age-related subgroups with distinct transcriptional profiles: adult, TP53 mutated; NPM1
mutated; KMT2A mutated/rearranged; adult, DDX41 mutated; pediatric, NUP98 rear-
ranged. These genomic characteristics were proven to be able to influence the outcome:
variants of NPM1 (Nucleophosmin 1) and the overexpression of HOXB9 (Homeobox B9)
are associated with a favorable prognosis, while the alterations of TP53, FLT3 (Fms Related
Receptor Tyrosine Kinase 3) or RB1 (RB Transcriptional Corepressor 1) are associated with
a poor survival rate [140]. In 45% of cases, there were recurrent variants of ALK (ALK
Receptor Tyrosine Kinase) and NTRK1 (Neurotrophic Receptor Tyrosine Kinase 1), that
drive the erythroid leuke-mogenesis sensitive-to-tyrosine kinase (TRK) inhibition [140].

In the KMT2A rearrangement ALL subtype, a genomic alteration on the RAS pathway
(commonly subclonal) is high prevalence in infants (about 90%) and low in adult (about
15%), and this is associated with a poor prognosis. ALL with KMT2A rearrangement
have been shown to be sensitive to bortezomib or DOTIL inhibition [141]. In contrast,
the BCR-ABL1 t(9;22) (q34;q11.2) ALL subtype with IKZF1 del and mut, CDKN2A/B del,
has a prevalence of about 5% in children, while it is higher in adults (40–50%), and this is
associated with a historically poor prognosis, which is improved with TKI [142–144].

In conclusion, the identification of genomic alterations has provided the opportunity to
derive new targeted strategies for the clinical management of adult and pediatric cancers—
referred to as precision medicine—including the non-invasive detection, risk assessment,
molecular diagnosis, and targeted therapy of them.

7. The Road to Personalized Medicine

The genomic data that have been obtained in recent years in the field of oncology
allow for a more accurate stratification of patients and the development of clinical trials for
the formulation of increasingly personalized therapies [145].

An international prospective study of precision medicine, MAPPYACTS (NCT02613962),
was aimed at defining the molecular profiles of the tumors in pediatric patients with
recurrent/refractory malignancies in order to suggest the most suitable therapeutic protocol.
The results of this study showed that 70% of patients had a genetic alteration that can
be targeted for the development of a therapy. For 10% of these patients a drug that was
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“ready for routine use” already existed. Finally, this study highlights the need for new
proof-of-concept clinical trials that address the molecular complexity of cancer [145].

In July 2016, the clinical trial called Next Generation Personalized Neuroblastoma
Therapy (NEPENTHE) was initiated: it had been enrolling patients between 1-21 years old
with a refractory or relapsed neuroblastoma with alterations of the ALK gene [146–150].
The patients that were enrolled in this trial were treated with a combination therapy of
ribociclib, a third-generation cyclin-dependent kinase (CDK) inhibitor, and Ceritinib, an
ALK inhibitor [151].

Further studies have employed computational approaches to identify the immunother-
apy targets such as CAMKV in neuroblastoma patients presenting with MYCN or GPC2
amplification in high-risk neuroblastoma [152,153].

Cacchione et al. [154] reported the clinical and radiological findings of a first-line treat-
ment with everolimus, a selective mTOR inhibitor, in 10 patients that were diagnosed with
mTOR-positive pediatric low-grade gliomas (pLGGs). The median duration of treatment
was 19 months (range 13–60). Brain MRI showed that there was a stable disease in seven
patients, a partial response in one of them, and a state of disease progression in two of them.
The therapy-related adverse events were always reversible after a dose reduction or the
temporary discontinuation of the treatment. As the authors suggest, these results provide
preliminary support despite the low sample size that was used for the use of everolimus
as a targeted therapy in pLGG showing a lack of progression with a manageable toxicity
profile [154].

Lodi et al. [155] reported the case of a 13-year-old girl with Noonan syndrome (NS)
that was associated with a recurrent variant in PTPN11 who developed three different types
of brain tumors, namely a glioma of the optic pathway, a glioneuronal neoplasm of the
temporal lobe left, and a cerebellar pilocytic astrocytoma. The molecular characterization
of the glioneuronal tumor allowed us to detect of high levels of phosphorylated mTOR
(pmTOR); therefore, an everolimus-based therapeutic approach was chosen. The treatment
was well tolerated and proved to be effective, thus leading to the stabilization of the tumor,
which was surgically removed. The positive outcome of the present case suggests that
practitioners should consider this approach for patients with RASopathies and brain tumors
with hyperactivated mTOR pathways [155].

Several studies have highlighted the importance of immunotherapeutic approaches
based on the neo-epitopes in pediatric cancer. Chang et al. [156] defined the neo-epitopic
panorama of somatic alterations that were composed of missense variants and oncogene fu-
sions in a study group of 540 genomes and transcriptomes of childhood cancer. As a whole,
their results revealed that there was at least one neo-epitope in 88% of the leukemias, in 78%
of the CNS, and in 90% of the solid tumors; 69.6% of the neo-epitopes were identified for the
leukemias that were characterized by the ETV6-RUNX1 fusion. These findings demonstrate
that pediatric AMLs and ALLs require the further exploration of immunotherapy practices
to identify the targets of leukemias that are characterized by fusion genes [115,156,157].

Proteins that are encoded by fused genes are an important class of drug targets, and
they are important biomarkers for defining subgroups for risk stratification. To date,
RNASeq—alone or in combination with WGS—has become a standard test for the research
and clinical applications of new gene fusions [158–161].

In patients with Philadelphia chromosome-positive (Ph+) ALL, the tyrosine kinase
inhibitors that are targeting the BCR-ABL1-fused protein are effective, e.g., imatinib me-
sylate [162]. In a study by the Children’s Oncology Group (COG), the combination of
intensive chemotherapy and imatinib mesylate was administered daily, thus demonstrating
a 5-year EFS rate that was 70% higher than the one that was related to imatinib mesylate
alone [163,164].

In high-risk ALL patients, several target fusions have been identified, which involve a
distinct number of kinases (e.g., CSF1R, PDGFRB, ABL1, or ABL2) and exhibit an ALL Ph-
like signature, thus suggesting a therapeutic approach should be used that is based on ther-
apy with tyrosine kinase inhibitors, as demonstrated in the Ph+ ALL patients [163,165,166].
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Andolfo et al. [167] demonstrated that increased EPHB4 (EPH Receptor B4) expression
correlates with NB stage 4 and a poor overall survival. Furthermore, they revealed that
the EPHB4-V871I gene variant correlates with an increased proliferating, migration, and
invasion activity in two NB cell lines by targeting VEGF, c-RAF, and CDK4 target genes and
increasing ERK1 phosphorylation. Through the use of two EPHB4 inhibitors, JI-101 and
NVP-BHG712, the researchers were able to identify the phenotype that was driven by the
variant. Overall, the results of the study suggested that EPHB4 is a promising therapeutic
target in high-risk NB [167].

Gene fusions have been detected in low-grade and high-grade non-cerebral glioma
patients, in which gene fusions practices have involved the neurotrophin kinase receptor
(NTRK1, NTRK2, and NTRK3) target [168–170].

The treatment of an HGG patient who was characterized by ETV6-NTRK3 fusions
with larotrectinib paved the way for the FDA approval of this pan-TRK inhibitor for the
treatment of solid tumors with NTRK gene fusions [171,172].

Di Ruscio et al. [173] reported on a study of iHGG patients who received surgery
and adjuvant chemotherapy; only two patients received the radiotherapy because their
age at their diagnosis was over four-years-old. Molecular investigations, including next-
generation sequencing (NGS) and DNA methylation, identified three gene fusions that
involve NTRK, one ROS1 fusion, one MN1 rearrangement, and two PATZ1 fusions. Ac-
cording to the molecular results, when the chemotherapy failed to control the disease,
the two patients benefited from a target therapy with the NTRK inhibitor larotrectinib,
thereby achieving complete remission, an excellent partial response, and no serious side
effects [173].

Following the FDA approval of entrectinib [174] for the treatment of patients with solid
tumors presenting with a NTRK gene fusion, the RNA-seq studies have identified the gene
fusions involving NTRK in leukemias that exhibit a high sensitivity to TRK inhibition in
mouse models, thus opening the door to new therapeutic opportunities with TRK inhibitors
for leukemia patients who exhibit gene fusions involving NTRK [175,176].

In a genomic study of patients with juvenile myelomonocytic leukemia (JMML),
16 patients had no RAS variants, and in three of these that were 56 months of age or older,
the researchers identified ALK/ROS1 tyrosine kinase fusions (DCTN1-ALK, RANBP2-ALK,
and TBL1XR1-ROS1). A patient with a fusion involving ALK was treated with crizotinib, an
ALK, and ROS inhibitor, in addition to receiving conventional chemotherapy; a complete
molecular remission was achieved [177].

The studies by Relling et al. [178] and Singh et al. [179] highlighted the importance
of the analysis of variants in TPMT and NUDT15 in cases of leukemia/lymphoma, given
that some polymorphisms in these genes lead to the dysregulation of the metabolism of
the therapeutic agents, thioguanine and mercaptopurine, thus suggest that knowing the
TPMT polymorphisms and NUDT15 is relevant at the start of therapy because allows for
an appropriate chemotherapy dosage, thereby avoiding toxicity [178,179].

To date, scientific advances in the field of cellular and molecular biotechnology have
led to a revolution in the field of personalized therapy in oncology, in particular in CAR-T
(Chimeric Antigen Receptor T-cell) therapies [180,181]. Majzner et al. [182] presented the
clinical experience of the first four patients with diffuse intrinsic pontine glioma (DIPG) or
diffuse midline glioma (DMG) of the spinal cord, which is characterized by the H3K27M
mutation, and they were treated with GD2-CAR T cells with a dose of 1 level equal to a
1× 106 cells/kg, which was administered intravenously. The patients who showed clinical
benefit were eligible for subsequent infusions of GD2-CAR T cells which were adminis-
tered intracerebroventricularly. Toxicity was largely related to tumor location, and it was
reversible with supportive intensive care. The transcriptomic analyzes of 65,598 single cells
from CAR T cell products and cerebrospinal fluid elucidated the heterogeneity of the
response among the participants. These early results underscore the promise of this thera-
peutic approach for patients with DIPG or DMG in the spinal cord that is characterized by
the H3K27M mutation [28,181–183].
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Garcia Prieto et al. [184] recruited 114 patients with B-cell malignancies, including
77 patients with ALL and 37 patients with non-Hodgkin’s lymphoma, who were treated
with CART19 cells (CAR T against CD19). The methylation analysis determined the
epigenomic changes that occur in the patient’s T cells after the transduction of the CAR
vector. The effects of the methylation status of different genomic sites were evaluated by
their clinical response, cytokine release syndrome, neurotoxicity syndrome that is associated
with immune effector cells, event-free survival, and overall survival, which were evaluated.
In conclusion, the methylation status of the patient CART19 cells influences the efficacy of
the therapy for patients with B cell neoplasia [184].

In conclusion, molecular investigations play a fundamental role in the diagnostic
process and therapeutic strategy that is used. Their routine use in clinical practice could
help to replace highly toxic chemotherapy regimens with target therapy that has moderate
adverse effects, even in long-term follow-ups.

8. Conclusions

“We have two options: either to try to discover the genes important in malignancy
by a piecemeal approach or to sequence the whole genome . . . ” is reflection by Prof.
Dulbecco that was reported in the article published in Science entitled “A Turning Point in
Cancer Research: Sequencing the Human Genome”; this highlights the awareness of the
complexity of cancer genetics [185,186].

With the application of NGS technologies in the field of pediatric oncology, a large
amount of data have been obtained, leading to an exponential growth of the genomic
databases that allow us to better understand the dynamics of the genomic architecture of
cancer, the tolerability of its variation, and the degree of structural changes in the genome,
thus deepening our understanding of the complexity of these conditions.

NGS approaches help to identify the phenotypic variability in several syndromes [187],
and characterize different driver genomic alterations, thereby allowing for the stratification
of the main pediatric cancer subtypes. Furthermore, these studies have made it possible to
evaluate high-risk and relapsed/refractory cases, thus guiding and speeding up the design
of new clinical trials in the formulation of increasingly personalized therapies.

Through the NGS studies on germline variants, the knowledge of cancer predisposition
has broadened, thus allowing the development of surveillance protocols through cascade
screening tests on family members, and highlighting the importance of oncological genetic
counseling, both before and after the sequencing test.

Another relevant fact is the importance of genomic studies on patients with syndromes
that are predisposed to the development of one or more tumors.

An integrative germline and somatic genomic approach to the diagnosis and relapse
of cancer plays a central role in the treatment of pediatric cancer. The treatment strategies
for children with germline alterations in cancer predisposition genes, particularly those
involving chromosomal instability or DNA-repair loci, should minimize, where possible,
the use of radiation or drugs that increase the risk of a second malignancy occurring.

However, there is a need to develop cheaper and faster tools for the characterization
of variants, in particular for re-sequencing, as in the case of relapsing tumors, and reclassifi-
cations of variants of uncertain significance (VUSs). The data-driven approach to pediatric
cancer research and the clinical treatments of it require the strength of an international
multidisciplinary team to effectively translate these findings into new target therapies,
overcome their limitations and improve the clinical outcomes of patients.

The growing relevance of genomics for clinical cancer care also highlights several
considerable challenges, including the need to promote equal access to genomic testing
that results in a health care revolution.

Finally, lifestyle choices, environmental exposures, microbiome, and cultural education
must work in symbiosis with genomics to create a comprehensive view of the diversity of
cancer biology.
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