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Abstract: Lipid mobilization in adipose tissues, which includes lipogenesis and lipolysis, is a
paramount process in regulating systemic energy metabolism. Reactive oxygen and nitrogen species
(ROS and RNS) are byproducts of cellular metabolism that exert signaling functions in several cellular
processes, including lipolysis and lipogenesis. During lipolysis, the adipose tissue generates ROS and
RNS and thus requires a robust antioxidant response to maintain tight regulation of redox signaling.
This review will discuss the production of ROS and RNS within the adipose tissue, their role in
regulating lipolysis and lipogenesis, and the implications of antioxidants on lipid mobilization.
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1. Introduction

The adipose tissue (AT) is a specialized connective tissue that functions as the primary
energy storage depot in mammals. During periods of negative energy balance, lipolysis
hydrolyzes triacylglycerol (TAG) reserves in AT to release fatty acid (FA) and thus meet
human and animal energy needs. On the other hand, under anabolic conditions, the AT
stores energy in the form of lipids, such as FA and TAG, in a process known as lipogenesis.
The regulation of FA trafficking in and out of the adipocyte (i.e., lipolysis and lipogenesis)
involves metabolic and endo-, para-, and autocrine pathways that depend partly on
redox signaling.

Redox signaling is a term used to describe cell signaling pathways where free radicals,
or related species, serve as chemical messengers [1]. It is a fundamental process for many
cell and tissue functions. Free radicals include reactive oxygen and nitrogen species (ROS
and RNS), which are potent cellular metabolism products. At low concentrations, ROS and
RNS are the effectors of redox signaling, but at high concentrations harm living organisms.
During lipolysis, both ROS and RNS are generated by the activation of mitochondrial and
cytosolic processes in AT cellular components such as adipocytes and immune cells. To
maintain redox balance, antioxidant defenses are activated. However, in conditions with
intense and protracted lipolysis such as human diabetes, obesity, and metabolic stress in
dairy cows, the production of ROS and RNS rapidly depletes antioxidant systems, and
oxidative stress (OS) develops. OS is generally defined as an imbalance between oxidants
and antioxidants [2]. More precisely, it refers to increased levels of free radicals that cause
cell damage. Lipids (predominantly unsaturated FA), proteins, and DNA are targets for
oxidation, nitration, halogenation, and deamination by ROS and RNS [3]. This review will
discuss the role that redox signaling plays in the control of lipolysis and lipogenesis in AT
and the effects of antioxidants during lipid mobilization.

2. ROS and RNS Sources in AT

ROS is a family of free radicals, including superoxide anion (O2
•−), hydrogen peroxide

(H2O2), and hydroxyl radical (•OH). Nitrogen-containing species, referred to as RNS,
include nitric oxide (NO•) and its derivatives peroxynitrite (ONOO−), nitrous anhydride,
and nitrogen dioxide (NO2

•) [4]. All cellular components of AT, including adipocytes,
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fibroblasts, endothelial cells, and adipocyte progenitors, are sources of free radicals. Within
each AT cell, these sources include the mitochondria, cytosol, endoplasmic reticulum,
peroxisomes, plasma membrane, and phagosomes (Figure 1; for a detailed review, readers
are referred to [5]).
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presence of NO•. (4) Peroxisomes: O2•−and H2O2 are produced during FA oxidation by peroxisomal 
enzymes such as amino acids (AA), aspartate (Asp), and xanthine oxidases. (5) Macrophages and neu-
trophils: Generate O2•− and H2O2 by nicotinamide adenine dinucleotide phosphate oxidase (NOX) 
during the respiratory burst. NOX in the cytosol, cellular membrane, and mitochondria also pro-
duces O2•− and H2O2. (6) Cellular membrane: Phospholipases (PLA) hydrolyze phospholipids to pro-
duce free fatty acids, which are later oxidized by cyclooxygenases and lipoxygenases, releasing hy-
droxyl radicals (•OH). 
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Figure 1. ROS and RNS sources in AT cells. (1) Cytosol: The oxidation of hypoxanthine to xanthine by xanthine oxidore-
ductase (XO) produces superoxide (O2

•−) and hydrogen peroxide (H2O2). Nitric oxide synthase (NOS) produces nitric
oxide (NO•). (2) Endoplasmic reticulum: Oxidative protein folding, carbohydrate addition, disulfide bond formation, and
desaturation of FA generate O2

•− and H2O2. (3) Mitochondria: O2
•− is produced by complexes I and III of the electron

transport chain (ETC). O2
•− is then converted to H2O2 by superoxide dismutase (SOD), or to peroxynitrite (ONOO−) in

the presence of NO•. (4) Peroxisomes: O2
•− and H2O2 are produced during FA oxidation by peroxisomal enzymes such as

amino acids (AA), aspartate (Asp), and xanthine oxidases. (5) Macrophages and neutrophils: Generate O2
•− and H2O2 by

nicotinamide adenine dinucleotide phosphate oxidase (NOX) during the respiratory burst. NOX in the cytosol, cellular
membrane, and mitochondria also produces O2

•− and H2O2. (6) Cellular membrane: Phospholipases (PLA) hydrolyze
phospholipids to produce free fatty acids, which are later oxidized by cyclooxygenases and lipoxygenases, releasing
hydroxyl radicals (•OH).

2.1. Mitochondria

The production of ROS in the mitochondria is extensively reviewed [5,6]. In short, the
mitochondrial electron transport chain generates O2

•−, which is the initial ROS formed,
mainly at complexes I and III. Superoxide dismutase (SOD) catalyzes the dismutation (i.e.,
oxidation and reduction) of O2

•− to molecular oxygen and the less harmful and reactive
compound H2O2. During negative energy balance-induced lipolysis, mitochondrial FA
oxidation is rapidly increased, and consequently, the electron transport chain activity is
enhanced. Oxidation of FA generates more O2

•− and H2O2 than that of amino acid or
carbohydrate metabolites [7]. Therefore, AT is at a higher risk for developing OS during
periods of negative energy balance.

2.2. Peroxisomes

After the mitochondria, peroxisomes are the most abundant source of O2
•− and H2O2

in adipocytes [8]. This is because peroxisomes have relatively high FA oxidation activity (α
and β) and contain active enzymes that generate free radicals such as amino acid, aspartate,
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and xanthine oxidases. Like in the mitochondria, as lipolysis increases, the concentration
of free FA available for oxidation rises, thus enhancing free radical production.

2.3. Cytosol

Several enzymatic and non-enzymatic reactions that occur in the cytosol release
free radicals. (1) The metabolism of purines and other nitrogenous bases, especially the
oxidation of hypoxanthine to xanthine by xanthine oxidoreductase, produces O2

•− and
H2O2 [9]. Diseases that induce hypoxia conditions in the AT, such as obesity, enhance the
activity of xanthine oxidoreductase [10]. (2) Nicotinamide adenine dinucleotide phosphate
oxidase (NOX) enzymes are another critical source of O2

•− and H2O2 in the cytosol and
mitochondria. In adipocytes, NOX4 is abundantly expressed, and its activity releases
H2O2 [11]. In fact, silencing NOX4 in rat adipocytes inhibits ROS generation during
metabolic stress induced by palmitate and glucose exposure [12]. In contrast, moderate
NOX4 activation by non-steroidal anti-inflammatory drugs (NSAIDs, e.g., aspirin and
naproxen) reduces the production of cyclic adenosine monophosphate (cAMP), and the
activation of protein kinase A leading to lipolysis inhibition [13].

2.4. Cellular Membrane

Major ROS generators in AT cellular membranes include enzymatic reactions by
phospholipases (PLA), NOX, and non-enzymatic peroxidation of lipids. PLA are present
in all AT cellular components. Different isoforms of PLA2 are abundantly expressed in
adipocytes, including a specific adipose isoform AdPLA [14]. PLA hydrolyze phospho-
lipids releasing FA. Among FA, polyunsaturated FA (PUFA) are the most abundant in
cellular membranes. Once released by PLA2, PUFA are oxidized by cyclooxygenases and
lipoxygenases to produce tyrosyl radicals, •OH, and oxylipids, including several perox-
ides [15,16]. Similar to O2

•− and H2O2, •OH damages intracellular proteins and lipids.
Membrane-bound NOX enzymes are the primary source of ROS from cellular mem-

branes. Adipocyte-specific NOX4 knockout (KO) protects the carrier mice against insulin
signaling dysregulation, which is one of the pathological changes leading to AT inflamma-
tion and impaired insulin sensitivity [11]. Within the AT, both macrophages and neutrophils
use NOX enzymes to generate O2

•− and H2O2 from oxygen to fuel the respiratory burst
reaction that is essential for their phagocytic activity [17]. Obesity and metabolic syndrome
in humans are associated with infiltration and M1 phenotype polarization of macrophages.
M1 macrophages have a more effective respiratory burst than M2 cells that facilitates
their phagocytic activity ([18] and reviewed in [19]). However, chronic infiltration of M1
macrophages exacerbates ROS production in AT, leading to OS. In veterinary species,
similar to humans, changes in macrophage phenotype polarization are associated with
ROS production and OS. We demonstrated that in cows with periparturient metabolic
stress that develop hyperketonemia and displaced abomasum, AT macrophages become
polarized to the M1 phenotype [20]. Cows challenged with these adverse health events
exhibit OS in AT [21].

2.5. Endoplasmic Reticulum (ER)

The ER in adipocytes synthesizes adipokines such as leptin and adiponectin. The
structure of the latter is particularly complex as it is secreted in the form of multimers. To
produce these types of proteins, adipocytes’ ER relies on oxidative protein folding and
other post-translational structural modifications (e.g., carbohydrate addition and disulfide
bond formation) that generate O2

•− and H2O2 [22]. The level of H2O2 is rapidly reduced
by adiporedoxin, an adipocyte-specific peroxiredoxin (Prx) [23]. The adipocyte ER is very
sensitive to changes in its redox status, and when ER stress develops due to OS, secretion
of adiponectin and other adipokines is suppressed. An additional source of ROS in the ER
is the desaturation of FA. This process involves the action of desaturases (e.g., stearoyl-CoA
desaturase-1) and cytochrome b5 that generate O2

•− as a byproduct (reviewed extensively
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in [24]). During lipolysis, increased availability of saturated FA, substrates for desaturation
reactions, may drive ROS production by desaturases.

2.6. Production of RNS

Nitric oxide synthases (NOS) convert L-arginine to NO• and L-citrulline [5]. There are
three known isoforms of NOS, endothelial (eNOS), neuronal (nNOS), and inducible (iNOS).
Studies performed using subcutaneous human AT [25] and rat adipocytes [26] show that
both eNOS and iNOS, but not nNOS, are expressed in AT and fat cells. Hence, eNOS and
iNOS are responsible for the production of NO• within AT. Mechanistic evidence provided
by eNOS KO mice demonstrates that the absence of eNOS activity, and consequently NO•,
limits the development of redox signaling dysregulation related disorders [27]. RNS can
also interact with ROS to produce other reactive species. For example, NO• reacts with
O2

•− to produce ONOO− [4]. Most studies evaluating the effect of NO• on lipolysis and
lipogenesis have used an indirect approach through NO• donors, scavengers, and NOS
inhibitors. This is because the interaction between NO• and oxygen makes it difficult to
study its isolated function. The direct effect of NO• on lipid mobilization, independent of
its interaction with oxygen, remains to be explored.

3. Redox Signaling and Lipolysis

Within adipocytes, the process of lipolysis involves sequential hydrolysis of triglyc-
erides (TAG). First, adipose tissue triglyceride lipase (ATGL) hydrolyses TAG into diacyl-
glycerol (DAG) and releases a FA molecule. Hormone-sensitive lipase (HSL) hydrolyzes
DAG to monoacylglycerol, which is then further broken down into FA and glycerol by
monoacylglycerol lipase (reviewed in detail by [28]). The activation of ATGL and HSL
is triggered by two major lipolytic pathways, classic and inflammatory, that involve sev-
eral redox signaling mechanisms at different steps during the process, including cellular
membrane receptors, protein kinases, and cytoplasmic enzymes.

The classic lipolytic pathway initiates by the activation of cell membrane β-adrenergic
and growth hormone receptors, which in turn trigger the activity of adenylyl cyclase (AC),
an enzyme that generates cAMP. The latter is a second messenger that starts intracellular
signaling cascades through protein kinases. In contrast, the inflammatory lipolytic pathway
is triggered through toll-like receptor 4 [29] and IL-6 cytokine receptors [30]. Lipolytic
signals reach the neutral lipases (ATGL, HSL) through a series of protein phosphorylations
involving protein kinases (PKA, PKC, PKG). The phosphorylation of ATGL co-activator
CGI-58, perilipin 1 (PLIN1; lipid droplet coating), and HSL by protein kinases ultimately
trigger lipolysis. ROS and RNS can alter the lipolytic pathways at various control points
ranging from cellular membrane receptors to neutral lipase activation. However, the
effect depends on the concentration, reactivity, and source of the reactive species. Below
we summarize the impact of different ROS and RNS on the components of the lipolytic
pathways (Figure 2).
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•− and H2O2 also
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•− and H2O2 produced upon activation of NPRA enhance the activation of βAR, AC, and cAMP
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Moreover, insulin, through the production H2O2 by NOX4, inhibits PKA activation, reducing adrenergic stimulated lipolysis.
(5) Protein kinase C (PKC): at high concentration, O2
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red arrows represent the effect (activation or inhibition) of ROS/RNS.

3.1. Cell Membrane Receptors
3.1.1. β-Adrenergic Receptors

G protein-coupled β-adrenergic receptors (βAR) are an integral part of the plasma
membrane that bind to adrenaline and other vasoactive amines. Adipocytes express
the three types of β-adrenergic receptors (β1AR, β2AR, and β3AR), and their activation
induces lipolysis through PKA mediated signaling [31]. βAR signaling regulates and is
regulated by redox signaling. Upon binding to adrenalin, βAR increase ROS production in
a NOX and time-dependent manner [32]. At the same time, O2

•− and H2O2 can oxidize
βAR by sulfenation [33]. This structural change increases the number of ligand binding
sites on the βAR receptor, possibly increasing the sensitivity of adipocytes to lipolysis
induced by vasoactive amines [32].

On the other hand, RNS, such as NO• and related species, affect the lipolytic pathway
by suppressing the activation of the βAR. For example, nitroglycerine, a NO• donor,
reduces βAR-stimulated lipolysis [34]. Likewise, S-nitroso-N-acetyl-D,L-penicillamine
(SNAP), another NO• donor, decreases βAR-stimulated lipolysis and cAMP production.
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SNAP does not affect dibutyryl cAMP (protein kinase activator), IBMX (phosphodiesterase
activator), or forskolin (AC activator) stimulated lipolysis [35]. Moreover, inhibition of
NO• enhances βAR-stimulated lipolysis [36].

3.1.2. Growth Hormone Receptor

This class 1 cytokine receptor family member induces lipolysis in adipocytes upon
binding to growth hormone (GH). Lipolysis induced by GH is particularly intense during
prolonged fasting or states of negative energy balance, such as early lactation in dairy
cows [37,38]. The mechanism of action for GH-induced lipolysis involves the activation
of βAR 1 and 3 [39] and AC [40]. This increases ROS, including H2O2, generation at the
growth hormone receptor-GH peptide interface within the cellular membrane. These ROS
are ultimately responsible for the activation of the βAR, AC, and protein kinases, leading
to lipolysis [41].

3.1.3. Natriuretic Peptide Receptors

Subtypes expressed in AT include type A (NPRA), a transmembrane protein, and
NPRC, a G protein-linked receptor. These two receptors bind to natriuretic peptides (NP)
and cause lipolytic effects in adipocytes [42]. The NP family includes the atrial-, brain-
, and C-type NPs. Upon binding to NPRA, NPs activate guanylyl-cyclase, leading to
the production of cyclic guanosine monophosphate (cGMP), which triggers the action
of protein kinase G [43]. The latter phosphorylates HSL and PLIN1, leading to lipolysis
activation. As with the GH receptor, activation of NPRA increases the generation of O2

•−

and H2O2 in a dose and NOX2 dependent manner, possibly leading to the stimulation of
βAR [44].

3.2. Adenylyl and Guanylyl Cyclases and Their Cyclic Nucleotide Products (cAMP, cGMP)

The adenylyl cyclase/cAMP system is the target of many cell membrane receptors
upon activation (e.g., βAR, NPRA). cAMP, a primary second messenger in cellular signal-
ing, is synthesized by AC from ATP. There are at least nine subtypes of membrane-bound
AC, and of those, II, IV, V, and VI are detectable in adipocytes [45]. These enzymes have 12
transmembrane domains and 2 cytoplasmic domains. Both O2

•− and H2O2 enhance the
activation of membrane-bound AC and the synthesis of cAMP, triggering lipolysis [46,47].
The reduction of cAMP protects against OS by upregulating the expression of the antioxi-
dant MnSOD. Particularly, AC5 KO mice model protects against obesity and diabetes by
reducing OS in AT. This finding highlights AC’s as a critical target of ROS activity [48–50].

Guanylyl cyclase (GC) synthesizes cGMP from guanosine triphosphate. There are
seven cell membrane-bound GCs. Of these, GC-A is specific for the lipolytic agent atrial
NP (reviewed extensively in [51]). It is currently unknown if ROS or RNS modulate the
activity of cell membrane-bound GCs. In contrast, soluble GC is activated by NO• [52].
However, the lipolytic effect of soluble GC is unknown as the activity of this enzyme is
compartmentalized intracellularly [53].

3.3. Protein Kinases
3.3.1. cAMP-Dependent Protein Kinase A (PKA)

The binding of cAMP to PKA releases its catalytic subunit initiating the phosphoryla-
tion of targets including HSL, PLIN1, and CGI-58 that activate lipolysis [54]. ROS generated
by the oxidizing agent diamide at high concentrations (0.5 mM) can directly inhibit PKA
activity by oxidizing a highly reactive cysteine in its catalytic subunits [55]. However, at
low concentrations (100 µM), diamide can inactivate the phosphatases that inhibit PKA
and thus prolong the lipolytic stimulus [54]. On the other hand, low concentrations (nano
to micromolar) of intracellular H2O2 inactivate PKA, and this is the mechanism by which
insulin reduces adrenergic stimulated lipolysis [56]. This signaling mechanism, also termed
the redox paradox, is mediated by NOX4 production of H2O2 upon insulin binding to its
receptor [57].
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3.3.2. Protein Kinase C (PKC)

This family of enzymes includes at least ten isoforms (α, β1, β2, γ, δ, ε, η, θ, D1, D2,
D3). The conventional subfamily (α, β1, β2) requires DAG and Ca2+ for activation while
the novel group (ε, η, θ) only requires DAG [58]. PKC activation induces lipolysis as this
enzyme can phosphorylate HSL, perilipin, and possibly CGI-58 [59]. PKC-induced lipolysis
is triggered by toll-like receptor activation, making it one of the kinases involved in the
inflammatory lipolytic pathway [60]. ROS enhance or reduce PKC activity by different
mechanisms. First, high concentrations of O2

•− and H2O2 can activate phospholipase
C, releasing DAG from cellular membranes and activating PKC [61]. Second, H2O2 can
increase intracellular concentrations of Ca2+ and therefore favor PKC activation [62]. Finally,
O2

•− and H2O2 at low concentrations can oxidize structural cysteine residues of PKC,
leading to its activation. On the other hand, at high concentrations, O2

•− and H2O2
inactivate PKC by impairing its substrate-binding affinity in a mechanism similar to the
inactivation of PKA by ROS [63].

3.3.3. cGMP-Dependent Protein Kinase G (PKG)

There are two types of PKG, I and II. In adipocytes, PKG-I phosphorylates HSL and
PLIN1 when cells are stimulated with atrial-NP [64]. Although it is currently unknown
how ROS and RNS may modulate PKG-I activity in adipocytes, research in smooth muscle
cells indicates that ROS and RNS activate the enzyme by oxidant-induced disulfide forma-
tion [65]. It is unclear whether or not high concentrations of ROS can inactivate PKG-I.

3.4. Lipases
3.4.1. Hormone-Sensitive Lipase

HSL is considered the rate-limiting enzyme for demand lipolysis. High and low
ROS concentrations modulate the lipolytic activity of this neutral lipase. Reducing ROS
concentrations with the antioxidants diphenyl iodonium (DPI), N-acetyl cysteine (NAC)
and resveratrol inhibited lipolysis in human adipocytes [66]. DPI decreased both basal
and forskolin (AC activator)-stimulated lipolysis. This effect is mediated by reducing the
phosphorylation of an essential serine residue, Ser522, in HSL. It should be noted that all
three antioxidants prevent the translocation of HSL from the cytosol to the lipid droplet
under forskolin-stimulated lipolysis. Interestingly, scavenging ROS does not alter the
expression of cAMP and PKA, suggesting that DPI inhibits lipolysis through direct action
on HSL [66]. Aligning with this observation, Zhou, et al. [67] demonstrated that O2

•− and
H2O2 can induce phosphorylation of HSL; however, their experiments did not evaluate if
the mechanisms of action involved changes in the active sites of HSL.

3.4.2. Adipose Tissue Triglyceride Lipase

ATGL is the rate-limiting enzyme of basal lipolysis in adipocytes and intracellular
lipolysis in other cells. ATGL activation is dependent upon the phosphorylation of its co-
activator CGI-58 [68]. It is currently unknown if ROS or RNS directly modify the structures
or binding properties of ATGL or CGI-58.

3.5. Redox Signaling Dysregulation and Lipolysis

A common pathological change in metabolic diseases is excessive and protracted
lipolysis that is accompanied by AT immune cell infiltration and inflammation, cellular
proliferation, and extracellular matrix changes [69,70]. Macrophages and neutrophils
are the primary cells infiltrating AT. Upon activation, the respiratory burst in these cells
releases ROS through a NOX-dependent process. Excessive NOX3 and NOX4 stimulation
during AT inflammation enhances ROS concentrations and impairs insulin signaling in
adipocytes, further intensifying lipolysis [11,71]. As AT’s free radical content increases,
the organ becomes dysfunctional. For example, in obesity, a state of chronic inflammation
leads to the overproduction of proinflammatory cytokines, including TNF-α, IL-1, and
IL-6 in adipocytes [72]. These cytokines promote lipolysis and decrease insulin sensitivity,
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resulting in AT dysfunction and systemic metabolic disturbances. On the other hand,
in obese mice, apocynin, a NOX inhibitor, reduces AT ROS levels, restores dysregulated
adipokine secretion, and improves hyperlipidemia and diabetes [73]. Hence, excessive
production of free radicals is likely a critical mechanism for enhanced and dysregulated
lipolysis in metabolic diseases.

4. Antioxidants and Lipolysis

As described above, ROS and RNS can enhance or limit lipolysis in adipocytes. How-
ever, dysregulated redox signaling can lead to OS when the production of oxidants exceeds
the antioxidant system’s capacity (readers refer to reviews on OS in AT [74–77]). To pre-
vent OS, antioxidant mechanisms become active during lipolysis. For instance, in dairy
cows, during periods of negative energy balance, the transcription networks related to
antioxidants are activated to reduce pro-lipolytic effects and OS inducers [78]. Increasing
evidence shows that antioxidants play a crucial role in regulating lipid mobilization during
inflammatory diseases by scavenging free radicals. The AT antioxidant system consists of
enzymatic antioxidants, including catalase (CAT), peroxiredoxins (Prxs), and glutathione
peroxidase (GPx). The antioxidant activity in AT is regulated at the transcription level
by different cell signaling proteins and transcription factors. Non-enzymatic antioxidants
such as exogenous antioxidants commonly derived from dietary sources can also enhance
AT’s antioxidant capacity. We will further explain the contributions of enzymatic and
non-enzymatic antioxidants to lipid mobilization in AT in the next section (summarized in
Figure 3).

4.1. Catalase

CAT, an antioxidant enzyme produced by peroxisomes, catalyzes the breakdown of
H2O2 into O2 and water. In mammals, CAT is expressed in the liver, kidney, and AT. The
antioxidant capacity of CAT is severely diminished in diseases that involve AT inflam-
mation, such as human obesity [73]. In rodent models of obesity, CAT inhibits lipolysis
and prevents non-alcoholic fatty liver disease (NAFLD) by scavenging peroxisomal H2O2.
The capacity of CAT to reduce lipolysis was demonstrated in CAT KO mice (CKO). These
animals have heightened plasma TAG, Free FA, and insulin when fed a high-fat diet
(HFD) [79]. Although not demonstrated in AT, HSL activity in the liver was enhanced
while ATGL expression decreased [80]. Moreover, CAT deficient cells have more pro-
nounced lipogenesis compared with those derived from wild-type animals [81]. Using the
catalase inhibitor 3-amino-1,2,4-triazole, Nunes-Souza and colleagues [82] demonstrated
that reduced CAT activity enhances lipolysis in an HSL-dependent manner. On the other
hand, exogenous CAT administration eliminates the antilipolytic effect of H2O2 in the
presence of epinephrine [83].

4.2. Peroxiredoxins

Prxs are a family of antioxidant enzymes that catalyze the reduction of organic hy-
droperoxides, H2O2, and ONOO− [84]. PRDX6, an enzyme belonging to the Prxs family,
plays a crucial role in decreasing ROS following OS during inflammatory diseases [85].
PRDX6 KO mice fed a HFD exhibited a higher lipolysis rate reflected by increased ATGL
expression and serum Free FA compared with wild-type animals. Moreover, in these
mice, insulin failed to suppress AT lipolysis [86]. Likewise, PRDX3 KO murine adipocytes
display greater HSL and lipoprotein lipase gene expression [87]. Taken together, these
results demonstrate that the peroxiredoxins inhibit lipolysis in AT.

4.3. Glutathione Peroxidase

GPx is a family of enzymatic antioxidants that reduce H2O2 to water, protecting
against lipid peroxidation. It is well established that GPx serum concentration and AT
expression are dysregulated during human obesity and metabolic disorders [88–90]. GPx
alters lipid metabolism; however, its direct role on the lipolytic pathway is unknown.
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Some evidence suggests that GPx activity may inhibit lipolysis. The mRNA expression
of GPx3 in AT is higher in lean and insulin-sensitive individuals than in those obese and
insulin-resistant [91]. Overexpression of GPx1 in mice increases body weight compared
with wild-type littermates [92]. This phenotype could be related to a reduction in lipolysis.
Alloxan, a toxic glucose analog that generates ROS, increases lipolysis by decreasing
glutathione content in adipocytes. This response is accompanied by the impairment of the
redox state of the glutathione system [93].

4.4. Apelin

The adipokine apelin, secreted by adipocytes in both mice and human cells, is known
for its anti-obesity and anti-diabetic properties. Its levels increase in obese patients, espe-
cially in hyperinsulinemia-associated obesity [94]. Apelin binds to its G-protein coupled
receptor and suppresses the production and release of ROS by promoting the expression of
antioxidant enzymes (SOD, CAT, and GPx) through the ERK/AMPK pathway. Moreover,
it suppresses the expression of pro-oxidant enzymes such as NOX [95]. In rat adipocytes,
apelin inhibits basal lipolysis through AMPK-dependent increases in perilipin expres-
sion. At the same time, this adipokine reduces βAR-induced lipolysis by abrogating the
phosphorylation of HSL at Ser-563 [96,97]. These effects are also observed in vivo, where
apelin-KO mice have significantly higher serum FA and glycerol compared to wild-type
mice, yet this effect is abrogated after apelin infusions [97]. To summarize, apelin decreases
lipolysis by stimulating antioxidant expression.

4.5. Nuclear Factor E2-Related Factor 2 (Nrf2)

Nrf2 is a basic leucine zipper (bZIP) protein associated with the cytoplasm. When
cytoplasmic ROS levels increase, Nrf2 translocates to the nucleus and initiates the transcrip-
tion of various antioxidant genes [98]. Nrf2 activation appears to reduce lipolysis in AT.
In 3T3-L1 adipocytes, Nrf2 knockdown reduces H2O2-induced lipid accumulation. Nrf2
KO mice also have reduced transcription of lipogenic genes and increased ATGL and HSL
activity when fed chow and HFDs [99]. Nrf2 activation in mice reduced HFD-induced
lipid accumulation in white AT and HFD-induced obesity [100].

4.6. Antioxidant Supplementation

Under physiological conditions, endogenous antioxidants can prevent excessive
ROS/RNS production. However, there is a continuous demand for exogenous sources such
as selenium (Se) and vitamin E. These antioxidants are known to be effective in reducing
OS in many human [101–103] and cattle [104] diseases. Se supplementation promotes
adipocyte differentiation in AT; however, during obesity, it promotes lipolysis by activating
the classic lipolytic pathway (PKA/HSL) in a dose-dependent manner [105]. Vitamin E
supplementation improves insulin sensitivity in obese mice models and reduces plasma
TAG levels [106]. Lastly, resveratrol, a naturally occurring phenolic compound, enhances
lipid mobilization upon βAR activation but has no effect on basal lipolysis. At concen-
trations of10 µM, resveratrol increases βAR-stimulated lipolysis and impairs insulin’s
antilipolytic response [107]. Similar results are observed in rat adipocytes [108] and human
AT explants [109] stimulated by epinephrine. It is important to note that ROS levels were
not directly measured under these conditions.
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Figure 3. Antioxidant effect on lipolysis. Catalase (CAT), an enzyme produced by peroxisomes, catalyzes the breakdown of
H2O2 into O2 and H2O. CAT knockout models (CKO) fed a high-fat diet (HFD) have a higher lipolysis rate and are more
susceptible to obesity and insulin resistance compared to wild-type littermates. Peroxiredoxins (Prx) catalyze the reduction
of H2O2. Prx3/6 knockout mice (PRDX3/6 KO) have increased lipolysis and insulin resistance. Glutathione peroxidase
(GPx) catalyzes the breakdown of H2O2 to water. GPx overexpression results in an increase in body weight (BW) possibly
by decreasing lipolysis. Selenium promotes lipolysis during obesity. Vitamin E decreases plasma triacylglycerol (TAG).
Resveratrol increases β-adrenergic receptor (βAR)-stimulated lipolysis and impairs insulin’s antilipolytic effect. Apelin
decreases lipolysis by promoting the expression of antioxidant enzymes (superoxide dismutase (SOD), CAT, and GPx) and
suppressing the expression of nicotinamide adenine dinucleotide phosphate oxidase (NOX). Nuclear factor E2-related factor 2
(Nrf2) increases lipid accumulation and decreases lipolysis.

5. Redox Signaling and Lipogenesis

Reactive species can also modulate the lipogenic pathway. Lipogenesis refers to FA
and TAG synthesis, which takes place in both the liver and AT. Within AT, TAG can be hy-
drolyzed to release FA by lipoprotein lipase (LPL) [110]. FA then enter adipocytes through
fatty acid transporters such as CD36 and fatty acid transport protein-1 (FATP1) [108]. These
FA can be esterified to form TAG and stored in the lipid droplet. Alternatively, in de novo
lipogenesis, circulating carbohydrates are converted into FA that are then used for synthe-
sizing TAG or other lipid molecules. This process can be stimulated by insulin through
GLUT4, which triggers glucose uptake by adipocytes [111]. Some of the rate-limiting
enzymes in lipogenesis include fatty acid synthase (Fasn), diacylglycerol O-acyltransferase
1 (Dgat1), stearoyl-CoA desaturase-1 (Scd1), and acetyl-CoA carboxylase (Acaca). Many
studies have shown that redox signaling modulates lipogenesis mainly through H2O2
(Figure 4).
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the oxidation of protein tyrosine phosphatases (PIP), thus facilitating insulin signaling. H2O2 also increases lipogenesis
by increasing NADPH and glucose incorporation into glyceride-FA, and stimulating pyruvate dehydrogenase (PD); (b)
enhanced Fat ROS, through the depletion of glutathione in adipocytes, decreases insulin sensitivity, reduces lipogenic gene
expression, and display smaller adipocytes.

5.1. H2O2 and Lipogenesis

For decades, H2O2 has been suggested to play an essential role in cellular events,
including glucose transport and uptake. More specifically, it is the second messenger of in-
sulin in adipocytes [112]. At low concentrations, it inhibits the oxidation of protein tyrosine
phosphatases, thus facilitating insulin signaling [57]. In rat adipocytes, H2O2 (0.15–0.5 mM)
was shown to stimulate glucose carbon incorporation into glyceride-FA [113]. H2O2 in-
creases lipogenesis by enhancing substrate transport and NADPH along with stimulating
pyruvate dehydrogenase. This effect is abolished in the presence of CAT [83]. The con-
centration of H2O2 is a major factor in determining whether it enhances or suppresses
lipogenesis in AT since OS has been shown to cause insulin resistance and impair lipolysis
inhibition [114,115].

5.2. FA and TAG Synthesis

ROS increase lipid synthesis by promoting glucose use to synthesize lipids. Increasing
ROS production with acetoacetate (Acoc, 20 mM) activates de novo lipogenesis in human
adipocytes by enhancing glucose conversion to FA. Acoc also induces lipolysis, but the
lipolytic rate does not exceed the rate of lipogenesis [116]. Treatment of mature 3T3-L1
adipocytes with the natural antioxidant in lyophilized cranberries decreases ROS levels by
29.3% and lipid accumulation in a dose-dependent manner. This is also accompanied by
an increase in basal lipolysis [117].

The generation of mice with genetically manipulated ROS in adipocytes allows us to
understand better the role of ROS in lipid synthesis. Through the overexpression of CAT
and SOD1, Fat ROS-eliminated mice display enhanced insulin sensitivity and AT expansion.
De novo lipogenesis in WAT from these mice is enhanced and is associated with increased
expression of FA-synthesizing genes (Acly, Scd1, Fasn, and Acaca). On the contrary, mice
with enhanced content of ROS in adipose depots, through the depletion of adipocyte
glutathione, exhibit smaller-sized adipocytes with decreased expression of lipogenic genes
(Acly, Scd1, Fasn, Acaca, and Srebf1). ROS-induced downregulation of lipogenic genes
appears to be mediated through the suppression of sterol-regulatory element-binding
transcription factor 1 transcriptional activity in rat adipocytes [116]. Similarly, octanoate,
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a medium-chain FA, inhibits lipogenesis through the decrease of key lipogenic genes
including LPL, Fasn, and diacylglycerol acyltransferase 2 in rat adipocytes [118]. This
response may be mediated through the generation of ROS. These results suggest that ROS
production in adipocytes might directly inhibit de novo lipogenesis.

6. Redox Signaling and Dairy Cows’ Lipid Mobilization

Similar to humans and other animal models, alterations in redox signaling, and the
consequent development of OS, act as a determining factor in abnormal inflammatory
responses in the AT of dairy cows, especially during the periparturient period [119–121].
This segment of the lactation cycle, spanning from 3 weeks before calving until 3 weeks
postpartum, is characterized by intense lipolysis and limited lipogenesis. As a consequence,
the AT generates vast amounts of ROS. Significant sources of ROS in periparturient cows’
AT include mitochondrial activity and the production of oxidized fatty acids, termed
oxylipids. We demonstrated that lipolysis is determinant in the biosynthesis of oxylipids
as it provides abundant substrates (unsaturated FA) for their biogenesis by enzymatic and
non-enzymatic reactions [122]. Higher maternal ROS metabolites in blood, especially in
cows with high body condition scores, are associated with greater lipolysis [123]. More-
over, enhanced energy needs for fetal growth and lactogenesis, increase mitochondrial
respiration that in turn enhances O2

•− and H2O2 production. More research is needed on
the activity of other major sources of ROS, such as peroxisomes and ER, and RNS in AT of
periparturient cows to better direct nutritional or pharmacological interventions aimed at
minimizing OS.

As AT lipolysis intensity increases postpartum, the antioxidant defenses of AT become
active. The transcription of GPx system components, including glutathione peroxidase
1 and transaldolase 1, is upregulated as well as the protein abundance of glutathione
S-transferase mu 1 [124]. Other physiological conditions associated with an intense lipoly-
tic response also trigger antioxidant defenses in dairy cows. For example, a proteomics
analysis performed in dairy cows with heat stress identified the Nrf2 OS response compo-
nents as one of the top canonical pathways upregulated compared to control cows [78]. A
comprehensive characterization of OS during the periparturient period or health events in
AT of dairy cows is currently lacking. However, there is evidence for the presence of OS
in AT of these cows as we detected isoprostanes, the gold standard OS biomarker, in AT
during the first three weeks after calving [125].

7. Conclusions and Future Prospective

To summarize, ROS/RNS regulate lipid mobilization in AT by modulating different
lipolysis and lipogenic signaling pathways. Uncontrolled production of ROS favors lipoly-
sis. However, one should not generalize about the direct effect of ROS and RNS on lipid
mobilization since each species is unique in its function. Free radical actions will depend
on the reactive species, its origin/source, concentration, and length of exposure. Likewise,
AT antioxidant mechanisms function differently as they act on distinct ROS/RNS. More
research is needed to determine the effect of specific antioxidants to optimize their clinical
use and as nutritional supplements. Moreover, direct measurement of particular ROS or
RNS, such as O2

•− and NO•, is limited and complex. Therefore improving the sensitivity
and specificity of ROS/RNS detection in AT is essential to expand our understanding of
redox signaling and OS development.
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Abbreviations

ROS Reactive oxygen species
RNS Reactive nitrogen species
AT Adipose tissue
TAG Triacylglycerol
FA Fatty acid
OS Oxidative stress
O2

•− Superoxide anion
H2O2 Hydrogen peroxide
•OH Hydroxyl radical
NO• Nitric oxide
ONOO− Peroxynitrite
NO2

• Nitrogen dioxide
NOX Nicotinamide adenine dinucleotide phosphate oxidase
NOS Nitric oxide synthases
ATGL Adipose tissue triglyceride lipase
HSL Hormone sensitive lipase
DAG Diacylglycerol
AC Adenylyl cyclase
βAR β-adrenergic receptor
PKA Protein kinase A
PKC Protein kinase C
PKG Protein kinase G
Prx Peroxiredoxin
CAT Catalase
GPx Glutathione peroxidase
SOD Superoxide dismutase
LPL Lipoprotein lipase
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