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Abstract
Background: Aluminum is considered the most limiting factor for plant productivity in acidic soils,
which cover large areas of the world's potential arable lands. The inhibition of root growth is
recognized as the primary effect of Al toxicity. To identify genes associated with Al stress and
tolerance, transcriptome analyses of four different wheat lines (2 Al-tolerant and 2 Al sensitive) that
differ in their response to Al were performed.

Results: Microarray expression profiling revealed that 83 candidate genes are associated with Al
stress and 25 are associated with tolerance. The stress-associated genes include important
enzymes such as pyruvate dehydrogenase, alternative oxidase, and galactonolactone oxidase, ABC
transporter and ascorbate oxido-reducatase. The Al tolerance-associated genes include the ALMT-
1 malate transporter, glutathione S-transferase, germin/oxalate oxidase, fructose 1,6-
bisphosphatase, cysteine-rich proteins, cytochrome P450 monooxygenase, cellulose synthase, zinc
finger transcription factor, disease resistance response protein and F-box containing domain
protein.

Conclusion: In this survey, we identified stress- and tolerance-associated genes that may be
involved in the detoxification of Al and reactive oxygen species. Alternative pathways could help
maintain the supply of important metabolites (H2O2, ascorbate, NADH, and phosphate) needed for
Al tolerance and root growth. The Al tolerance-associated genes may be key factors that regulate
these pathways.

Background
Aluminum is considered as the most limiting factor for
plant productivity in acidic soils. It is estimated that over
50% of the world's potential arable land surface is com-
posed of acid soils mostly distributed in developing coun-
tries [1,2]. Al tolerance is second to drought tolerance for
its importance as agronomic trait for worldwide crop pro-

duction. The root apex is considered the first target of Al
toxicity and the reduction in root biomass leads to poor
uptake of water and nutrients [3]. At the cellular level, Al
toxicity results from a broad spectrum of deleterious
effects caused by the Al3+ ion, which is considered the
most toxic species of Al for both plant and animal cells
under low pH conditions [4]. It was proposed that the
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toxic effect of Al can be reduced by chelating Al in the
rhizosphere with organic anions. Exudation of a variety of
organic anions such as malate, citrate, or oxalate upon
exposure to Al have been reported [2,5,6] and Al tolerance
of several species can be enhanced by increasing organic
acid biosynthesis [7-10]. Overexpression of the Al-induci-
ble malate transporter improves Al tolerance in barley
[11] while overexpression of the SbMATE protein, a puta-
tive citrate transporter, improves Al tolerance in Arabidop-
sis and wheat [12]. The release of phosphate was also
associated with Al tolerance, indicating that multiple
mechanisms are involved in wheat [13]. In Arabidopsis, the
major Al tolerance quantitative trait loci (QTL) was pro-
posed to be proximal to the AtALMT1 malate transporter
and to involve additional genes [14]. Fine mapping indi-
cated that Al tolerance is more closely associated with a
chromosome location that is distal to AtALMT by 1400 to
2100 kbp indicating that other gene products may regu-
late or complement its activity [14]. This regulation may
be controlled at the transcriptional, translational, post-
translational and enzymatic levels. The association of
organic acid release and Al tolerance is not universal as
several Al-sensitive plants were found to secrete large
amounts of organic acids [15,16]. These results suggest
that organic acid excretion, per se, is not a tolerance (or
resistance) mechanism, but a consequence of biochemical
reactions required for Al tolerance. In Arabidopsis, there
was no induction of AtALMT1 by Al3+ in the stop1 Arabi-
dopsis mutant suggesting that the STOP1 zinc finger pro-
tein is required to activate ALMT1 transcription [17]. The
ALS3 gene encodes an ABC transporter-like protein that is
required for Al tolerance/resistance and may function to
redistribute accumulated Al away from sensitive tissues to
protect growing roots from Al toxicity [4]. Several genes
up-regulated during Al exposure have been identified
using various molecular approaches [18-22]. Overexpres-
sion of some of these genes in transgenic plants has
resulted in modest improvement of Al tolerance, suggest-
ing that they alleviate part of the toxicity caused by Al [23-
27]. In rice, Al tolerance appears to be a complex multi-
genic trait that involves all twelve chromosomes. How-
ever, fewer loci were reported to be involved in other
grasses [2,28,29]. Two major loci on chromosome 4DL
and 6A, and additional loci with additive effects are
involved in Al tolerance of the wheat cultivar Atlas66
[30,31]. The availability of near-isogenic lines derived
from the cultivar Atlas66 having similar QTLs for Al toler-
ance provides a useful tool to identify genes associated
with Al stress and tolerance [30,31].

In this study, several genes associated with Al stress and
tolerance were identified using transcriptome analyses.
The putative functions of identified genes in several bio-
chemical pathways are discussed in relation to stress
responses and the maintenance of root growth.

Results
To identify genes associated with Al stress and tolerance in
wheat, a large scale expression profiling study was initi-
ated using the Affymetrix GeneChip® Wheat Genome
Array which allows the screening of 55052 transcripts. To
better discriminate between genes that are associated with
Al stress and tolerance, four different wheat lines (two Al-
tolerant and two Al-sensitive) were analyzed. In addition
to the well studied tolerant wheat Atlas66 and the sensi-
tive wheat Bounty used in our previous study [19], we
used two near isogenic lines (NILs) derived from a cross
between Atlas66 and the sensitive cultivar Century [32].
The sensitive NIL OK91G108 (named Century-S thereaf-
ter) has a high degree of genetic similarity (96.9%) with
the tolerant NIL OK91G106 (named Century-T thereaf-
ter). The major difference between tolerant and sensitive
plants is the ability to maintain growth under high Al con-
centrations. The tolerant cultivars used in this study are
able to grow for several days (50% rate of control plants
or a root growth inhibition (RGI) = 50%) in the presence
of 50 μM Al (result not shown). The sensitive cultivars are
unable to grow at this high Al concentration and an RGI
of 50% is obtained in the presence of 5 μM Al. We have
previously shown that the stress-associated genes are
expressed at comparable levels in the sensitive and toler-
ant cultivars after 24 hours when they are exposed to Al
concentrations resulting in a similar RGI [19]. The micro-
array experiments were thus designed to identify genes
that are differentially expressed after 24 hours of Al expo-
sure at concentrations resulting in 50% RGI for all lines
used.

Microarray analyses
The number of Al-regulated genes (differential expression
between Al-treated and untreated plants) is over 1000
when cultivars are analyzed separately. However, only
263 genes are differentially expressed in all four cultivars.
ANOVA analyses with stringent p values retained 83 of
these genes as highly significantly regulated (Table 1;
additional file 1). Among these genes, 20 were previously
identified as up-regulated by Al (references in Table 1).
We randomly selected 4 of the stress candidate genes for
qRT-PCR validation (see bold probeset IDs in Table 1).
Two of them (genes # 2 and 3) are strongly over-expressed
in response to Al, one (gene # 5, oxalate oxidase) was pre-
viously shown to be up-regulated by Al and the fourth one
(gene # 49) was represented by 5 different genes (genes #
49, 61, 73, 74, and 76).

As found for stress-associated genes, microarray analyses
allowed the identification of more than 1000 genes
potentially associated with Al tolerance when selection
was performed using only one pair of wheat lines (differ-
ential expression between Atlas66/Bounty or Century-T/
Century-S exposed to Al) but this number was reduced to
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Representative GenBank/
Closest TIGR TC ID

Reference/
fold changed

CD452690/TC271794 [20]/11.4
U32431.1/TC236905 8.4
CA601406/TC239727 7.9
L28009.1/TC252513 [64]/7.3
CD869243/TC250530 [19,65]/7.0
CK194385/TC265258 6.3
CD871652/TC257163 6.1
CA642218/TC236471 6.0
AL830660/TC254582 5.9
AF079526.1/TC234692 5.8
AB029934.1/TC251831 5.7
CD866293/TC268024 5.6
CK213308/TC248113 [19]/5.5
BQ170572/TC268778 5.4
CA694095/TC250582 [18]/5.4
CA670339 5.4
BQ789170/TC253690 5.3
CA669899/TC234419 [18]/5.3
M21962.1/TC255645 [19]/5.3
BJ320269/TC288239 (rice) 5.2
BQ160711/TC247326 [19]/5.2
AB055077.1/TC275845 [21]/5.1
AF079526.1/TC234692 5.1
CA599187/TC246980 5.1
AF031195.1/TC265708 [20]/5.0
CK217120/TC246830 5.0
CN011347/TC257484 5.0
BQ162077/TC249173 4.8
CA662341/TC264833 [19]/4.7
BQ168402/TC235458 4.7

CA693256/TC263060 4.7
CK196945/TC253973 [66]/4.6
BQ802968/TC253690 4.5
CN011595/TC262862 4.4
L11882.1/TC234419 [18]/4.4
CK216098/TC248224 4.3

e CA735391/TC262862 4.3
CA653051/TC260490 4.3
AY549888.1/TC234467 [18]/4.3
CN013064/TC254944 3.9
CA646724/TC254944 3.8
BQ803322/TC300996 (rice) 3.7
CA685090/TC254944 3.7
B

M
C

 G
en

om
ic

s 
20

08
, 9

:4
00

ht
tp

://
w

w
w

.b
io

m
ed

ce
nt

ra
l.c

om
/1

47
1-

21
64

/9
/4

00
Table 1: Aluminum stress-regulated genes from wheat identified by microarray profiling

Gene number/
Response typea

ProbesetIDsb Tentative annotationc

1- Stress Ta.25382.1.S1_at Putative glutathione S-transferase
2- Pathogen Ta.192.1.S1_at WCI-5
3- Unknown Ta.12921.1.S1_x_at Similar to XP_467711.1
4- Stress Ta.5024.1.S1_x_at Wali6
5- Stress Ta.5557.1.S1_x_at Putative germin/oxalate oxidase
6- Unknown Ta.12671.1.S1_a_at Moderately similar to NP_909983.1
7- Unknown Ta.8907.1.S1_at Weakly similar to XP_481678.1
8- Pathogen Ta.14071.2.S1_a_at Putative nodulin MtN21
9- Unknown Ta.13875.1.S1_at Putative cyclin-dependent kinase 5 activator 2 precursor
10- Pathogen Ta.231.1.S1_x_at Secretory protein (WAS-2)
11- Pathogen Ta.2784.1.A1_at Chi 1 mRNA for chitinase 1
12- Unknown Ta.25140.1.S1_at Moderately similar to XP_477866.1 integral membrane protein-like
13- Stress Ta.29814.1.S1_at Class III peroxidase 15 precursor
14- Signalling Ta.11671.1.S1_at Putative heat shock transcription factor
15- Stress Ta.21267.1.S1_s_at Wali3
16- Unknown TaAffx.7032.1.S1_at Unknown
17- Unknown Ta.14129.1.S1_at Weakly similar to NP_181673.1 proline-rich family protein
18- Stress TaAffx.27822.1.S1_at Wali5
19- Stress Ta.22673.1.S1_s_at Germin GF-2.8 precursor; oxalate oxidase
20- Metabolism TaAffx.118543.1.A1_at Putative phragmoplastin (Oryza sativa)
21- Stress Ta.962.1.A1_at Class III peroxidase 15 precursor
22- Stress Ta.2793.1.S1_at Tamdr1 mRNA; multidrug resistance protein 1 (ABC transporter)
23- Pathogen Ta.231.1.S1_at Secretory protein (WAS-2)
24- Stress Ta.28233.1.S1_at Putative iron/ascorbate-dependent oxidoreductase
25- Stress Ta.18203.1.S1_at Blue copper-binding protein
26- Unknown Ta.975.2.S1_at Moderately similar to XP_475934.1
27- Unknown Ta.30765.1.S1_at Weakly similar to XP_479604.1
28- Pathogen Ta.8574.2.A1_at Putative xylanase inhibitor TAXI-III
29- Stress Ta.24553.1.A1_at Oxalate oxidase precursor (OXO1 gene)
30- Stress Ta.11025.1.A1_at FAD-binding domain-containing protein; putative arabinono-lactone oxidase (D-

erythroascorbate)
31- Unknown Ta.5824.1.S1_s_at Moderately similar to XP_467711.1
32- Metabolism Ta.653.1.S1_at Putative xyloglucan endo-1,4-beta-D-glucanase
33- Unknown TaAffx.42638.1.S1_at Unknown
34- Pathogen/signalling Ta.4479.1.S1_at Putative disease resistance protein; leucine-rich repeat family protein
35- Stress Ta.21350.1.S1_x_at Wali5
36- Stress Ta.27945.1.S1_x_at ABA responsive protein; putative glucosyltransferases 

(pfam domain) (cell wall metabolism)
37- Pathogen/signalling Ta.4479.2.S1_a_at Putative disease resistance protein; leucine-rich repeat family protein/putative protein kinas
38- Unknown Ta.15199.1.S1_at Weakly similar to NP_911238.1
39- Stress Ta.30711.1.S1_x_at Wali5; putative proteinase inhibitor (wrsi5-1)
40- Signalling Ta.30908.1.S1_at Putative EF-hand Ca2+-binding protein CCD1
41- Signalling Ta.19062.1.S1_at Putative EF-hand Ca2+-binding protein CCD1
42- Pathogen TaAffx.15836.1.S1_at Harpin induced protein pfam domain, hypersensitive response
43- Signalling TaAffx.110751.1.S1_s_at Putative EF-hand Ca2+-binding protein CCD1

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CD452690
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U32431.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA601406
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=L28009.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CD869243
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CK194385
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CD871652
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA642218
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AL830660
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF079526.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB029934.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CD866293
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CK213308
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BQ170572
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA694095
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA670339
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BQ789170
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA669899
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M21962.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BJ320269
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BQ160711
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB055077.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF079526.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA599187
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF031195.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CK217120
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CN011347
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BQ162077
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA662341
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BQ168402
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA693256
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CK196945
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BQ802968
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CN011595
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=L11882.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CK216098
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA735391
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA653051
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY549888.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CN013064
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA646724
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BQ803322
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA685090
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BJ311153/TC261365 3.7
L11881.1/TC268347 [18]/3.6
CK199568/TC234741 3.5
CK212675/TC251862 3.5
BE515762/TC255181 3.4
CA659319/TC234641 3.4
CK200510/TC269114 3.4
CA667895/TC235667 3.4
BQ280458/TC270357 3.4

CK213044/TC241105 3.4
CD876309/TC260557 3.4
CD876309/TC260557 3.4
CA605778/TC252436 3.4
BQ838103/TC258780 3.3
CK199589/TC249039 [19]/3.3
CA746306/TC314548 (rice) 3.2
BQ162624/TC248336 3.2
CA659319/TC234641 3.1
CD492089/TC236265 3.1
CA609878/TC238909 3.1
CA664383/TC263848 3.1
CD903633/TC249785 3.0
CA685090/TC254944 3.0
CK213044/TC241105 2.9
CK208205/TC265940 2.9
CA705730/TC247679 2.8
AY064481.1/TC266491 [20]/2.8
CK198324/TC264928 2.7
CA609877/TC267601 [67]/2.7
CK200130/TC234641 2.7
CK164089/TC234641 2.7
BJ269896/TC243760 2.6
CK200130/TC234641 2.6
CA601651/TC234741 2.6
BJ306387/TC263663 2.5
CA744010/TC263663 2.4
CA663409/TC269433 2.3
CD490901/TC241688 0.3
CK215257/TC251022 0.2
CA614519/TC247557 [67]/0.2
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44- Stress Ta.6797.1.A1_at Putative S-adenosylmethionine decarboxylase 2
45- Stress Ta.105.1.S1_at Wali3
46- Metabolism Ta.4199.1.S1_a_at Putative arabinoxylan arabinofuranohydrolase
47- Unknown Ta.4343.1.S1_x_at Weakly similar to NP_196028.2
48- Unknown Ta.30942.1.S1_a_at Unknown
49- Pathogen Ta.392.2.S1_at B2 protein; DCD (development and cell death) Interpro domain IPR013989
50- Signalling TaAffx.128621.1.S1_at Putative EF-hand Ca2+-binding protein; calmodulin-like
51- Metabolism Ta.6099.1.S1_at Nitropropane dioxygenase-like (pfam domain)
52- Pathogen Ta.13701.1.S1_at Benzoyl coenzyme A: benzyl alcohol benzoyl transferase; Putative hypersensitivity-related 

(hsr)protein
53- Unknown TaAffx.10772.1.A1_at Unknown
54- Signalling Ta.15067.1.S1_at Putative EF-hand Ca2+-binding protein CCD1
55- Signalling Ta.15067.1.S1_x_at Putative EF-hand Ca2+-binding protein CCD1
56- Unknown Ta.24654.1.S1_at Unknown
57- Unknown Ta.14221.1.S1_s_at Weakly similar to XP_470656.1
58- Unknown Ta.21307.1.S1_x_at Putative peroxidase
59- Unknown TaAffx.22704.1.S1_at Putative GABA-specific permease
60- Signalling Ta.8914.1.S1_at Putative serine/threonine protein kinase
61- Pathogen Ta.392.2.S1_x_at B2 protein; DCD (development and cell death) Interpro domain IPR013989
62- Metabolism Ta.21166.1.S1_at Putative shikimate kinase chloroplast precursor
63- Signalling TaAffx.10874.1.S1_at Putative Receptor protein kinase-like protein
64- Unknown TaAffx.28156.1.S1_at Unknown
65- Metabolism Ta.29951.1.S1_at Putative pyruvate dehydrogenase E1 alpha subunit, mitochondrial
66- Signalling TaAffx.110751.1.S1_x_at Putative EF-hand Ca2+-binding protein CCD1
67- Unknown TaAffx.10772.1.A1_s_at Unknown
68- Unknown Ta.9255.1.S1_at Weakly similar to NP_523812.1; Leucine-rich protein
69- Unknown Ta.12565.3.S1_a_at Putative ubiquitin-associated (UBA) protein
70- Stress Ta.24150.1.S1_at Glutathione-S-transferase 19E50
71- Pathogen Ta.13785.1.S1_at Xylanase Inhibitor Protein (Xip-I)
72- Metabolism Ta.10549.1.A1_x_at Alternative oxidase 3
73- Pathogen Ta.392.1.S1_at B2 protein; DCD (development and cell death) Interpro domain IPR013989
74- Pathogen Ta.392.3.A1_s_at B2 protein; DCD (development and cell death) Interpro domain IPR013989
75- Unknown Ta.4674.1.S1_s_at Unknown
76- Pathogen Ta.392.1.S1_x_at B2 protein; DCD (development and cell death) Interpro domain IPR013989
77- Metabolism Ta.4199.2.S1_at Putative arabinoxylan arabinofuranohydrolase
78- Unknown Ta.28879.1.S1_at Protein phosphatase type 2C
79- Unknown Ta.28879.2.S1_x_at Protein phosphatase type 2C
80- Unknown Ta.25514.1.S1_s_at Polygalacturonase activity (GO:0004650)
81- Unknown Ta.12879.1.S1_at Moderately similar to XP_463452.1
82- Pathogen Ta.7963.2.S1_x_at Putative disease resistance response protein
83- Stress Ta.22968.1.S1_at Putative lipid transfer protein

a: The response type is based on previous publications.
b: According to Affymetrix Gene Chip® wheat genome array description. The probesetIDs are presented in decreasing order of differential expr
regulated). The last 3 entries are down-regulated genes. For more details on gene expression level, see Additional file 1. Genes subsequently test
c: Annotations were made based on Affymetrix gene annotation complemented with BLAST results using the public representative ID provided w
array.
d: The fold change represents the mean ratio of gene expression in all cultivars exposed to Al (50% RGI)/the controls not treated with Al.

Table 1: Aluminum stress-regulated genes from wheat identified by microarray profiling (Continued)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BJ311153
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=L11881.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CK199568
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CK212675
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BE515762
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA659319
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CK200510
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CA667895
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BQ280458
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69 common genes when both pairs were considered. This
result suggests that a large number of genes are associated
with cultivar specific responses and only a limited number
of them are associated with Al tolerance. This list was
reduced to 25 genes using ANOVA analyses with stringent
p values (Table 2; additional file 2). These genes were sub-
divided into constitutively or differentially expressed
genes based on the difference in expression between Al-
treated and non-treated control plants. Table 2A lists the
6 constitutively expressed genes classified in decreasing
order of expression (average fold expression of the two
tolerant compared to the two sensitive cultivars). The
most strongly expressed gene is the previously identified
Al malate transporter ALMT-1 [33]. We selected two of
these genes for qRT-PCR validation (gene # 84 encodes
ALMT-1 and is more expressed in tolerant cultivars while
gene # 89 encodes a protein containing an F-box domain
and is more expressed in sensitive cultivars; Table 2A).
Table 2B lists the 19 genes that are regulated by Al and dif-
ferentially expressed between the two tolerant and the two
sensitive cultivars. Four of these genes were selected for
validation by qRT-PCR (see bold probeset IDs in Table
2B).

Quantitative RT-PCR validation of microarray data
We selected ten genes for validation of the microarray data
by qRT-PCR (4 among the stress-associated candidates
and 6 among the tolerance-associated candidates, as indi-
cated above). Four different Al concentrations (0, 5, 50
and 250 μM Al) were used to determine the effect on gene
expression. Four new replicates of each Al exposure condi-
tions using all wheat lines were prepared. The values indi-
cated in each histogram column represent the expression
levels relative to the first column (cultivar Atlas66 not
exposed to Al) (Fig. 1A–J). The level of expression of the
tested genes under control conditions is generally similar
in the tolerant and sensitive cultivars.

Genes were classified as associated with Al tolerance when
there was a significant difference in expression in both tol-
erant cultivars (Atlas66 and Century-T exposed to 50 μM
Al) compared to their respective sensitive counterparts
(Bounty and Century-S exposed to 5 μM Al). These condi-
tions allow the detection of either 1) Al-regulated genes
that may be expressed differentially in tolerant and sensi-
tive lines, or 2) genes not regulated by Al (constitutively
expressed) but showing constitutive difference in expres-
sion between tolerant and sensitive lines. Once classified
as associated with stress or tolerance, gene regulation by
Al was confirmed by comparing the Al-treated and non-
treated controls. qRT-PCR, analyses confirmed that three
(Ta.192.1.S1_at, Ta.12921.1.S1_x_at and Ta.392.2.S1_at,
Fig. 1A–C) of the four stress candidate genes are stress-
associated while the 4th gene (Ta.5557.1.S1_x_at, Fig. 1D)
is more closely associated with Al tolerance. Among the

six selected tolerance candidates genes, four were con-
firmed as associated with Al tolerance (Fig. 1E–H:
Ta.30659.1.S1_at, TaAffx.16664.1.A1_at,
Ta23271.1.S1_s_at, Ta.8545.1.S1_x_at) while the last two
genes (Ta.21314.1.S1_x_at and Ta.24632.1.S1_at, Fig. 1I–
J), were not clearly linked to either stress or tolerance.

The correlation between gene expression data obtained by
microarray and qRT-PCR is presented in Fig. 2. Al-regu-
lated genes are shown in Fig. 2A for the cultivars Atlas66
and Bounty. The fold change in gene expression (Al-
treated VS control) obtained using microarray experi-
ments compared to the fold change obtained using qRT-
PCR gives a correlation coefficient of 0.61. A similar anal-
ysis was performed to compare the change in gene expres-
sion between the tolerant and sensitive cultivars (Atlas66
50 μM Al/Bounty 5 μM Al and Century-T 50 μM Al/Cen-
tury-S 5 μM Al) calculated from the microarray or qRT-
PCR data (Fig. 2B). In this case, a correlation coefficient of
0.77 was obtained between the two experimental meth-
ods. These correlation coefficients are very good consider-
ing that microarray data are semi-quantitative and subject
to error for multigene families where different transcripts
could hybridize to similar probes on the array. qRT-PCR
data are more specific since the amplification of single
transcripts are confirmed by melting curves and gel analy-
ses. The Ta.5557.1.S1_x_at was initially selected as a
stress-associated gene by microarray profiling (gene no 5
in Table 1) while it was reclassified as associated with Al
tolerance using qRT-PCR (Fig. 1D). This may be related to
the presence of multiple oxalate oxidase genes in wheat.
Based on these results, we conclude that most of the genes
identified in Table 1 and Table 2 are associated with Al
stress and tolerance. However, real-time PCR analyses will
be required to validate the other genes that were identified
using microarrays.

Discussion
Several Al-associated QTLs with major and minor contri-
butions were reported, indicating that Al tolerance is a
multigenic trait. A large scale transcriptome analysis was
initiated to identify some gene components of this multi-
genic trait. The genes that are differentially expressed
between tolerant and sensitive cultivars are of particular
interest since the tolerant cultivars are exposed to Al con-
centrations that are ten times higher, yet they are still
growing at the same rate as the sensitive cultivars. This
design allows the distinction of genes that are regulated in
response to stress from those that are associated with Al
tolerance. Transcriptome analyses allowed the identifica-
tion of several genes with known function that could
improve our understanding of the biochemical processes
and pathways involved in Al stress and tolerance. As indi-
cated in the result section, 20 of the 83 genes associated
with the Al stress response were identified in previous
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Table 2: Genes associated with Al tolerance in wheat, as identified by microarray profiling

A: Constitutively expressed genes associated with Al tolerance.

Gene number 
response typea

Probeset IDsb Annotationc Representative GenBank/
Closest TIGR TC ID

Reference/fold changed

84- Stressa Ta.30659.1.S1_at Almt1-1 mRNA for aluminum-activated
malate transporter

AB081803.1/TC275842 [33]/5.4

85- Unknown TaAffx.11437.1.S1_at Unknown CD916477/TC237550 3.1
86- Unknown Ta.6595.1.S1_at Weak similarity to pinin CA680476/TC239245 0.4
87- Metabolism Ta.9190.2.S1_at Putative Anaphase promoting

complex subunit 10
BJ321280/TC237861 0.3

88- Unknown Ta.7249.1.S1_at Unknown CA713200/TC238862 0.2
89- Signalling TaAffx.16664.1.A1_at F-box containing domain (IPR001810) and

F-Box associated domain (IPR006527);
Ubiquitination

CK205523/TC255586 0.2

B: Up-regulated genes associated with Al tolerance.

Response Probeset IDsa Annotationa Representative GenBank/
Closest TIGR TC ID

Reference/fold
changed

90- Unknown Ta.23271.1.S1_s_at unknown CA680274/TC249675 7.6
91- Stress Ta.8545.1.S1_at Glutathione S-transferase (GST) BQ162041/TC259746 5.7
92- Pathogen Ta.21314.1.S1_x_at Similar to disease resistance response protein CA669694/TC266782 5.2
93- Unknown TaAffx.26343.1.S1_at Unknown CA689752/TC257163 4.9
94- Metabolism Ta.8447.1.S1_a_at Putative cytochrome P450 monooxygenase CA669038/TC236876 [67]/4
95- Pathogen Ta.24632.1.S1_at Pathogen response serine-type endopeptidase

inhibitor activity; putative protease inhibitor
BE405372/TC248320 4

96- Stress Ta.3118.1.S1_at Glutathione S-transferase BE515437/TC238392 3.2
97- Unknown TaAffx.86317.1.S1_at Yippee-like protein IPR004910; role in

cell division
CA611222/TC268232 3.2

98- Pathogen Ta.24632.1.S1_x_at Pathogen response serine-type endopeptidase
inhibitor activity; putative protease inhibitor

BE405372/TC248320 3.1

99- Unknown Ta.10326.1.S1_at Unknown BJ244180/TC238059 3.1
100- Unknown Ta.14224.1.S1_at Weak similarity to Protamine 1B or

Zinc Knuckle domain
CK214385/TC252792 3.1

101- Metabolism Ta.28890.1.A1_s_at Fructose-1,6-bisphosphatase isozyme 2
(F1,6-BP)

CA686703/TC235271 2.9

102- Pathogen Ta.24632.1.S1_a_at Pathogen response serine-type endopeptidase
inhibitor activity; putative protease inhibitor

BE405372/TC248320 2.9

103- Unknown Ta.13302.1.S1_at Unknown BQ801428/TC258348 2.5
104- Unknown Ta.23097.1.S1_x_at Weak similarity to Adhesive/

proline-rich-like protein
CA699090/TC241038 2.4

105- Unknown Ta.29761.1.A1_at Similar to At2g31940 AJ609795/TC243334 2.4
106- Metabolism Ta.4084.1.S1_at Putative cellulose synthase-like protein

OsCslE1 (cell wall metabolism)
BJ264002/TC253821 2.4

107- Signalling TaAffx.12876.1.S1_at Putative C2H2 type zinc finger
transcription factor

BJ220837/TC275754 2.1

108- Pathogen Ta.7883.1.S1_x_at Putative disease resistance response protein CK212322/TC267223 0.2

a: The gene are numbered consecutively to Table 1 to simplify presentation in the text and Figure 3. The response type is based on previous 
publications.
b: According to Affymetrix Gene Chip® wheat genome array description. The probesetIDs are presented in decreasing order of differential 
expression (most over-expressed to most down-regulated). The last 4 entries in Table 2A are more expressed in sensitive cultivars. The last entry 
in Table 2B is a down-regulated gene in the tolerant cultivars. For more details on gene expression level, see Additional file 2. Genes subsequently 
tested by qRT PCR are in bold.
c: Annotations were made based on Affymetrix gene annotation complemented with BLAST results using the public representative ID provided 
with the Affymetrix Gene Chip® wheat genome array.
d: The fold change represents the mean ratio of gene expression in the two tolerant cultivar/the two sensitive cultivar (50% RGI).
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studies indicating that the genes associated with Al stress
are appropriately identified using this approach.

Signal transduction
We have previously shown that Al inhibits a redox reac-
tion associated with root growth and Al tolerance [34].
The perturbation of this redox reaction by Al could lead to

the accumulation of different reactive oxygen species
which can stimulate a redox signalling pathway and
increase the expression of antioxidant enzymes [35]. The
accumulation of reactive oxygen species during Al expo-
sure was observed in maize, soybean and wheat [36-38].
Al was also shown to affect mitochondrial functions lead-
ing to ROS production [39]. Table 1 shows that the genes
encoding WCI-5 (gene # 2), WAS-2 (genes # 10 and 23)
and the EF-hand Ca2+-binding protein (genes # 40, 41, 43,
54 and 55) are up-regulated during Al exposure. In Arabi-
dopsis, the WCI-5 and WAS-2 genes were shown to be
induced via a MAP kinase pathway associated with the
pathogen response [40]. In wheat seedlings, the WCI-5

Quantitative Real-Time PCR analysis of candidate genesFigure 1
Quantitative Real-Time PCR analysis of candidate 
genes. Control non-treated plants were exposed to a solu-
tion of 1 mM CaCl2, pH 4.15 for 24 hours while Al treatment 
was performed in the same solution containing 5, 50 or 250 
μM Al. qRT-PCR was performed on four biological repli-
cates. RNA was extracted, reverse-transcribed and the 
expression of genes identified in Tables 1 and 2 was meas-
ured using qRT-PCR. The CT values were normalized using 
the 18S RNA (note that a lower CT means increased expres-
sion and a CT difference of 1 represents a two-fold difference 
in expression). A statistical difference between each sample 
and the expression observed in Atlas66 not exposed to Al is 
indicated by an asterisk in the histogram columns (*: p < .05; 
**: p < .01; ***: p < .001). A statistical difference between tol-
erant cultivars exposed to 50 μM Al and their sensitive coun-
terpart exposed to 5 μM Al is indicated by an "a" after the 
asterisks (a: p < .05; aa: p < .01; aaa: p < .001).

Correlation of qRT-PCR and microarrray dataFigure 2
Correlation of qRT-PCR and microarrray data. A – 
The ratio of gene expression (log2 scale) in plants treated 
with Al and the control (not treated with Al) was calculated 
in the microarray experiments and plotted against the ratio 
calculated in the qRT-PCR analyses. B – The ratio of gene 
expression (log2 scale) in tolerant and sensitive cultivars 
exposed to Al giving the same RGI (Atlas66/Bounty or Cen-
tury-T/Century-S) was calculated in the microarray experi-
ments and plotted against the ratio calculated in the qRT-
PCR analyses.
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gene was shown to be induced by pathogen infection [41]
and mediated by the EF-hand Ca2+-binding protein CCD1
[42]. These results suggest that a MAP kinase pathway is
stimulated by Al in wheat roots as observed in cell suspen-
sion cultures of Coffea arabica L. [43]. Three different pro-
tein kinase-like genes (genes # 37, 60, 63) are up-
regulated during Al exposure suggesting that different sig-
nal transduction pathways may be activated. We identi-
fied two other potential signalling genes associated with
Al tolerance. The first one encodes a putative C2H2 zinc
finger transcription factor (gene # 107) that has a 33 aa
region sharing 50% identity with the STOP1 C2H2 zinc
finger protein required for Al3+ induction of ALMT1 in
Arabidopsis [17]. The other gene encodes an F-box contain-
ing protein (gene # 89), which is member of a family
known for its involvement in the controlled degradation
of target proteins. An Arabidopsis F-box protein homolo-
gous to a bacterial redox sensor was proposed to be
involved in the cell wall receptor-like associated kinase
(WAK1) signalling pathway [44]. Since WAK1 was shown
to be transiently overexpressed during Al exposure and
associated with Al tolerance [27], the reduced expression
of an F-Box protein may stimulate this pathway by allow-
ing a stronger expression of WAK1 in tolerant cultivars.
The TIR1 gene is another F-Box protein in Arabidopsis that
interacts with different proteins in the SCFTIR1 complex to
mediate responses to auxin [45,46]. These two genes
(C2H2 zinc finger and F-Box) require further characteriza-
tion and functional analysis to understand their roles in
the response to Al.

Management of Al-associated stresses and maintenance of 
energy supply
The identification of stress-regulated genes provide new
tools to reduce Al stress, as shown by the ectopic overex-
pression of some Al stress-regulated genes [23-26].
Among the 83 candidate genes regulated by Al stress
(Table 1), several could play a role in alleviating phos-
phate deficiency and provide energy to fight oxidative
stress. Nutrient deficiency, and especially phosphate,
occurs in the presence of Al due to the precipitation of Al-
phosphate [47]. Under phosphate deficiency, several
pathways are hindered due to the reduced availability of
ATP and related nucleoside phosphates. These imbalances
lead to the induction of alternative pathways of glycolysis
to maintain energy and carbon skeletons for key meta-
bolic processes [48]. The fructose-1,6-bisphosphatase
(gene # 101) associated with Al tolerance (Table 2) is nor-
mally inhibited by phosphate but is stimulated under low
phosphate availability (Fig. 3, Box 3). This activity pro-
duces fructose-6-P and liberates Pi. The glycolytic alterna-
tive enzyme pyrophosphate phosphofructokinase is
stimulated by low phosphate and can resynthesise fruc-
tose-1,6-bisphosphate and liberate more Pi. This appar-
ently futile cycle is useful to conserve ATP and recycle Pi
that is readily available in the pyrophosphate molecule

[48]. Furthermore, since sucrose is the most abundant
photosynthate available in the phloem sap, fructose
(from sucrose) is readily available and will enter the glyc-
olytic pathway at the level of fructose-6-P thereby main-
taining a stable supply of this metabolite. The high
availability of fructose-6-P (and other hexose-P) can pro-
vide sufficient metabolites to support both the pentose
phosphate pathway and organic acid synthesis (Fig. 3, Box
3). Al-tolerant rye was found to maintain a higher content
of glucose-6-phosphate than Al-sensitive wheat in
response to Al exposure [49]. This metabolite is an impor-
tant precursor of the pentose phosphate pathway (with
glucose-6-phosphate dehydrogenase (G6PDH) as the first
enzyme) and is an important source of NADPH produc-
tion. The importance of energy metabolism in modulat-
ing Al tolerance is exemplified in Pseudomonas fluorescens
where G6PDH was shown to play a pivotal role in
enhancing NADPH production and protecting against
ROS toxicity [50]. The up-regulation of pyruvate dehydro-
genase (gene # 65) and alternative oxidase (gene # 72)
supports the involvement of an alternative pathway to
maintain energy production (Fig. 3, Box 3) [48]. Members
of the alternative oxidase gene family were found to be
highly responsive to oxidative stress and to reduce mito-
chondrial ROS production while maintaining NADH sup-
ply [51,52]. In Al tolerant plants, a higher NADH supply
(and NADPH through the pentose phosphate pathway)
would provide reducing power to regenerate ascorbate
and glutathione to fight oxidative stress (Fig. 3, Box 3).

Exudation of organic acids has received much attention as
an Al tolerance (resistance) mechanism. The secretion of
malate or other organic acids (citrate, oxalate) can chelate
Al in the rhizosphere and has been associated with Al tol-
erance in several species [7-10,33]. Enzymes involved in
malate synthesis (PEP carboxylase and malate dehydroge-
nase, Fig. 3 Box 3) were shown to be stimulated during Al
stress [53,54]. These enzymes are also stimulated during
Pi deficiency where malate is known to mobilize external
Pi [48]. These two actions are complementary since the
chelation of Al will also free Pi from precipitated Al-phos-
phate in the rhizosphere. Some of the genes identified in
this study may complement the ALMT1 malate trans-
porter to improve Al exclusion. An interesting possibility
is that organic acids, such as malate or oxalate, could form
intracellular Al-bound complexes that are transported
outside the cell (Fig. 3, Box 3). It is possible that the
ALMT1 malate transporter (gene # 84) associated with Al
tolerance can transport free malate but that it would
require a co-factor to transport the larger Al-bound malate
complex. Oxalate is another organic acid known to be a
strong Al chelator associated with Al tolerance in Taro
[55]. This organic acid is another potential molecule that
could form an Al complex transported out of the cell by an
anion transporter such as ALMT1 or the ABC transporter
(gene # 22) that is up-regulated during Al exposure.
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Putative gene function in ascorbate homeostasis and Al toleranceFigure 3
Putative gene function in ascorbate homeostasis and Al tolerance. Al tolerance-associated genes are represented by 
white numbers* in the dark blue boxes (numbers in black are other genes of the same type associated with Al stress). Genes 
associated with Al stress responses are in black boxes. Box 1) The normal process of cell wall loosening is promoted by the 
production of hydroxyl radicals (•OH) to break glycosidic linkages (sugar-sugar). The hydroxyl radicals are produced non-enzy-
matically by the Fenton chemistry in the presence of Cu2+, H2O2 and ascorbate which serves as electron donor (the three mol-
ecules are in grey boxes). In the apoplasm, ascorbate (ASC) is transformed to monodehydroascorbate (MDHA + e-) and a free 
electron is used to reduce the Cu2+ to Cu+ (needed for the Fenton reaction). An ascorbate oxido-reductase (ASC ox-red), or 
other plasma membrane transporters may be involved in the regeneration of apoplasmic ASC. Cytoplasmic ASC and NADH 
are needed to maintain the level of ASC in both compartments. Al (red box) was shown to block a redox reaction (electron 
transfer) [34] suggesting that it interferes either with the electron transfer from the cytoplasm to ASC (regeneration) or from 
ascorbate to Cu2+ (utilization). The diverted electron may generate different ROS molecules that will cause oxidative stress 
and trigger a redox response and the induction of various genes. Box 2) A slower regeneration of ASC could lead to its deg-
radation and to the accumulation of oxalate. The induction of oxalate oxidase can use this oxalate to maintain the production 
of H2O2 and support the Fenton reaction. If the apoplasmic ASC concentration decreases too much, H2O2 may not be used 
efficiently in the cell wall loosening process and will accumulate. This ROS can cause the oxidation of several targets including 
different cysteine-rich proteins associated with Al tolerance. GSTs associated with Al stress or tolerance can participate in the 
protection or repair of oxidized targets. Box 3) Mobilisation of phloem sugars and reduction in phosphate availability (Low Pi 
in green) caused by Al can also participate in gene regulation and stimulate alternative pathways to increase the availability of 
important metabolite precursors such as NADPH (in light grey) through the pentose-P pathway (G6P: Glucose-6 phosphate; 
G6PDH: glucose 6 phosphate dehydrogenase); and phosphate (F1,6BP, Fructose 1,6 bisphosphatase; PPi PFK: pyrophosphos-
phate dependent phosphofructokinase). Other alternative pathways are activated to maintain the Krebs cycle (PDH: pyruvate 
dehydrogenase, AOX: alternative oxidase) and to stimulate malate production (PEPC: phosphoenol pyruvate carboxylase; 
MDH: malate dehydrogenase). UDP-glucose can be used to generate ASC and NADH (arabinonolactone oxidase). Other 
genes such as ALMT1 or ABC transporters may be involved in Al chelation and transport to exclude Al. *: the numbers repre-
sent genes identified in this work; see Table 1 and Table 2. o: genes, enzyme activities or metabolite changes identified in other 
studies. For references, see text.
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Several proteins encoded by genes that are up-regulated
during Al exposure have a high content of cysteine (Fig. 3,
Box 2). The high amount of thiol groups in these proteins
may help protect enzymes containing thiol sensitive sites
by providing new targets of oxidation. The presence of 11
cysteine residues in the small protein (128 aa) encoded by
gene # 90 may explain why this gene is associated with Al
tolerance (Fig. 3, Box 2). The up-regulation of four differ-
ent GSTs (genes # 1, 70, 91, 96), containing cysteine resi-
dues in their active sites, indicate that these enzyme may
be inactivated by oxidative stress. The synthesis of new
enzyme molecules during Al exposure may partially com-
pensate for GST inactivation. On the other hand, two of
the four GSTs are associated with Al tolerance (genes # 91,
96). These GSTs may help to reduce oxidative stress as sug-
gested for parB, a tobacco GST isoform [25].

Maintenance of root growth
The ability to maintain root elongation under Al stress
may require complementary mechanisms such as Al
sequestering (outside the cell, or Al exclusion) and
increased expression of genes involved in detoxification
or root growth. We identified several genes that could play
a role in maintaining root growth. Different enzymes such
as sugar hydrolases and transferases may participate in cell
wall remodelling/loosening in the elongation zone (genes
# 32, 36, 46, 77). During the cell wall loosening process,
ascorbate provides an electron to reduce Cu2+ to Cu+ (Fig.
3, Box 1) [56,57], which participates in the Fenton reac-
tion with H2O2 to ultimately produce •OH radicals. The
non-enzymatic cleavage of cell wall polysaccharides thus
requires the presence of three basic molecules: ascorbate,
Cu+2 and H2O2 (grey boxes in Fig. 3) [56,57]. The enzy-
matic reactions required to maintain/regenerate ascorbate
and provide H2O2 are essential components to maintain
root growth and are likely associated with Al tolerance.
The redox activity previously shown to be associated with
Al tolerance [34] may represent the transfer of electrons
required to regenerate the apoplasmic ascorbate. The great
avidity of Al3+ for electrons (Fig. 3, Box 1) could prevent
the regeneration of apoplasmic ascorbate and inhibit root
growth. Oxalate oxidase may help maintain the produc-
tion of H2O2 for the Fenton reaction (Fig. 3). However,
H2O2 could become a substrate for cell wall peroxidases
which are not inhibited when ascorbate levels are reduced
[58]. The inhibition of peroxidase activity was associated
with Al tolerance [59,60] and may help maintain H2O2
levels needed for the non-enzymatic wall loosening proc-
ess. In our study, three peroxidases (genes # 13, 21, 58)
are up-regulated and could be related to the reduced
growth rate under our experimental conditions. Tran-
scripts encoding blue copper binding proteins (BCBP)
(gene # 25) is possibly up-regulated to stimulate the Cu2+-
dependent Fenton reaction needed for cell wall loosening.
When apoplasmic ascorbate loses an electron, it is trans-
formed into monodehydroascorbate/dehydroascorbate
(MDHA/DHA) and new electrons are needed to regener-

ate ascorbate and avoid degradation into oxalate (Fig. 3,
Box 1). The up-regulation of an ascorbate dependent oxi-
doreductase (gene # 24) could be associated with the
regeneration of apoplasmic ascorbate (Fig. 3, Box 3).
Impaired ascorbate metabolism was proposed to be
involved in the reduction of root growth in squash roots
exposed to Al [38] while a higher level of ascorbate and
gluthathione was shown to be associated with Al toler-
ance in tobacco [61]. Furthermore, feeding with D-glu-
cose or L-galactono-γ-lactone to enhance ascorbate levels
was able to improve Al tolerance in rice [62]. These results
indicate that maintaining a high ascorbate level is an
essential aspect of Al tolerance. Gene # 30 annotated as an
arabinonolactone oxidase is homologous to galactonolac-
tone oxidase involved in ascorbate synthesis (Fig. 3, Box
3). This last gene participates in the regeneration of cyto-
plasmic ascorbate while providing additional NADH
(from glucose, Fig. 3, Box 3). The arabinonolactone oxi-
dase is known to synthesize erythroascorbate in yeast.
Interestingly, the overexpression of the yeast arabinonol-
actone oxidase enzyme in rice improves Al tolerance [62].

Conclusion
Genome wide expression profiling and qRT-PCR using
different wheat cultivars subjected to controlled stress
treatments allowed the identification of several new genes
associated with Al stress and tolerance. Several genes asso-
ciated with Al tolerance could play an important role in
maintaining the energy balance and Al exclusion. The
maintenance of ascorbate homeostasis is proposed to be
a key element to sustain elongation growth. The availabil-
ity of genes associated with Al tolerance provides new
tools for QTL analyses and for breeding programs aimed
at improving Al tolerance of cultivated crops.

Methods
Plant material, growth and Al exposure conditions
Two wheat cultivars with a high tolerance to Al (Triticum aes-
tivum L. cv. Atlas66 and the near isogenic line OK91G106,
named Century-T in this work; [32]) and two wheat culti-
vars with low tolerance to Al (T. aestivum L. cv. Bounty and
the near isogenic line OK91G108, named Century-S in this
work; [32]) were grown as previously described, and treated
under conditions where Al remains mostly in the Al3+ form
[19]. To reduce pH variations and ensure that Al speciation
was stable throughout the experiment, at least 100 ml of
solution was used for each plant. The root growth inhibition
(RGI) is expressed as 100 × [1-(root growth of Al-treated
seedling divided by the root growth of control seedlings)].
Replicate experiments were performed on different days
with one series of Al concentration per day per cultivar in
order to rapidly collect root tips.

RNA isolation and microarray profiling
Root tips (5–10 mm) were isolated after 24 hours of expo-
sure to Al and frozen on dry ice. Total RNA was isolated
from the root tips (5 mm long) of 50 plants collected from
Page 10 of 13
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the various genotypes using the RNeasy Plant Mini Kit
(Qiagen). The RNA quality was assessed on agarose gels
and with the Bioanalyzer 2100 (Agilent). Microarray pro-
filing was performed according to Affymetrix protocols at
the Functional Genomics Platform of McGill University
and Génome Québec Innovation Centre using the
Affymetrix GeneChip® Wheat Genome Array. The microar-
ray results were deposited in the database of ArrayExpress
under the accession number E-TABM-454. Three biologi-
cal replicates of the different lines were treated with Al
concentrations resulting in 50% RGI: 50 μM for the toler-
ant cultivars Atlas66 and Century-T and 5 μM for the sen-
sitive cultivars Bounty and Century-S. The wheat NILs
Century-T and Century-S were used only to prepare the Al-
treated plants due to the limited number of seeds availa-
ble. In this case, the average value obtained for the
untreated (not exposed to Al) Atlas66 and Bounty was
used as the reference.

Quantitative Real-Time PCR
The level of expression of selected genes was validated by
Real-Time PCR. Probes were designed using the primer3
software and primer specificity was verified on agarose
gels and by Tm measurements at the end of the Real-Time
PCR reactions. Total RNA was prepared (RNeasy Plant
Mini Kit; Qiagen) from the root tips (5 mm long) of 50
plants collected from the various genotypes and reverse
transcribed using SuperScript II reverse transcriptase and
random hexamers (SuperSript™ First-Strand; Invitrogen).
Quantitative Real-Time was performed on an ABI 7000
Real Time Cycler using the specific primers described in
additional file 3. One-tenth dilutions of the cDNAs were
used as template for the qRT-PCR in a total volume of 25
μL as follows: 12.5 μL SYBR Green (Platinum® SYBR®

Green qPCR SuperMix-UDG, Invitrogen) 1.0 μL primer
mix (50:50 mix of forward and reverse primers at 10
pmol/μL each) and 2 μL template. The reaction condi-
tions were: 10 min at 95°C followed by 40 cycles of 1 min
at 95°C and 30 s at 60°C.

Data analyses
The microarray data were analyzed using the robust multi-
array average (RMA) software (RMA version 0.2) of back-
ground adjusted, normalized, and log transformed perfect
match values [63]. A two-fold cut-off value (log2 ≥ 1) was
arbitrarily set to indicate differential gene expression
between two samples. Genes showing a differential
expression greater than two-fold (RMA differential expres-
sion of log2 ≥ 1) between the Atlas66 and Bounty controls
were excluded from the reference set as these may repre-
sent inherited cultivar basal expression levels that could
bias the analysis. Overall, this excluded 1.26% of the
genes on the microarray (773 of 55,052) demonstrating
that most genes are expressed at a similar level between
the two cultivars. Genes that are differentially expressed to

the same extent in all four cultivars exposed to Al (giving
50% RGI) compared to the non-treated cultivars were
selected and classified as candidates for stress-associated
genes. The differentially expressed genes between the two
tolerant cultivars exposed to Al (Atlas66 and Century-T)
and their respective sensitive counterparts (Bounty and
Century-S) exposed to Al concentrations resulting in 50%
RGI were classified as candidate genes associated with Al
tolerance. These genes were subdivided in two groups
(constitutively expressed or Al-regulated) based on the
average level of regulation in the two tolerant cultivars.
Genes were considered constitutively expressed when the
differential signal between Al-treated and non-treated
samples was less than two-fold (log2 < 1). An analysis of
variance was performed using GraphPad InStat 3 to select
genes that are differentially expressed under the condi-
tions specified for each analysis.

For Quantitative Real-Time PCR analyses, the amplifica-
tion efficiency (90% to 100%) for the different primer sets
was determined by amplification of cDNA dilution series
using 80, 20, 10, 5, 2.5, and 1.25 ng per reaction (data not
shown). The variance (standard error) was very small
between the PCR replicates for a same biological sample
(Real-Time experimental replicate) compared to the vari-
ance between the different biological replicates. Calcula-
tions and statistical analyses were performed by ANOVA
on the mean ΔCT (CT of each gene – CT of 18S RNA used
as load control) of different biological replicates, as
described in the Results section.
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Additional material

Additional file 1
Microarray data of candidate stress-associated genes. The differential 
expression between Al-treated and control (non-treated) samples was ana-
lyzed to identify genes that are significantly over-expressed two-fold or 
more. A first round of selection retained 70 genes for which there is at least 
two wheat lines with p values > 0.001 AND p values > 0.01 in the other 
two lines. A second round of selection for which there was at least three 
lines with p values > 0.001 retained an additional 13 genes (in yellow) 
for a total of 83 candidate genes. A = Atlas66; B = Bounty; C-T = Century-
T; C-S = Century-S. Numbers associated with the line's abbreviation (0, 
5 or 50) represents the Al concentration in μM while the following letter 
indicates the biological replicate sample number (S1 to S3).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-400-S1.xls]
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Additional file 2
Microarray data of candidate tolerance-associated genes. The differen-
tial expression between Al-treated tolerant and sensitive lines (A 50 – B 5 
and C-T 50 – C-S 5) was analyzed to identify genes that are significantly 
over-expressed two-fold or more in tolerant compared to sensitive lines 
(ANOVA p values > 0.001 in one pair AND p values > 0.01 in the other 
pair of wheat lines). Genes on this list that were not differentially 
expressed between Al-treated and the controls (non-treated) are classified 
as constitutively expressed. A = Atlas66; B = Bounty; C-T = Century-T; C-
S = Century-S. Numbers associated with the cultivar's abbreviation (0, 5 
or 50) represents the Al concentration in μM while the following letter 
indicates the biological replicate sample number (S1 to S3). A: Constitu-
tively expressed candidate genes associated with Al tolerance. B: Up-regu-
lated candidate genes associated with Al tolerance.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-400-S2.xls]

Additional file 3
Primers used for amplification of different transcripts. The transcripts 
representing the different probesetIDs boxed in Table 1 and Table 2 were 
used to design unique primers for qRT-PCR.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-400-S3.doc]
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