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Alzheimer’s disease (AD) is a neurodegenerative brain disease, and it is challenging
to mine features that distinguish AD and healthy control (HC) from multiple
datasets. Brain network modeling technology in AD using single-modal images often
lacks supplementary information regarding multi-source resolution and has poor
spatiotemporal sensitivity. In this study, we proposed a novel multi-modal LassoNet
framework with a neural network for AD-related feature detection and classification.
Specifically, data including two modalities of resting-state functional magnetic resonance
imaging (rs-fMRI) and diffusion tensor imaging (DTI) were adopted for predicting
pathological brain areas related to AD. The results of 10 repeated experiments and
validation experiments in three groups prove that our proposed framework outperforms
well in classification performance, generalization, and reproducibility. Also, we found
discriminative brain regions, such as Hippocampus, Frontal_Inf_Orb_L, Parietal_Sup_L,
Putamen_L, Fusiform_R, etc. These discoveries provide a novel method for AD
research, and the experimental study demonstrates that the framework will further
improve our understanding of the mechanisms underlying the development of AD.

Keywords: multi-modal, LassoNet, resting state functional magnetic resonance imaging, diffusion tensor
imaging, feature detection

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative brain disease that leads to the damage and
death of brain nerve cells in disease progression. It destroys people’s memory, learning, language,
cognition, life, and other abilities, and seriously affects the quality of life of patients and families
(Zhang and Wang, 2015; Lam et al., 2021; Lim et al., 2021). AD risk is also greater later in
life for people with cardiovascular disease, high blood pressure, and diabetes. The Alzheimer’s
Association published a “2021 Alzheimer’s Disease Facts and Figures,” reporting a significant
increase in AD deaths worldwide due to the COVID-19 pandemic. According to the clinical
symptoms of patients, Alzheimer’s disease is divided into a normal state (normal control, NC),
mild cognitive impairment (mild cognitive impairment, MCI) state, and diseased AD state.
MCI manifests as a decline in memory and thinking abilities at a rate greater than the decline
in perception caused by normal aging, but this decline does not interfere with normal social
interaction and work. However, patients with MCI have a high probability of further deterioration
to AD (Zhang et al., 2016; Wang et al., 2017). It is currently difficult to distinguish MCI from
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memory decline due to normal aging, and MCI involves very
subtle brain changes. Therefore, the early diagnosis of MCI/AD is
extremely challenging (Davis et al., 2018; Wang et al., 2018; Zhang
et al., 2018; Potashman et al., 2021).

Magnetic resonance imaging (MRI) has become a hot
spot in the field of AD and MCI disease research due to
its non-invasiveness, multi-sequence imaging, high resolution,
and strong repeatability (Zhang Y.-D. et al., 2014; Zhang
et al., 2015a). Resting-state functional MRI (rs-fMRI) and MRI
diffusion tensor imaging (DTI) are imaging techniques that
can study brain mechanisms from the perspective of human
brain functional connectivity and structural connectivity. They
provide imaging evidence for the pathological studies on AD
and MCI. Many studies have found the network structure
related to the resting state in the cerebral cortex, which
covers the brain regions that show a decline in metabolic
function in the early stages of AD, including the posterior
cingulate cortex and the internal parietal region (Choo et al.,
2010; Hu et al., 2014; Zhang et al., 2015b; Shim et al.,
2017; Wang et al., 2021). Neuroimaging data from a single
modality usually can only reflect part of the brain characteristics,
but many current research studies show that the fusion of
information from multiple imaging modalities can reflect the
brain activity mechanism more comprehensively (Zhang Q
et al., 2014; Zhang and Shi, 2020; Lei et al., 2021; Jiao et al.,
2022).

Functional MRI quantifies the temporal correlation between
brain regions by detecting the blood oxygen level dependence
(BOLD) in the human brain (Zhang and Shi, 2020; Wang
et al., 2017), while DTI can track the spatial correlation of
white matter fiber tracts by exploiting the kinetic mechanism
of water molecule diffusion. Combining the spatiotemporal
high-resolution information reflected by fMRI and DTI can
comprehensively describe biological brain characteristics from a
spatiotemporal perspective and improve the accuracy of brain
network modeling, which is of great scientific significance
for studying the neurophysiological mechanisms of AD/MCI
diseases (Dyrba et al., 2015; Aderghal et al., 2020; Xu
et al., 2021). Wee et al. considered the information regarding
the complementary features of multiple imaging techniques,
integrated multi-modal information from DTI and rs-fMRI, and
used multi-kernel support vector machines to build a classifier
for the study of disease classification and early prediction
of MCI (Dai et al., 2019). Schonberg et al. used fMRI to
define the regions of interest for DTI, providing a more
comprehensive and functionally relevant white matter mapping
map for preoperative preparation of brain tumors (Schonberg
et al., 2006). Qi et al. propose a framework that combines DTI and
fMRI multimodal imaging data to accurately identify potential
neurological markers responsible for working memory deficits
(Qi et al., 2018). Li et al. integrated the image information
of rs-fMRI and DTI into a Lasso modeling framework for
the accurate diagnosis of brain network lesions in early AD,
further demonstrating that fusion of multi-modal information
can effectively identify brain network features (Li et al., 2020).
The above-mentioned finding proves that compared with single-
modal data, more valuable features can be obtained by using

multi-modal data. The multi-modal fusion method may further
improve the recognition accuracy of AD/MCI (Zhang et al.,
2015b; Wang et al., 2016; Mak et al., 2017).

In multi-modal neuroimaging analysis, since the
features extracted from the original images tend to have
higher dimensionality, only a few clinical samples contain
complete multi-modal data, which will produce the curse
of dimensionality. Therefore, we propose a neural network
framework with Lasso regression for multi-modal image
feature extraction and classification. Figure 1 illustrates the
neural network framework of multi-modal neuroimaging for
Alzheimer’s disease.

MATERIALS AND METHODS

Data Processing
The images of 85 subjects (33 healthy control, 29 early mild
cognitive impairment, and 23 AD) were downloaded from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI1), including
rs-fMRI and DTI. All neuroimaging data were obtained using a
SIEMENS 3T MRI scanner. For the rs-fMRI images, the echo
time (TE), the repetition time (TR), the flip angle, the slice
thickness, and the time points were set as 30.0 ms, 3.0 s, 90,
3.4 mm, and 197, respectively. For the DTI data, the gradient
directions, the echo time, the repetition time, the flip angle,
and the voxel size were set as 30, 95 ms, 12.4 s, 90, and
2 × 2 × 2 ms3. For the T1 images, the TE, TR, flip angle,
the slice thickness, and the T1 time were set as 3.0 ms, 2.3 s, 9.0,
1.0 mm, and 900 ms, and the collection plane was SAGITTAL.
The Table 1 showed the significant differences among the three
groups in terms of gender (p < 0.001), age (p < 0.001), MMSE
(p< 0.001), and EDU (p< 0.001) by t-test.

Data Acquisition
The rs-fMRI images were processed using SPM122 (Han and
Glenn, 2018) and DPARBI 6.13 (Yan et al., 2016) as follows:
(1) The raw DICOM files were converted to NIFITI format. (2)
The first 10 time series nodes of each individual subject were
removed manually to avoid the magnetic field inhomogeneity
problem caused by the startup of the scanner and the influence
of the discomfort of the subject’s initial state on the results. (3)
The interslice scan times were corrected to the same time point.
(4) Images with head movement beyond 2.5 mm translation or
2.5-degree rotation were removed to correct head movement
during scanning. (5) The head motion, white matter signal, and
cerebrospinal fluid signal were set as the main noise covariates
to reduce the influence of noisy covariate signals on scan results
and reduce biological artifacts. (6) Different morphological brains
were standardized to the same standard template and were
registered to T1 images. (7) The 4 × 4 × 4 mm3 Gaussian
kernel was applied for spatial smoothing to reduce spatial
noise. (8) The linear trend was removed, and 0.01–0.1 Hz

1www.adni-info.org
2https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
3http://rfmri.org/DPABI
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FIGURE 1 | An illustration of the proposed multi-modal framework for AD.
(A) Data processing. The fMRI and DTI images were preprocessed, and then
the regions of interest were extracted as fMRI and DTI features through the
AAL template, and the corresponding brain networks of fMRI and DTI were
obtained, respectively. Then, computed the inverse proportional function of
the structural brain network as a penalty matrix. (B) Multi-modal LassoNet
Modeling with a neural network. We constructed a multi-modal network
framework for feature selection and classification based on the LassoNet
model. It consisted of residual connection and an arbitrary feed-forward neural
network. The input to the network was the fMRI feature information. The
penalty matrix was introduced to the residual connection to sparse features.
(C) The detection of the pathological mechanism of AD. We visualized brain
regions for selected features to analyze the affected discriminative brain
regions.

filtering was applied to reduce the interference due to low-
frequency and high-frequency noise. The automated anatomical
labeling (AAL; Tzourio-Mazoyer et al., 2002) atlas was applied to

TABLE 1 | Participant characteristics.

Subjects HC EMCI AD P

Number 33 29 23

Gender (M/F) 12/21 14/15 14/9 <0.001

Age (Mean ± sd) 73.88 ± 7.15 74.52 ± 7.30 74.34 ± 8.14 <0.001

MMSE (Mean ± sd) 29.15 ± 1.13 28.52 ± 1.45 21.78 ± 1.89 <0.001

EDU (Mean ± sd) 16.55 ± 2.34 16.31 ± 2.56 14.96 ± 1.90 <0.001

HC, healthy control; EMCI, early mild cognitive impairment; AD, Alzheimer’s
disease; MMSE, Mini-mental status examination; M/F, male/female; Edu,
education; sd, standard deviation.

segment the brain into 90 regions, and the time series of BOLD
signals were extracted.

The DTI data were processed using FSL4 (Woolrich et al.,
2009), PANDA5 (Abbasi et al., 2021), and MRIcron (NITRC:
MRIcron: Tool/Resource Info) software in Ubuntu18.04 as
follows: (1) The raw DICOM files were converted to NIFITI
format (∗.nii.gz). (2) The brain templates were estimated
based on non-diffusion-weighted b0 images using the bet
command. (3) The non-brain space was removed using the
fslroi command and eddy current correction. (4) The diffusion
tensor metric was calculated using the dtifit command. (5)
Deterministic white matter tract in the brain was tracked
using the dti_recon and dti_tracker commands. (6) A part
of the skull tissue in the T1 images was removed using the
bet command. (7) The fractional anisotropy (FA) value of
each subject was registered to its corresponding T1 image
using the flirt command of FSL. When DTI images were
registered with other images, DTI data causing significant
deformities were removed. It should be noted that the
DTI images and rs-fMRI images were registered with the
same T1 imaging.

Multi-Modal LassoNet Framework
Construction
The rs-fMRI functional brain networks can measure temporal
correlations between anatomically segmented brain regions;
DTI-based structural brain networks can characterize and track
spatial white matter tracts in the brain. Herein, it is considered to
unify the multi-modal image information of rs-fMRI and DTI in
a brain network modeling framework, combining the respective
advantages of the two modalities, which can describe the dynamic
mechanism of the brain network from the perspective of time and
space, and realize the construction of the brain network model.

After preprocessing of fMRI images, we obtained 187 time
series (BOLD signal) of 85 participants, and there were 90 ROIs
in each image. Let us assume that we have n participants and i
ROIs. We explored a multi-modal network framework for feature
selection and classification based on the LassoNet (Yan and Bien,
2017; Chen et al., 2019). For n participant, we assumed that the
fMRI time series of the i-th ROI was xi = {x1i, x2i, ..xdi} ∈
Rn × d, (i = 185), where d was the number of time points. Our
goal was to find the best function f ∗(xi) for predicting yi (the type

4https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
5https://www.nitrc.org/frs/?group_id=582
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of Alzheimer’s diagnosis). As the problem of learning f ∗(xi) is
non-parametric, we assumed that there was no linear or quadratic
restriction. The multi-modal network consisted of two parts:
residual connection and arbitrary feed-forward neural network.
The penalty was introduced to the residual connection to sparse
features. We define G to be the class of residual feed-forward
neural networks:

G =
{
f ≡ fθ,w : x 7−→θTX + gw (X)

}
(1)

where gW (X) denotes a feed-forward network with weights W,
W(1)

∈ Rd × K represents the weights in the first hidden layer,
and θ ε Rd represents the weights in the residual layer.

Let L be the empirical loss2 on the training set with fMRI time
series, then L is defined as Equation 2.

L (θ,W) =
1
n

n∑
i = 1

`(fθ,w (xi),Yi) (2)

where W is the weight of the first hidden part; θ is the weight
of the residual part; n is the number of participants as training
observations size, and ` is the loss function. The LassoNet model
objective function is defined as Equation 3.

minimize
θ, W

L (θ,W) + λ||θ||1 subject to
∣∣∣∣∣∣W(1)

i

∣∣∣∣∣∣ ≤ M |θi| ,

i = 1, · · · d (3)

where W(1)
i is the weight of feature i and d is the data dimension.

The coupling strength of human brain functional connectivity
and structural connectivity is closely related to the brain
excitation process, and stronger structural brain connectivity is
likely to lead to the enhancement of corresponding functional
connectivity. Here, we introduced a parameter named the
punishment factor to improve the LassoNet model. The
punishment matrix of each DTI image is defined as the inverse
proportional function of structural brain networks (Equation 4).

Dji = e−
ρ2
ji
σ (4)

where ρji is the FA information between j-th brain region and
i-th brain region in the DTI network, and σ is the mean of the
standard deviation of all elements in the structural brain network
of all participants. Equation 4 is used to penalize the estimated
connection strength value between the j-th ROI and the i-th ROI.

Since each participant had a corresponding DTI structure
network information D, we calculated the max feature λmax of
each D using Equation 5.

(λaE− D) x = 0 (5)

where λmax = max (λa), E is the unity matrix, and x is the
eigenvector. The DTI feature matrix is defined as Equation 6.

DTIvector = [λ1,λ2 · · · · · ·λn] , n ∈ [1, 85] (6)

Then, we modify the LassoNet objective function to Equation 7.

minimize
θ, W

L (θ,W) + λ · DTIvector ||θ||1

subject to
∣∣∣∣∣∣W(1)

j

∣∣∣∣∣∣ ≤ M
∣∣θj∣∣ , j = 1, · · · d (7)

So, the multi-modal LassoNet framework was constructed. We
summarize the training algorithm of multi-modal LassoNet, as
shown Table 2.

Feature Detection and Model
Comparison
Using the resulting images, we obtained the initial dataset of
85 participants and 187 × 90 features in each participant. We
extracted three groups from the dataset, namely, AD-HC, AD-
EMCI, and EMCI-HC. For each group, the train set, validation
set, and test set were selected randomly using the ratio Strain :
Svalid : Stest = 6 : 2 : 2. Integrating with DTI structure network
information, the Strain and Svalid were applied to filter the optimal
λ and integrating with DTI structure network information. With
the resulting λ, the Strain and Stest were used to detect features
and get the sparse feature matrix that classified well in AD-HC,
AD-EMCI, or EMCI-HC.

Since the multi-modal framework was optimized based on the
LassoNet model, to determine the superiority of our proposed
framework, we used the classic Lasso, Group Lasso, Sparse Group
Lasso, and ElasticNet to compare the classification accuracy.

Given n data samples
{(
x1, y1

)
,
(
x2, y2

)
, · · ·

(
xn, yn

)}
, xi ∈

Rd, xi was a d dimensional vector, that is, each observed data
were composed of the values of d variables, and each yi ∈ R was a
real value. Let the mapping f : Rd → R that minimize the sum
of squared errors, and the optimization objective is defined as
Equation 8.

W∗ = argminβ

1
n
∣∣∣∣y− XW

∣∣∣∣2
2 (8)

The optimization objective of Lasso (Equation 8) was obtained by
introducing the L1 regularization term in Equation 9.

W∗ = argminβ

1
n
∣∣∣∣y− XW

∣∣∣∣2
2 + λ||W||1 (9)

The Lasso was applied to the group and the Group Lasso was
obtained as Equation 10.

min
W ∈ Rp

∣∣∣∣∣
∣∣∣∣∣y−

L∑
l = 1

XlWl

∣∣∣∣∣
∣∣∣∣∣
2

2

+ λ

L∑
l = 1

√
pl||Wl||2

 (10)

The Sparse Group Lasso was obtained by integrating the original
Lasso into the Group Lasso, as Equation 11.

min
W ∈ Rp

∣∣∣∣∣
∣∣∣∣∣y−

L∑
l = 1

XlWl

∣∣∣∣∣
∣∣∣∣∣
2

2

+ λ1

L∑
l = 1

||Wl||2 + λ2 ||W||1


(11)
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TABLE 2 | Training algorithm of multi-modal LassoNet.

Algorithm: Multi-Modal LassoNet with neural network

1: Input: X ∈ Rn × d represents fMRI time series (BOLD signal), B represents Number of epochs, M represents hierarchy multiplier, ε represents path multiplier, α

represents learning rate, D represents penalty matrix from DTI network.
2: Initialize: L (θ,W) represents the feed-forword network on the loss, λ represents the penalty, k represents the number of activate features,
DTIV = [λ1, λ2, λ3 · · · · · ·λn represents the multimodal matrix calculated from the penalty matrix D, d represents the number of features, θ∈ Rdrepresents the
weights in the residual layer, K is the number of units in the first hidden layer, θ∗ and W∗ are the optimal parameters after iteration.
3: while k > 0 do
4: Update λ← (1 + ε)λDTIv
5: for b∈ (1...B) do
6: Compute gradient of the w.r.t to (θ,W) with back-propagation
Update θ← θ− α∇θL and W ← W−a∇W L
7: for j ∈ {1 . . .d} do
8: Sort the entries of W(1)

j into
∣∣∣W(1)

j

∣∣∣ ≥ . . . ≥
∣∣∣W(1)

(j,K)

∣∣∣
9: Compute wn : =

M
1 + nM2 · SλD

(∣∣θj
∣∣ + M ·

∑n
i = 1

∣∣∣W(1)
(j,i)

∣∣∣)
10: Find n∗,the first n ∈ {0, ... ...,K} such that

∣∣∣W(1)
(j,n + 1)

∣∣∣ ≤ wn ≤

∣∣∣W(1)
(j,n)

∣∣∣
11: Update θ∗j ←

1
M · sign

(
θj
)
·wn∗ ,W

(1)
j
∗

← sign(W(1)
j ) ·min

(
wn∗ ,

∣∣∣W(1)
j

∣∣∣ )
12: end for
end for
13: return (θ∗,W(1)∗)
14: end while

FIGURE 2 | The relationship between the accuracies and λ.

The definition of ElasticNet was obtained by combining L1 and
L2 regularization and Lasso (Equation 12).

min
W ∈ Rp

∣∣∣∣∣
∣∣∣∣∣y−

L∑
l = 1

XlWl

∣∣∣∣∣
∣∣∣∣∣
2

2

+ λ2

L∑
l = 1

||Wl||2 + λ1

L∑
l = 1

||Wl||1


(12)

The same Strain and Svalid were applied to filter the optimal
parameters. Using the same Strain and Stes, the experiments

were repeated 10 times in all five frameworks with the
optimal parameters.

Evaluation Metrics
In this study, the samples were positive and negative, and the
results classified had the following cases:

True Positive (TP): the positive sample was predicted as a
positive sample.
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FIGURE 3 | The prediction accuracy was obtained through 10 experiments for five methods in three groups. (A) Prediction accuracy of AD-HC group. (B) Prediction
accuracy of AD-EMCI group. (C) Prediction accuracy of EMCI-HC group.

TABLE 3 | The classification performance comparison of the five methods.

Group Methods ACC (%) ± SD SEN (%) ± SD SPE (%) ± SD GMean (%) ± SD F1 (%) ± SD

AD-HC Lasso + SVM 85.45 ± 1.10 75.34 ± 2.87 91.89 ± 0.81 83.19 ± 1.49 80.05 ± 1.66

GroupLasso + SVM 86.16 ± 0.78 77.13 ± 1.73 91.97 ± 1.00 84.24 ± 0.93 80.75 ± 2.75

ElasticNet + SVM 84.56 ± 1.00 74.90 ± 2.14 90.72 ± 1.24 82.41 ± 1.13 79.04 ± 1.24

Sparse Group Lasso + SVM 85.75 ± 0.83 75.99 ± 2.29 92.20 ± 0.88 83.69 ± 1.11 80.89 ± 1.18

Multi-modal LassoNet 90.68 ± 0.34 88.81 ± 0.68 91.91 ± 0.55 90.34 ± 0.36 88.25 ± 0.52

AD-EMCI Lasso + SVM 75.88 ± 0.58 93.06 ± 0.87 54.22 ± 0.95 71.03 ± 0.61 81.15 ± 0.56

GroupLasso + SVM 75.92 ± 1.04 93.12 ± 0.63 54.33 ± 1.77 71.12 ± 1.14 81.16 ± 0.87

ElasticNet + SVM 76.13 ± 0.61 92.91 ± 0.94 54.98 ± 1.96 71.45 ± 1.01 81.27 ± 0.60

Sparse Group Lasso + SVM 70.23 ± 0.63 90.44 ± 1.05 44.69 ± 1.82 63.56 ± 1.04 77.05 ± 0.67

Multi-modal LassoNet 83.63 ± 0.74 87.32 ± 1.22 79.00 ± 1.33 83.05 ± 0.76 85.70 ± 0.84

EMCI-HC Lasso + SVM 67.04 ± 0.69 78.67 ± 1.98 57.61 ± 1.49 67.30 ± 0.68 68.12 ± 0.90

GroupLasso + SVM 84.42 ± 0.65 96.62 ± 0.65 74.43 ± 0.98 84.80 ± 0.52 84.08 ± 0.57

ElasticNet + SVM 83.76 ± 0.42 94.69 ± 0.69 74.72 ± 0.92 84.11 ± 0.44 84.07 ± 0.41

Sparse Group Lasso + SVM 83.20 ± 1.15 95.83 ± 0.88 72.74 ± 1.43 83.49 ± 1.14 70.86 ± 1.16

Multi-modal LassoNet 88.77 ± 0.70 90.87 ± 1.05 87.06 ± 0.95 88.94 ± 0.69 87.92 ± 0.83

True Negative (TN): the negative sample was predicted as a
negative sample.
False Positive (FP): the negative sample was predicted as a
positive sample.
False Negative (FN): the positive sample was predicted as a
negative sample.

ACC (accuracy) is the number of correctly classified samples
divided by the total number of samples (Equation 13).

ACC =
TP + TN

TP + TN + FP + FN
(13)

SEN (sensitivity) is the proportion of pairs of all positive samples
(Equation 14).

SEN =
TP

TP + FN
(14)

SPE (specificity) is the proportion of pairs of all negative samples
(Equation 15).

SPE =
TN

TN + FP
(15)

GMean is the geometric mean (Equation 16).

GMean =
√
SEN + SPE (16)

F1 is a comprehensive evaluation indicator. Sometimes, accuracy
and sensitivity needed to be considered together as Equation 17.

F1 =
2TP

2TP + FP + FN
(17)

The receiver operating characteristic (ROC) curve and the
area under curve (AUC) value are also used to evaluate the
performance of the classifier.

RESULTS

The Results of Parameter Optimization
Initially, 187 × 90 = 16, 830 features were obtained and Strain
and Svalid were applied to filter the optimal parameters. The λ

was the interval of (0.1, 1), and the corresponding accuracy was
calculated in each group. As shown in Figure 2, the best accuracy
of the AD-HC group is 92.79% and λ is 0.1. The peak value
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FIGURE 4 | The ROC curve of the five methods in three groups. (A) Prediction accuracy of AD-HC group. (B) Prediction accuracy of AD-EMCI group. (C) Prediction
accuracy of EMCI-HC group.

TABLE 4 | Discriminative brain regions.

Group ID Regions Abbreviation ID Regions Abbreviation

AD-HC 61 Parietal_Inf_L IPL.L 19 Supp_Motor_Area_L SMA.L

24 Frontal_Sup_Medial_R SFGmed.R 59 Parietal_Sup_L SPG.L

37 Hippocampus_L HIP.L 83 Temporal_Pole_Sup_L TPOsup.L

79 Heschl_L HES.L 64 SupraMarginal_R SMG.R

7 Frontal_Mid_L MFG.L 81 Temporal_Sup_L STG.L

73 Putamen_L PUT.L 52 Occipital_Mid_R MOG.R

15 Frontal_Inf_Orb_L ORBinf.L 32 Cingulum_Ant_R ACG.R

56 Fusiform_R PoCG.L

EMCI-HC 37 Hippocampus_L HIP.L 14 Frontal_Inf_Tri_R IFGtriang.R

27 Rectus_L REC.L 59 Parietal_Sup_L SPG.L

17 Rolandic_Oper_L ROL.L 88 Temporal_Pole_Mid_R TPOmid.R

30 Insula_R INS.R 44 Calcarine_R CAL.R

6 Frontal_Sup_Orb_R ORBsup.R 49 Occipital_Sup_L SOG.L

8 Frontal_Mid_R MFG.R 31 Cingulum_Ant_L ACG.L

38 Hippocampus_R HIP.R 7 Frontal_Mid_L MFG.L

15 Frontal_Inf_Orb_L ORBinf.L

AD-EMCI 22 Olfactory_R OLF.R 63 SupraMarginal_L SMG.L

32 Cingulum_Ant_R ACG.R 57 Postcentral_L PoCG.L

89 Temporal_Inf_L ITG.L 51 Occipital_Mid_L MOG.L

82 Temporal_Sup_R STG.R 24 Frontal_Sup_Medial_R SFGmed.R

85 Temporal_Mid_L MTG.L 39 ParaHippocampal_L PHG.L

42 Amygdala_R AMYG.R 13 Frontal_Inf_Tri_L IFGtriang.L

28 Rectus_R REC.R 60 Parietal_Sup_R SPG.R

8 Frontal_Mid_R MFG.R

of the EMCI-HC group is at the node of 0.3. The prediction
accuracy reaches a peak with a λ value of 0.2. We can also
observe that the accuracy of the AD-HC group is much higher
than the other two groups. This may be caused by the large
difference between AD and HC. An interesting finding is that
the accuracy of the AD-EMCI group is the lowest and the gap
in this group is also the lowest. This proves that the similarity
between AD and EMCI is higher, and the similar features make
the classification more stable.

Comparison With Other Methods
We applied the same Strain and Stest to assess the performance of
the five models, and 10 independent experiments were conducted
to evaluate the universality of these models. As shown in Figure 3,

the Multi-modal LassoNet has good prediction accuracy, and in
three groups, the accuracy of the Multi-modal LassoNet is the
highest, far exceeding the other four models. The peaks of the
Multi-modal LassoNet are above 90% in the AD-HC and EMCI-
HC groups, and in the other four models, they are all below 90%.
In the AD-EMCI group, the best accuracy is above 85%, and in
the other four models, it is below 80%. Additionally, the gap of the
Multi-modal LassoNet in 10 experiments is less than 2%. It can
be seen from Figure 3 that the Multi-modal LassoNet framework
has satisfactory classification accuracy in different groups only
by adjusting the λ. The curves of the Multi-modal LassoNet
also prove that the proposed framework has good stability, and
the introduction of DTI information improves the classification
performance of the LassoNet model.
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FIGURE 5 | Visualization of discriminative brain regions. (A) AD-HC, (B) AD-EMCI, and (C) EMCI-HC.

The classification information of the five methods is presented
in Table 3. Multi-modal LassoNet classifiers reported very
good performance. In the AD-HC group classification, ACC,
SEN, SPE, GMean, and F1 were 90.68 ± 0.34, 88.81 ± 0.68,
91.91 ± 0.55, 90.34 ± 0.36, and 88.25 ± 0.52, respectively. In
the AD-EMCI group classification, ACC, SEN, SPE, GMean,
and F1 were 83.63 ± 0.74, 87.32 ± 1.22, 79.00 ± 1.33,
83.05 ± 0.76, and 85.70 ± 0.84, respectively. In the EMCI-
HC group classification, ACC, SEN, SPE, GMean, and F1 were
88.77 ± 0.70, 90.87 ± 1.05, 87.06 ± 0.95, 88.94 ± 0.69, and
87.92± 0.83, respectively.

For further validation of our framework and results, we plot
the ROC curves of five methods for the AD-HC, AD-EMCI,
and EMCI-HC groups, as shown Figure 4. The AUC values of
our proposed Multi-modal LassNet for AD-HC, AD-EMCI, and
EMCI-HC groups were 0.9120, 0.8478, and 0.8975, respectively.

DISCUSSION

Modeling techniques based on a single neuroimaging modality
lacked the spatial and temporal high-resolution information
brought by different modalities in characterizing the brain
network structure, and could not fully reflect the dynamic

mechanism of brain network connections (Tulay et al., 2019;
Zhuang et al., 2019; Lei et al., 2020). Therefore, we proposed a
multi-modal LassoNet model that was a Lasso neural network
modeling framework using multi-modal information fusion. This
method fused two modalities of fMRI and DTI in a sparse Lasso
neural network framework and introduced connection strength
and subject structure to complete the construction of a multi-
modal brain network. Our proposed method mainly addresses
two issues, which include the selection of AD-related brain ROIs
and the classification and diagnosis of AD. The experimental
results showed that the multi-LassoNet modeling of multi-modal
information could facilitate higher sensitivity of disease diagnosis
and effectively improved the accuracy of model classification. The
good classification performance also revealed that the detected
features of the multi-modal model based on fMRI and DTI
reflected that the brain atrophy caused by the disease process
would lead to the decrease of white matter fiber connectivity
(Gupta et al., 2020). It also proved that structural connectivity
and functional brain network features between connections had
coupling effects.

Compared with the current popular Lasso method, Group
Lasso, Sparse Lasso, and elastic network method, it was
proved that the proposed multi-modal Lasso-based neural
network method was higher than other methods in classification
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performance and had strong regularization parameter stability. It
proved that fusion of multi-modal information more effectively
identified brain network features. Moreover, the results indicated
that the constraint effect of the DTI structural network and the
introduction of the strength of the brain area connection had
a certain degree of influence on the validity of the multi-modal
brain network model. Table 4 shows the top 15 important brain
regions with different classification results.

Visualization selected discriminative brain regions using the
BrainNet Viewer toolbox (Xia et al., 2013), as shown in Figure 5.
By analyzing the brain regions classifying AD-HC,AD-EMCI,
and EMCI-HC, we found that the brain regions belonging
to Hippocampus, Frontal_Inf_Orb_L, and Parietal_Sup_L were
among the top 15 brain regions. Previous studies had found
that the hippocampus of the brain was responsible for human
memory and spatial activities and was closely related to AD
pathology (Douaud et al., 2011; Fares et al., 2019). In addition,
some studies had also shown that functional atrophy in the
parahippocampal gyrus is an early marker of AD/MCI disease
(Wang et al., 2016), and the parahippocampal gyrus shows
a more distinct ability than the hippocampus in the early
stage of the disease (Zhu et al., 2019). Frontal_Inf_Orb_L
corresponded to the region of interest recommended by
physicians for the clinical diagnosis of AD (Jiang et al.,
2015). Parietal_Sup_L may be associated with the underlying
mechanism of its clinical effect, and it may play a role in the
potential compensatory mechanism of mobilizing more regions
to complete the function after a functional decline (He et al.,
2021). The Hippocampus_L and Hippocampus_R found in the
AD-HC and EMCI-HC groups were reported as the pathogenic
regions of AD. Chik et al. (Yuan et al., 2022) found that
the neurosteroids in the hippocampus were changed during
the progression of Lv et al. (2022) found that compared to
the healthy mouse, the mice having TYRO protein kinase-
binding protein had insufficient learning and memory abilities,
and the amyloid β in the hippocampus was increased, which
worsened with aging. Liu et al. (2022) proved that memory
could be improved by enhancing the functional activity in the
hippocampus and the medial prefrontal cortex. Moreover, the
hippocampus region was not found in AD-EMCI. This gives
a message that the difference in the hippocampus between
AD and EMCI is not obvious, and their main difference
is found in other brain regions, such as the Amygdala_R,
which is not found in the other two groups. Hong et al.
(2022) reported tau deposition in the parahippocampus and
amygdala by studying positron emission tomography (PET)
images in patients with AD. The amygdala atrophy was found
in mild AD subjects and could be used to predict the Mini-
Mental State Examination scores and hippocampal atrophy
(Poulin et al., 2011).

In addition, the Putamen_L was reported to be the earliest
brain region to show increased Aβ deposition and is a marker
of cognitive decline (Zammit et al., 2020; Cogswell et al., 2021).
The Fusiform_R was confirmed to be a characteristic region of
AD (Guo et al., 2017; Sprung et al., 2021). Brain network analysis
results generally had a high sensitivity to segmentation template
selection. Different segmentation templates produced different

brain network topology structures, which might potentially affect
the reproducibility of model classification performance. The
segmentation template used in this paper was the AAL structure
of 90 brain regions. However, in the future, the robustness value
of the proposed method would be further verified from the
perspectives of multiple segmentation scales.

In this study, a deterministic fiber tracking technique derived
from DTI images was used to construct a structural brain network
in a multi-modal modeling framework. But this tracking method
only considered the trajectories where white matter fibers cross
or diverge (Lei et al., 2021). Therefore, there may be biases in
determining the most reasonable fiber configuration, affecting
the accuracy of structural network construction. Future research
work will consider adopting a more efficient probabilistic
fiber tract-tracing strategy to obtain the probability value of
brain area connection to complete accurate multi-modal brain
network construction.

In this study, we proposed a novel multi-modal LassoNet
framework for the discriminant analysis of features. This research
is an attempt to apply fMRI and DTI multi-modal information
and sparse representation technology to the research of neural
network framework, and provides a new idea for designing a
brain network modeling framework that integrates more modal
information in the future. The features of multi-modal data can
be fused to obtain more comprehensive pathological information.
Compared to the conventional methods, the proposed method
seeks to identify AD-related brain ROIs and in the classification
and diagnosis of AD. The high-performance classification
implied that the proposed multi-modal LassoNet framework was
beneficial for the early diagnosis and prediction of AD disease.
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