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Abstract: The outer part of the retina pigment epithelium (RPE) in the retina is the main site of
neovascularization associated with retinal diseases. However, various obstacles interrupt the delivery
of medicines across the RPE, mainly due to the well-developed tight junctions in the RPE. Currently,
there is no practical formulation to overcome this issue. In this study, we demonstrated that simple
mixing with adenosine tetraphosphate (ATP) has the potential to greatly enhance the transport and
permeation of a polymeric nanocarrier across the retina via intravitreal administration. Chitosan-
functionalized, pluronic-based nanocarrier (NC), which can deliver various biomolecules efficiently,
was used as a polymeric nanocarrier. Mixing with ATP facilitated the diffusion of the nanocarrier
in the vitreous humor by reducing the electrostatic interaction between NC and negatively charged
glycosaminoglycans (GAGs) in the vitreous humor. Mixing with ATP also allowed the penetration
of NC across the whole retina, and it resulted in a great increase (approximately nine times) in the
transport of NC across the retina, as well as spreading it throughout the whole retina upon intravitreal
administration in a mouse model. This enhanced permeation across the retina was specific to ATP
but not to GTP, suggesting the possibility of P2Y receptor-mediated tight junction disruption by ATP.

Keywords: retinal pigment epithelium; pluronic; penetration; P2Y receptor

1. Introduction

The human eye is a complicated part of our body. It consists of a two-piece unit, the
anterior segment and the posterior segment. The anterior part of the eye is made up of the
sclera, iris, conjunctiva, and cornea. The posterior part of the eye is made up of the vitreous
humor, retina, choroid, and optic nerve. There are various barriers in each part of the eye to
prevent reaching the therapeutic level of medicine in targeted tissues. In the anterior part
of the eye, tear turnover, nasolacrimal drainage, and metabolism by esterase and protease
are involved to reduce the concentration of administered drugs [1]. In the posterior eye seg-
ment, the retina layer acts as a major barrier against ophthalmic drug delivery. The retina
is protected by the blood–retinal barrier (BRB), which maintains retinal homeostasis and
shields the retina from the external stimulus [2,3]. The retina is the photosensitive compo-
nent of the central nervous system [1], and the retina consumes a high level of oxygen while
lining the innermost part. Therefore, the retina is susceptible to oxidative stress [3], which
causes retinal diseases, including age-related macular degeneration (AMD), glaucoma, and
diabetic retinopathy. Approaches for drug delivery to the posterior segment of the eye
include systemic administration, modification of the barrier, and direct local injection (e.g.,
intravitreal injection). Topical and systemic administration is very inefficient for posterior
ocular drug delivery, leading to almost no effect on the retina. Direct intravitreal injection
is the most common and widely applicable route for posterior ocular drug delivery [4].
However, the injected medicine is subject to degradation by protease, and the viscous
vitreous humor limits its diffusion to the retina. Furthermore, transport across the retina
and retinal pigment epithelium (RPE) is very limited, especially for protein drugs (e.g.,
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antibodies) [5]. These barriers require frequent administration by intravitreal injection
and the frequent eye punctures during the intravitreal injection cause several side effects,
including bleeding, retinal detachment, increased intraocular pressure (IOP) with damage
to the optic nerve, and loss of vision [4]. Therefore, it is necessary to reduce the burden
of intravitreal injection and improve the outcomes. In recent years, various strategies to
deliver therapeutics into the posterior segment of the eye have been researched in the drug
delivery area. One of them is the incorporation of therapeutic molecules into a hydrogel
for targeted and sustained delivery with minimized toxicity [4,6]. For example, hydrogels
that exhibit thermo-responsive behavior near body temperature such as poloxamer and
poly(N-isopropyl acrylamide-co-acrylonitrile) (PNIPAAm) were studied for injection into
the vitreous cavity. These polymers have a mucoadhesive property and optical clarity so
that they could be successfully applied to the ocular drug delivery system [7]. However,
no strategy to overcome the multiple barriers for targeted retina transport was provided.
Various nanoparticles were studied to analyze the effect of the charge of the particle on the
diffusion inside the vitreous body [8–10]. Anionic nanoparticles penetrated the vitreous
barrier more efficiently than cationic nanoparticles because cationic nanocarriers could
interact with the negatively charged vitreous glycosaminoglycan by electrostatic attraction.
Furthermore, cationic nanoparticles did not penetrate the retinal structure. In contrast,
anionic nanoparticles showed some penetrating ability across the retina to the RPE [11].

The RPE is a monolayer of pigmented cells, a part of the retina. The RPE constitutes
the outer BRB with the tight junction [12]. The tight junction is a complicated structure that
regulates cell polarity and paracellular diffusion of fluids and solutes [13], thus preventing
the entrance of toxic molecules and plasma components into the retina. [14] On the RPE
layer, there is a purinergic receptor [15]. The agonists against the purinergic receptor, espe-
cially ATP, have been reported to have a considerable impact on the RPE layer [14]. Because
there is a P2Y receptor on the apical plasma membrane of the RPE, extracellular ATP can
bind to the receptor. The P2Y receptor then reacts to the near actin cytoskeleton, filamin A,
which induces the rearrangement of the RPE layer. [14] Through this effect, nucleotides
were tried to induce the disassembly of the tight junction for increasing the transport across
the RPE of therapeutics [16]. In particular, P1, P4-Di(adenosine-5′) tetraphosphate (AP4A)
increased the corneal epithelial barrier’s permeability, and the P2Y receptor signaling
pathway by its agonist was confirmed [17]. Furthermore, the P2Y receptor agonist was
used to treat edematous retinal disorders as therapeutic and adjuvant agents [15]. In the
clinic, the P2Y agonist nucleotide is used for retinal detachment [14].

Chitosan-functionalized pluronic-based nanocarrier (NC) has been developed and
applied for the delivery of proteins as an active state by us. Based on its thermosensitive,
large-volume expansion property, a simple co-incubation with protein and temperature
control resulted in a very high loading efficiency of various proteins [18]. In addition to its
tumor-targeting and skin-penetration properties, additional functionalization with specific
peptides could remarkably enhance the targeted delivery of loaded therapeutics. [11,19–21].
In this study, we applied this NC as a potential nanocarrier for therapeutic protein drugs
toward the retina via intravitreal injection. As introduced in the preceding paragraph,
positively charged nanosystems have difficulty in getting to the retina due to the interaction
with hyaluronic acid in the vitreous humor. [11] Thus, to facilitate the transport through the
vitreous humor by charge neutralization of a positively charged NC, and to enhance the
transport of NC across the RPE by inducing the rearrangement of the tight junctions in the
RPE layer, adenosine triphosphate (ATP), as a negatively charged nucleotide (NTP) and as
an agonist against the P2Y receptor in the retina [12], was mixed with NC and the mixture
was administered into the vitreous body of the eye (Figure 1). We hypothesized that the
NC–ATP system could permeate through the retina layer by bypassing the tight junction in
the RPE as well as the complicated vitreous environment upon intravitreal injection.
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Figure 1. Strategy for transport through the retina with chitosan-functionalized pluronic-based nanocarrier (NC)–ATP. NC
has a positive charge due to chitosan (marked as “+”) and ATP has a net negative charge. NC–ATP was simply prepared by
mixing via electrostatic interaction. NC/ATP was intravitreally administered.

2. Materials and Methods
2.1. Materials

Pluronic F127 (PEOnPPOmPEOn, n = 100, m = 65) was a kind donation from BASF
Corp. (Seoul, Korea). A cellulose ester dialysis bag (MWCO 300,000) was purchased from
Spectrum (Houston, TX, USA). Water-soluble chitosan (Mw ~10 kDa; degree of deacety-
lation: 85%) was obtained from Amicogen (Seoul, Korea). Irgacure 2959 was purchased
from Chiba Specialty Chemicals (Basel, Switzerland). Mono-reactive hydroxysuccinimide
ester of Cy5.5 (Cy5.5-NHS) was obtained from GE Healthcare Biosciences (Pittsburgh,
PA, USA). ZO-1 antibody, Alexa 633 secondary antibody, Alexa Fluor 594 phalloidin, and
Dulbecco Modified Eagle Medium (DMEM, Gibco) were obtained from Thermo Fisher
Scientific (Waltham, MA, USA). Nanosep centrifugal devices for spin-filtration (MWCO
300 kDa) were purchased from Pall Life Sciences (Ann Arbor, MI, USA). Adult retinal
pigment epithelial cell line-19 (ARPE-19) cells were obtained from ATCC (Manassas, VA,
USA). A Cell Counting Kit-8 (CCK assay kit) was obtained from Dojindo Molecular Tech-
nologies (Rockville, MD, USA). All other chemicals were purchased from Sigma-Aldrich
(Saint Louis, MO, USA).

2.2. Preparation of Chitosan-Functionalized Pluronic-Based Nanocarrier

Chitosan-functionalized pluronic-based nanocarrier (NC) was synthesized by UV
photo-crosslinking diluted diacrylated pluronic (DA-PF 127) and glycidyl methacrylated-
chitosan (GMA-chitosan) with a photoinitiator (Irgacure 2959), as previously reported [18].
Briefly, diacrylated pluronic was prepared by reacting pluronic 127 (PF 127) with acryloyl
chloride (the degree of substitution was 98% by NMR), then 0.77 wt% of DA-PF 127 and
0.14 wt% of GMA-chitosan were UV-irradiated for 15 min with Irgacure 2959 (0.05 wt%).
The degree of substitution of GMA in GMA-chitosan was 15 wt%, which was measured
by 1H-NMR. The size of NC at various temperatures was measured by dynamic light
scattering (ELSZ, Otsuka Electronics, Osaka, Japan).
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2.3. Cytotoxicity of NC

ARPE-19 (human retinal pigment epithelial cells) were seeded in a 96-well plate
(5 × 103 cells/well) and incubated overnight in a cell culture incubator at 37 ◦C. The
culture medium (DMEM) from each well was then removed and replaced with fresh
media containing various concentrations (0, 12.5, and 25 µg/mL) of NC. After 24 h, the
culture supernatant was removed and a fresh medium containing 10% CCK assay reagent
solution was added to each well. The plate was then incubated at 37 ◦C for 30 min, and
the absorbance of the supernatant at 570 nm was measured using a microplate reader. All
experiments were performed in triplicate. The percent viability was determined by the
following equation.

(Abssample − Abscontrol)/(Abscell − Abscontrol) × 100 (%) (1)

2.4. Actin Rearrangement Effect of NC–NTP on the Retinal Cell Layer

ARPE-19 cells were seed in a 12-well plate (10 × 104 cells/well) and cultured over
3 weeks to achieve a tightly bound monolayer mimicking the retinal pigment epithelium.
First, the NC/ATP solution with 10 mg/mL of NC and 10 mM of ATP in De-ionized water
(DIW) was prepared. Before treatment with NC or NC–NTP, the medium was removed,
and the cell layer was washed with phosphate-buffered saline (PBS) buffer. Prepared NC
or NC–NTP sample was incubated in 37 ◦C for 10 min; after that, 100 µL of the NC–ATP
solution was treated into the well first and 1.9 mL of fresh DMEM was added into the
sample-treated well. As control groups, NC alone or NC–GTP (as a non-agonist against
the P2Y receptor) was also treated similarly. After 30 min of incubation at 37 ◦C, the
supernatant medium was removed and washed with PBS. It was then stained using Alexa
Fluor 594 phalloidin to visualize the actin filaments in the ARPE-19 cell. The result was
obtained by confocal microscopy (Excitation: 594 nm, Emission: 570–573 nm).

2.5. Distribution of NC and NC–ATP in the Porcine Eye Ex Vivo

Fresh porcine eyes purchased from a local slaughterhouse were used for ex vivo exper-
iments. Cy5.5, a fluorescent dye, was conjugated to NC (Cy5.5–NC) by reacting the amine
groups of NC and Cy5.5-NHS, as previously reported [18] for optically monitoring NCs in the
eye. The NC solution (100 µL) containing Cy5.5–NC (12 mg) or the NC–NTP solution (100 µL)
containing Cy5.5–NC (12 mg) and 100 mM of ATP or GTP was injected into the vitreous
humor of the porcine eye. After injection, the porcine eye samples in PBS were incubated for
24 h at 37 ◦C in a humidified cell culture incubator. They were then cut to monitor the middle
part of the eye sphere. The distribution of Cy5.5–NC in the eye was observed by fluorescence
using a fluorescence imaging system (FOBI, NeoScience, Seoul, Korea).

2.6. Retention of NC in the Eye and Permeation through the RPE to the Blood Vessels in Mice

Eight-week-old BALB/C male mice from Orient Bio Inc. (Seongnam, Korea) were
used for in vivo experiments. All experiments were carried out according to the guidelines
of the animal care and use committee of the Gwangju Institute of Science and Technology
(GIST) (GIST-2018-068). Mice were randomly divided into 6 groups with 3 mice per group
(n = 3). The mice were fully anesthetized by isoflurane and the corneas were dilated
using phenylephrine and atropine drops. Approximately 6 µL of the solution containing
10 mg/mL Cy5.5–NC or Cy5.5–NC–NTP (100 mM) was injected into the vitreous humor
of the eye. After 6 h of intravitreal injection, fluorescence imaging of the injected eye was
obtained by using a fluorescence imaging system (FOBI). At 6 h after injection of the sample
solution, the blood was collected from the mouse eye (retro-orbital plexus). The collected
blood was centrifuged at 4 ◦C and 3000 rpm for 5 min to obtain the serum. The fluorescence
from the serum was measured by a multiwall microplate reader (Thermo Fisher Scientific,
Waltham, MA, USA).
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2.7. Histogolical Analysis of NC–NTP in the Retina

At 6 h after injection of Cy5.5–NC or Cy5.5–NC–NTP, the eyes were collected after
sacrificing the mouse and fixed in 4% formalin solution for 1 h. Each eye was then
embedded in the optimal cutting temperature (OCT) compound, frozen at −20 to −30 ◦C
and cryo-sectioned to 5 µm thickness to monitor the distribution of Cy5.5-NC in the retina
by confocal microscopy. The sectioned eye samples were stained by 4′,6-diamidino-2-
phenylindole (DAPI) to visualize the retina structure.

Immunofluorescence staining of the tight junction was performed in the retinal pig-
ment epithelium (RPE) layer. After 24 h of intravitreal injection, the sample-injected eyes
were opened by circumferential incision at the surgical limbus, and the anterior segment
and lens were removed. The posterior segment of the eye was put on filter paper and fixed
in a 4% formalin solution for 2 h. After fixation, it was possible to separate the posterior
segment of the eye from the filter paper while retaining a flat structure. This flat structure
was stained with ZO-1 primary antibody diluted with 1% bovine serum albumin (BSA)
blocking solution. (1:100). The stained section was visualized with Alexa 633 secondary
antibody and observed under fluorescence microscopy.

2.8. Statistical Analysis

All values are expressed as means ± standard deviation. Differences between groups
were examined for statistical significance by the two-tailed student t-test using Microsoft
Excel. A p-value of ≤0.05 was considered to be significant, with the symbols **: p < 0.01,
*: p < 0.05, and #: p > 0.05.

3. Results and Discussion
3.1. Biocompatibility of NC and Bioactivity of ATP-Mixed Chitosan-Functionalized
Pluronic-Based Nanocarrieron the Retinal Pigmented Epithelium

The biocompatibility of chitosan-functionalized pluronic-based nanogel (NC) on
fibroblast cells and colon epithelial cells was previously verified by us [20,21]. In this study,
we further evaluated the cytotoxicity of NC at various concentrations on ARPE-19, human
retinal pigment epithelium cells. As expected, NC did not show any cytotoxic effect on
ARPE-19 up to 25 µg/mL, showing a similar metabolic rate of the cells compared with the
control cell-only group by the CCK assay kit (Figure 2a).

Figure 2. Biocompatibility of NC and rearrangement of the cytoskeleton of ARPE-19 after treatment
with NC–ATP. (a) Metabolic activity of ARPE-19 measured by a Cell Counting Kit-8 (CCK) assay
after 24 h of treatment with NC. #: No significant difference by t-test with p > 0.05. (b) Representative
images of F-actin staining of ARPE-19 with phalloidin Alexa-594 (red). Blue: Nuclear staining with
DAPI. The observed round cell morphology is indicated by arrows (scale bar: 100 µm).
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After mixing ATP and NC to form NC–ATP, NC–ATP was administered to the ARPE-
19 cell layer for 30 min. The ARPE-19 cell layer was then stained with phalloidin dye to
see the cells’ morphology. Because the P2Y receptor is linked to the actin cytoskeleton, the
P2Y receptor agonist is known to initiate cytoskeletal rearrangements [14,22]. As shown in
Figure 2b, some reduction in actin filament stretching, leading to the round morphology of
cells, was observed in the NC–ATP compared with the control, the NC group, or even the
NC–GTP group. It was reported that ATP can induce cell rearrangement associated with
the P2Y receptor [23–25]. Thus, this result suggested the activity of ATP in NC–ATP in the
rearrangement of ARPE-19, possibly mediated by the P2Y receptor.

3.2. Distribution of NC and NC–NTP in the Porcine Eye Ex Vivo

The pig eye is often used as an ex vivo model in eye-related research because of its
similarity to the human eye [4]. The distribution of NC or NC–NTP was analyzed upon
intravitreal injection (Figure 3). After 24 h of incubation at 37 ◦C, the eye was dissected
across the whole eye including the cornea, vitreous body, retina, and choroid/sclera. The
fluorescence signal of Cy5.5–NC showed a significantly larger accumulation of NC in the
posterior part for NC–ATP than NC alone. NC–ATP also showed a larger accumulation in
the posterior part even compared with NC–GTP, although the difference was not statisti-
cally significant due to the large variations among samples. The larger accumulation of
NC in the posterior part by the addition of ATP supported the efficient and positive role
of ATP for diffusion throughout the vitreous body by reducing electrostatic interaction of
positively charged NC with the negatively charged vitreous glycosaminoglycans (GAGs)
(mainly hyaluronic acid). On the other hand, the tendency to show better accumulation of
NC–ATP in the posterior part than NC–GTP also suggested the potential role of the P2Y
receptor in the retina for targeted delivery to the retina by the interaction with the P2Y
receptor, considering that both GTP and ATP have the same charge state and a similar
structure (pyrimidine base), whereas ATP is an agonist against the P2Y receptor but GTP is
not. However, the limitation of this ex vivo result should be noted: since no physiological
efflux system was available in the eye, the result does not imply that more accumulation in
the retina would occur in vivo by the addition of ATP, but the transport and penetration of
NC to the retina might be enhanced by ATP.

Figure 3. Ex vivo Cy5.5–NC or Cy5.5–NC–negatively charged ATP (NTP) distribution in porcine eyes and accumulated
amount on the posterior area (n = 3). The fluorescence of Cy5.5 was measured by a fluorescence imaging system. Statistical
analysis by t-test: *: p ≤ 0.05; #: p > 0.05.
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3.3. Retention of NC–NTP in the Eye and Permeation of NC–NTP across the Retina In Vivo

After intravitreal administration of NC–NTP, retention of Cy5.5–NC in the eye was
monitored by a fluorescence imaging system. At 6 h after injection, still more than half
(56%) of the initially injected NC remained in the eye. In contrast, NC–ATP showed a
substantially lower (23%) amount remaining in the eye. NC–GTP also showed a similar
tendency of a reduced amount (35%). The remaining amount of NC/GTP was a little
higher than that of NC/ATP, but the difference was not statistically significant (Figure 4a).
This result seemed to be the opposite of the ex vivo results in Figure 3. However, in
the ex vivo experiment, we analyzed the remaining sample in the posterior part of the
whole eye during culture. Thus, the in vivo result obtained here showed more efficient
efflux or clearance of the injected NC from the vitreous body to the outside of the eye by
ATP or GTP, supporting the facilitated diffusion of NC inside the vitreous body. Various
clearance routes for injected NC are available, so to analyze the penetration of NC across
the retina, the fluorescence intensity of Cy5.5–NC in the serum was analyzed. As shown
in Figure 4b, approximately nine times higher intensity of Cy5.5–NC was observed from
NC–ATP compared with NC alone. This result strongly supported the efficient and positive
role of ATP on the enhanced permeation of NC across the retina upon intravitreal injection.
Interestingly, NC–GTP did not show any improvement compared with NC alone. Thus,
although GTP is considered to be effective in facilitated diffusion inside the vitreous body,
similar to ATP, it was not effective at all to promote the permeation of NC across the retina.
The interaction between the P2Y receptor and ATP but not GTP has been reported [26–28].
This result suggests the potential role of the P2Y receptor in enhancing the permeation
of NC across the retina. The nanocarrier could infiltrate into the choroid/sclera by the
rearrangement of the retinal pigment epithelial cell layer with the P2Y receptors, leading to
more efficient flow out to the blood in the choroid. [6] Based on the assumption of ~1 mL
of total circulating blood volume in a mouse, the amount of NC in the blood was estimated
to be significant, ~6.7% of the initially injected amount for NC–ATP.

Figure 4. In vivo (a) retention of Cy5.5–NC or Cy5.5–NC–ATP in the eyes by fluorescence intensity at 6 h compared with
the initial values (scale bar: 3 µm), and (b) permeated Cy5.5–NC or Cy5.5–NC–ATP in the serum 6 h after intraocular
administration (n = 3). Statistical analysis by t-test. *: p ≤ 0.05; **: p ≤ 0.01.

3.4. Histological Analysis of NC–NTP in the Retina

The retina at 6 h after injection was sectioned and analyzed by fluorescence microscopy
(Figure 5a). Red fluorescence from Cy5.5–NC and blue fluorescence from retinal cell nuclei
stained with DAPI were visualized. In the case of NC alone, some NC was observed above
the inner nuclear layer (INL), showing that some of NC could reach the surface of the
retina, but almost no NC was observed throughout the retina, implying no evidence of
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permeation across the retina. In contrast, a much stronger red signal of Cy5.5–NC–ATP
was observed throughout the whole retina section. First, the area of the red signal on the
surface of the retina was much stronger and larger than that of NC alone, implying more
efficient diffusion throughout the vitreous body by ATP addition, consistent with other data.
Red fluorescence was also observed in the whole retina including the INL, outer nuclear
layer (ONL), and RPE, where the P2Y receptors are located [29]. This result showed direct
evidence of the permeation of NC across the retina. In the case of NC–GTP, red fluorescence
was also observed on the surface of the retina, supporting the positive role of GTP for
diffusion throughout the vitreous body by reducing electrostatic interaction between
positively charged NC and the vitreous body containing anionic GAGs. However, a much
lower amount of red fluorescence was observed inside the retina. A semi-quantitative
analysis of Cy5.5–NC signals using sectioned images showed an approximately six times
higher density of Cy5.5–NC in the NC–ATP group than in the NC group or NC–GTP
group in the retina (Figure 5b), coinciding well with the results of the serum concentration
of NC in Figure 4b. The clear difference between NC–ATP and NC–GTP suggested the
involvement of the P2Y receptor in the permeation of NC across the retina.

Figure 5. (a) In vivo penetration of Cy5.5–NC (red) or Cy5.5–NC–NTP across the retina 6 h after
intravitreal injection (scale bar: 50 mm). INL: inner nuclear layer; ONL: outer nuclear layer; RPE:
retinal pigment epithelium. Nuclear staining by DAPI (blue). (b) Semi-quantitative analysis of
Figure 5a showing the penetrated nanocarriers in the retina. Statistical analysis by t-test. *: p ≤ 0.05
(c) ZO-1 staining (red) of the retina 6 h after intravitreal injection of NC or NC–NTP (scale bar:
20 mm). Nuclear staining by DAPI (blue).

Immunocytochemical analysis was performed on the mouse retina to detect the tight
junctions in the RPE with ZO-1. As shown in Figure 5c, the control, NC alone, and NC–
GTP groups showed well-developed tight junction distribution. This result implies that
the intravitreal sample injection in this experiment did not severely damage the retina to
disrupt the RPE layer. In contrast, some disruption in the tight junction was observed only
in the NC–ATP group, supporting the P2Y receptor-mediated rearrangement of the RPE
cells, allowing the permeation of NC across the RPE.

In the route of intravitreal injection, there are several anatomical and physiological
barriers such as the vitreous, inner limiting membrane (ILM), cellular binding, extracellular
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matrix, and efflux transporters [16,24–26]. Even though the development of nanosys-
tems for ocular drug delivery has not been practically applied yet, several nanoparticle
systems have shown promising results in terms of biocompatibility, biodegradability,
non-immunogenicity, extended half-life of drugs, easy engineering, and enhanced tissue
penetration [11,26,27]. Most of these studies using nanosystems for drug delivery to the
retina are intended to diffuse well throughout the vitreous body and permeate across the
retina to reach the RPE. Hyaluronic acid (HA), the major constituent of the vitreous body,
has a negative charge and binds to the cell surface receptor, including CD44 in the retina.
Thus, the HA-modified nanosystem showed significantly rapid diffusion throughout the
vitreous body and reached the retina specifically, not other tissues [9]. A PEG-coated
nanoparticle system with no immune response reached the retina to induce better treat-
ment than the free drug [27]. A PLGA-based nanosystem improved the bioavailability and
decreased the side effects of a free drug, resulting in over two times the anti-angiogenic
effect on the retina compared with the free drug [28]. However, all of these studies did
not show quantitative comparisons with the control groups in terms of penetration of the
carriers to prove their strategy. On the contrary, we showed remarkably enhanced transport
and permeation of a polymeric nanocarrier with quantitative analyses by premixing it with
ATP in this study, and the estimated amount of permeated nanocarrier in the serum was
significant. However, we did not load any drug into the nanocarrier or characterize the
treatment effect in this study. Therefore, the evaluation of drug-loaded nanocarriers using a
retina-disease animal model is necessary to prove the effectiveness of the present approach.

4. Conclusions

Mixing ATP with NC, a polymeric nanocarrier, resulted in a great increase (approxi-
mately nine times) in the transport of NC across the retina as well as spreading it throughout
the whole retina upon intravitreal administration. ATP might have contributed to this
enhancement by two factors. First, negatively charged ATP facilitated the diffusion of NC
throughout the vitreal humor by reducing the electrostatic interaction between positively
charged NC and negatively charged GAGs (mostly hyaluronic acid) in the vitreous hu-
mor. Second, ATP enhanced the penetration of NC into the retina, potentially mediated
by the interaction with the P2Y receptors. The involvement of the P2Y receptor in the
enhanced penetration of NC was supported by the specificity of ATP in contrast to GTP
and tight junction disruption. If we consider that a significant amount of the injected
NC could permeate through the RPE, the strategy used in this study has high potential
applicability for important retina-associated diseases such as diabetic retinopathy (DR) or
proliferative age-related macular degeneration (AMD) that require the targeted delivery of
therapeutic drugs to the retina for treatment or imaging agents for monitoring the progress
of the diseases.
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