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Abstract
Background: Despite the widespread use of microarrays, much ambiguity regarding data analysis, interpretation
and correlation of the different technologies exists. There is a considerable amount of interest in correlating
results obtained between different microarray platforms. To date, only a few cross-platform evaluations have
been published and unfortunately, no guidelines have been established on the best methods of making such
correlations. To address this issue we conducted a thorough evaluation of two commercial microarray platforms
to determine an appropriate methodology for making cross-platform correlations.

Results: In this study, expression measurements for 10,763 genes uniquely represented on Affymetrix U133A/B
GeneChips® and Amersham CodeLink™ UniSet Human 20 K microarrays were compared. For each microarray
platform, five technical replicates, derived from the same total RNA samples, were labeled, hybridized, and
quantified according to each manufacturers' standard protocols. The correlation coefficient (r) of differential
expression ratios for the entire set of 10,763 overlapping genes was 0.62 between platforms. However, the
correlation improved significantly (r = 0.79) when genes within noise were excluded. In addition to levels of inter-
platform correlation, we evaluated precision, statistical-significance profiles, power, and noise levels for each
microarray platform. Accuracy of differential expression was measured against real-time PCR for 25 genes and
both platforms correlated well with r values of 0.92 and 0.79 for CodeLink and GeneChip, respectively.

Conclusions: As a result of this study, we recommend using only genes called 'present' in cross-platform
correlations. However, as in this study, a large number of genes may be lost from the correlation due to differing
levels of noise between platforms. This is an important consideration given the apparent difference in sensitivity
of the two platforms. Data from microarray analysis need to be interpreted cautiously and therefore, we provide
guidelines for making cross-platform correlations. In all, this study represents the most comprehensive and
specifically designed comparison of short-oligonucleotide microarray platforms to date using the largest set of
overlapping genes.
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Background
There are several commercial microarray systems currently
available on the market for genome-scale gene expression
analysis. Different microarray manufacturers provide dis-
tinct underlying technologies, protocols and reagents spe-
cific to each system [1]. Despite the widespread use of
microarrays, much ambiguity regarding data analysis,
interpretation and correlation of the different technolo-
gies exists. There is a need for standardization that will
facilitate comparison of microarray data from different
platforms [2]. Comparison and cross-validation between
microarray platforms would greatly increase the under-
standing and value of the wealth of data generated from
each microarray experiment [3]. A number of cross plat-
form comparisons have reported a failure to demonstrate
an acceptable level of correlation between different micro-
array technologies [4-7]. Some of the difficulties in corre-
lating data can be attributed to fundamental differences
between cDNA and oligonucleotide based microarray
technologies. For example, target preparation differences
and single vs. dual labeling techniques complicate the
comparisons. Furthermore, cDNA arrays have difficulty in
distinguishing between splice variants and highly homol-
ogous genes, while oligonucleotide arrays can make these
distinctions if designed appropriately. However, when
considering oligonucleotide platforms, which have wide-
spread popularity, direct comparisons between different
platforms should be less complex and more direct. We
assert that differences in platform sensitivity, reproduci-
bility and annotation cross-referencing accuracy account
for a majority of the irreconcilable differences previously
reported between different platforms [4-7]. When consid-
ering these factors we demonstrate a strong correlation
between expression ratio data from two different com-
mercially available short oligonucleotide based microar-
ray technologies. This paper provides a comprehensive
guideline for microarray analysis, interpretation and
cross-platform correlation.

There are two commercially available high-density micro-
array platforms that use short oligonucleotides for expres-
sion profiling. CodeLink (GE Healthcare formerly
Amersham Biosciences, Chandler, AZ) and GeneChip
(Affymetrix, Santa Clara, CA) microarray platforms utilize
oligonucleotide gene target probes of 30 and 25 bases,
respectively. Some of the notable differences between the
GeneChip and CodeLink systems are, respectively, multi-
ple probes vs. one pre-validated probe per gene target,
two-dimensional surface vs. three-dimensional array
matrix, and in situ synthesized oligonucleotides vs. pre-
synthesized, non-contact oligonucleotide deposition. We
restricted our comparative analysis to these two platforms
because these systems are most similar with respect to oli-
gonucleotide length, target preparation, and single color
indirect labeling methodology. Since these commercial

assays are similar, and systematic variables were isolated
by using the same total RNA starting material for all target
preparations, we expected disparity in performance to
reflect differences inherent to the microarray platforms.
To provide data for comparison of the platforms, five
technical replicates of brain and pancreas were processed
on each platform and the results were compared for repro-
ducibility, sensitivity, and similarity of results. Standard
manufacturer-recommended protocols and settings were
employed to obtain the raw data from each platform. In
the case of Affymetrix GeneChip, a recent cross-platform
microarray evaluation [7] used two additional algorithms
[8,9] for analysis of the GeneChip data and found the
same level of discordance across the three analysis algo-
rithms as was observed in the cross-platform microarray
comparisons [7]. We therefore restricted our analysis of
the GeneChip data to the Affymetrix recommended MAS
5.0 software [10]. This methodology was followed to sim-
ulate the results users would achieve by following current
protocols supplied with each microarray system.

Results
Two different tissue types were compared in this study to
ensure a large number of differentially expressed genes,
and provide expression ratios across a wide dynamic
range for derivation of the correlation coefficient between
the two platforms. The array-to-array precision of each
microarray platform was calculated from the five repli-
cates within each tissue sample.

The pair-wise array-to-array precision of each microarray
platform is illustrated in Figure 1 with respective noise lev-
els for both CodeLink and GeneChip. In these graphs all
10,763 uniquely represented genes, common between
both microarray platforms, are illustrated. The GeneChip
comparisons display a wider distribution relative to Code-
Link at the lower end of the fluorescence detection range.
While this wider distribution could be interpreted as indi-
cating a lower level of precision relative to CodeLink, pre-
cision should only be assessed for the population of genes
with expression values above the noise calculation (i.e.
'present' on the arrays being considered). Due to the vari-
ation in noise and specificity level between expression
detection systems, each system must individually define
its own threshold level cutoff for resultant confidence in
signals above technical noise. In addition, in a multi-oli-
gonucleotide detection system, a defined algorithm must
be set to determine the method for combining individual
probe data to yield a final gene expression level. There-
fore, we used each manufacturer's indications for gene sig-
nals that should be considered confidently above system
noise. The wider distribution observed in the GeneChip
platform is within the noise population and therefore
should not penalize the overall precision measurements.
Qualitatively, CodeLink and GeneChip showed similar
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levels of precision when concordantly 'absent' genes were
excluded within each platform, as illustrated by the blue
data points representing the true signal range (Figure 1).

Precision measurements were calculated from signals
above noise across the arrays being compared (Tables 1
and 2) to obtain a quantitative assessment. For the five
array replicates, within each tissue, a total of 10 pair-wise
combinations were made for all genes above noise (i.e.
'present'). Ratios were made in cases where the gene was
called 'present' on both arrays being compared. False-
change rates of CodeLink and GeneChip were calculated
from each pair-wise array comparison between arrays
processed with the same starting material. The percentage
of ratios derived from the population of concordantly
'present' genes, which fall outside 2-fold (i.e. |log2 ratio| >
1), is defined as the false-change rate. Table 1 shows the
average and standard deviation of the false-change rate
that was calculated for each of the 10 pair-wise array com-
binations within a sample. The false-change rates between
microarray platforms were very similar, however the per-
formance of CodeLink was slightly better with only 0.32%
and 0.20% of ratios falling outside 2-fold for brain and
pancreas, respectively. GeneChip showed 0.69% and
1.28% ratios outside 2-fold for brain and pancreas,

respectively. To assess the level of tightness in the intensity
distribution for each platform, we calculated the pair-wise
ratio range within which 95% of all ratios fall for each
platform (Table 2). For CodeLink, 95% of ratios are below
1.36 and 1.27 for brain and pancreas, respectively. On the
other hand, 95% of GeneChip ratios are below 1.49 and
1.64 for brain and pancreas, respectively. Taken together,
this data illustrates the precision for CodeLink is slightly
higher than GeneChip for both samples tested.

In addition to pair-wise array precision, we calculated
coefficients of variation (CV) for each platform as a func-
tion of intensity, across all replicates. In Figure 2, CV is
represented as a percentage calculated as the gene's signal
standard deviation divided by mean signal across all array
replicates. Genes that are concordantly 'absent' are shown
in red. Concordantly 'absent' refers to genes called 'absent'
by the manufacturer's software on all 5 replicate arrays
tested. The black line represents the 100-probe moving
average of all data points. The precision of all 'present' sig-
nals is similar between CodeLink and GeneChip, as illus-
trated by the moving-average level within the blue region.
The median percent CV for the population of 'present'
genes was 8% for both platforms. However, as gene inten-
sity decreases, the average variance increases earlier in the

Pair-wise array precision of CodeLink and GeneChip with illustration of respective noise levelsFigure 1
Pair-wise array precision of CodeLink and GeneChip with illustration of respective noise levels. The representative scatter 
plots show precision of normalized expression values relative to noise. All 10,763 overlapping gene probes are represented in 
these plots. Values highlighted in red were concordantly 'absent' (noise) calls on both arrays compared. Orange lines show 
two-fold limits, while the black line represents equality.
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distribution for GeneChip relative to CodeLink, as illus-
trated by the 100-probe moving average, at the boundary
between red and blue data points. It is expected that vari-
ance would naturally increase at this boundary and since
the rise in variance coincides with the level of concord-
antly 'absent' signals, demonstrating that noise is more
than likely being identified correctly by each platform's
image quantification software. Notably, Figures 1 and 2
illustrate a higher level of noise for GeneChip relative to
CodeLink.

Differential expression ratios were compared between
platforms to determine the cross-platform correlation. As
shown in Figure 3, when all 10,763 uniquely overlapping
genes are compared between platforms, the correlation is
weak (r = 0.62, where 'r' represents the Pearson correlation
coefficient). However, when removing the population of
concordantly 'absent' signals, the correlation is r = 0.70
between microarray platforms. When limiting the com-
parison to those values which are called 'present' on at
least 3 of the 5 replicates across tissues and platforms, the
correlation improves further to 0.74. If we further limit
our comparison to only genes called concordantly
'present' (i.e. 'present' on all 5 replicates across both tis-
sues and platforms) the correlation r = 0.79.

The improvement in the correlation coefficient from 0.62
to 0.79 achieved by excluding noise underscores the value
in identifying the population of signals above noise for
cross-platform comparisons. The 'volcano plots' in Figure
4 further confirm this point. Each data point represents a
probe from the uniquely common set of 10,763 gene
probes between the platforms relative to ratio and signifi-
cance value. Data points highlighted in blue represent
genes that are concordantly 'present' in both tissues.
Hence, these blue data points are the genes called 'present'
on all replicates across both tissues (n = 10). The mean
log10 ratio of expression (brain/pancreas) is shown on the
x-axis and the p-value, from a two-tailed Student's t-tests
on normalized log-transformed intensities, is shown on
the y-axis. The vertical dashed lines represent 2-fold
change ratios, which are commonly used in the field as
significance levels for non-replicated array experiments.
The horizontal dashed line represents the statistical-signif-
icance level where p = 0.01 (an uncorrected lenient level,
used to error on the side of inclusion). The lower right-
and left-hand corners of each graph contain the genes that
showed a large fold-change but fail to achieve statistical
significance (p > 0.01). GeneChip results show a larger
number of genes in these regions as compared to the
CodeLink data. The data points located in the upper-cen-

Table 1: False-change rate for GeneChip and CodeLink microarray platforms. The false-change rate is defined as the percentage of 
ratios, derived from the population of concordantly 'present' genes, which fall outside 2-fold (i.e. |log2 ratio| > 1). The table above 
contains the average and standard deviation of the false-change rate, calculated across the 10 pair-wise array combinations within a 
sample. False-change rate was calculated from signals above noise across the arrays being compared.

Array Platform Tissue AVG STDEV

CodeLink Brain 0.32% 0.13%
Pancreas 0.20% 0.14%

GeneChip Brain 0.69% 0.27%
Pancreas 1.28% 0.17%

Table 2: Precision ratio summary for GeneChip and CodeLink microarray platforms. Precision measurements were calculated from 
signals above noise across the arrays being compared. For CodeLink, there were 7,882 and 6,603 ratios, on average, for each pair-wise 
array-to-array comparison, within brain and pancreas respectively. For GeneChip, there were 6,734 and 5,137 ratios, on average, for 
each pair-wise array-to-array comparison, within brain and pancreas respectively. For each of the 10 pair-wise combinations, the ratio 
range within 95% of the ratios fall was calculated. This table contains the average and standard deviation, in which 95% of ratios fall 
within, across all 10 pair-wise array combinations within a sample.

Array Platform Tissue AVG STDEV

CodeLink Brain 1.36 0.09
Pancreas 1.27 0.01

GeneChip Brain 1.49 0.05
Pancreas 1.64 0.03
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tral region of each graph represent genes that were
statistically significant (p < 0.01) despite modest fold-
changes (< 2-fold). The minimal-detectable statistically
significant fold-change was tighter for CodeLink relative

to GeneChip as illustrated by the distance across the 'vol-
cano' plot at the 0.01 significance level. In addition, the
number of genes above the 0.01 significance level was
greater for CodeLink relative to GeneChip. The distribu-

Coefficients of variation for each platform as a function of intensity, across all replicatesFigure 2
Coefficients of variation for each platform as a function of intensity, across all replicates. Genes which are concordantly 'absent' 
are shown in red. The black line represents the 100-probe moving average.
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tion difference between the red and blue data points dem-
onstrates the advantage of identifying signals above noise
for making ratio calculations.

The 'volcano' plots are translated into Venn diagrams of
statistically significant differentially expressed genes for
each platform in Figure 5. Statistically significant (p <
0.01) expression ratios were determined using the entire
set of 10,763 uniquely common genes between platforms.
The total number of statistically significant differentially
expressed genes detected by both platforms from this

common set was 8,393. The intersection of the two plat-
forms represents 50% of the total number of significantly
differentially expressed genes. It is important to note that
using the method described here, only probes considered
above system noise are utilized for the correlation calcula-
tion. This leaves a set of probes which are discrepant calls
and require further analysis to determine the accuracy of
detection. The CodeLink platform called 5,322 genes con-
cordantly present across the two tissues while the Gene-
Chip platform called 3,691 genes (figure 5B, top panel).
The union represents 2,569 concordantly present calls

Correlation of differential expression ratios between CodeLink and GeneChipFigure 3
Correlation of differential expression ratios between CodeLink and GeneChip. Pearson correlation coefficients (r) are shown 
for each comparison. (A.) When all 10,763 overlapping genes are compared between platforms the correlation is 0.62. (B.) All 
values for genes concordantly 'absent' were removed prior to making the cross-platform correlation. In this case, 3,362 genes 
are called 'present' on at least 1 of the 5 replicates across both tissues and platforms. (C.) 2,569 genes called 'present' on at 
least 3 of the 5 replicates across both tissues and platforms. The correlation improves further to 0.74. (D.) Genes called 
present on all 5 replicates across both tissues and platforms. For these 1,760 genes the correlation is 0.79.
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common to both platforms, where n = 3 or more. In addi-
tion, the set of 1,760 concordantly 'present' gene probes,
across both platforms and tissues, was used to create a
Venn diagram of ratios derived from signals concordantly
above noise. The intersection of the two platforms repre-
sents 69% of the total number of differentially expressed
genes. There are a higher percentage of commonly signifi-
cantly changed genes between platforms when noise is
excluded from ratio calculations. In both cases CodeLink
shows a larger percentage of statistically differentially
expressed genes at a p value less than 0.01.

A power analysis was conducted on each microarray plat-
form to estimate the number of technical replicates
needed to achieve a reasonable level of statistical
confidence when noise was either included or excluded
from the dataset (Figure 6). Evaluating the power of each
platform at the level of technical replication allows
researchers to gauge the underlying system variance
before introducing biological variance in their studies.
From our analysis, to achieve a power of 0.90 using all
10,763 genes, 3 array replicates are minimally necessary
for CodeLink while 8 replicates are required for Gene-

Chip. However, when noise is excluded, both CodeLink
and GeneChip require only 1 array to achieve this same
level of power. In fact, when noise is excluded, 1 array for
both GeneChip and CodeLink has a 0.99 level of power in
detecting two-fold differences in expression. The signifi-
cant improvement in power by excluding noise provides
considerable value to microarray users since fewer arrays
are required to resolve desired differences in expression.
By identifying and removing noise both systems can
detect differential expression ratios less than 2-fold with a
high level of power. However, more genes are lost on the
GeneChip platform as a result of the higher level of noise
relative to CodeLink. Additionally, when noise is
excluded, 1.5-fold changes in expression can be detected,
at a 0.90 power, using 2 CodeLink or 3 GeneChip techni-
cal replicates.

The accuracy of CodeLink and GeneChip differential-
expression ratios were compared to quantitative real-time
PCR (qrtPCR). Microarray expression ratios were meas-
ured against results from qrtPCR for a randomly selected
subset of 25 genes (Table 3) and plotted in Figure 7. Both
microarray platforms correlated well to this alternative

'Volcano plots' for CodeLink and GeneChipFigure 4
'Volcano plots' for CodeLink and GeneChip. Each point represents a gene from the uniquely common set of 10,763 genes 
between platforms. Data points highlighted in blue represent genes which are concordantly 'present' in both tissues. The log10 
ratio of expression (brain/pancreas) is shown on the x-axis and the p-value, from a two-tailed Student's t-tests on normalized 
log-transformed intensities, is shown on the y-axis. The vertical dashed lines represent 2-fold change ratios and the horizontal 
dashed line represents the statistical-significance level where p = 0.01.
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expression-profiling technology with Pearson correlation
coefficients of 0.92 and 0.79 for CodeLink and GeneChip,
respectively.

Discussion
Increased access and utilization of microarray data
through core facilities and affordable commercial micro-
array systems is driving the need for direct comparisons of
data between the different available platform technolo-
gies. The ability to exchange data across different plat-
forms gives the research community the ability to cross-
validate results and extend understanding of biological
processes through integration of published data collected
with different technologies. The results presented here

demonstrate that we are closer to reaching this goal than
previously reported [4-7].

We have compared two commercial platforms and in
doing so present several steps required for making com-
parisons between short oligonucleotide microarray data
sets. First, one must normalize annotation. Unfortunately,
despite the completion of the human, rat and mouse
genome sequencing projects, accurate and stable gene
annotation information is not available. The existence of
inaccurate sequence information, absence of an exact gene
count, incomplete understanding of splicing variations,
and the complexity of highly homologous gene sequences
all contribute to the challenges of generating a controlled

Venn diagrams of differential expression calls and statistical significance across both microarray platformsFigure 5
Venn diagrams of differential expression calls and statistical significance across both microarray platforms. A two-sample two-
tailed t-test on normalized log-transformed intensities was performed for each microarray platform. (A) The entire set of 
10,763 uniquely common genes between platforms was used to determine the number of statistically significant (p < 0.01) 
expression ratios. Genes above and below noise were included in the analysis. (B) Statistical significance determined from the 
set of 2,569 genes which are 'present' on at least 3 arrays in both tissues. Expression values below noise ('absent') were not 
included in the analysis. (C) Statistical significance determined from the set of 1,760 genes which are 'present' on all 5 arrays in 
both tissues (i.e. concordantly 'present').
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vocabulary for uniquely and constantly annotating genes
at the present time. In addition, when considering com-
mercially available arrays, the consumer is left to rely on
the manufacturer to provide a probe with a one to one
correlation to the intended gene target. Furthermore, until
recently manufacturers have withheld the release of the
exact probe sequences to researchers [7]. Now that with a
simple disclosure agreement probe sequences from the
major manufacturers are readily available to the users, dis-
crepancies in some results will be explained by differences
in actual probe and probe sets targets as defined by
sequence homology. Some probes target different or mul-
tiple splice variants and some probes are not specific to a
single gene, but instead, target multiple homologous
genes. Since the use of GeneChip probe sequences for
deriving inter-platform overlap is currently prohibited by
Affymetrix for publication purposes, we needed to rely
upon public annotation to determine the overlap between
products rather than more informative sequence-based
comparisons. We believe that the use of probe sequences
will help to further refine the accuracy of the gene overlap
set, and increase the already strong correlation between
platforms demonstrated here. In addition, without the use
of sequence information, we filtered the data to include

only those probes and probe sets that identify a specific
gene target or common regions of splice variants of a sin-
gle gene target. Both manufacturers in some cases carry
multiple probes or probe sets per target gene. Trying to
determine which probes to compare in this case without
the use of sequence information is nearly impossible.
Therefore, only uniquely represented gene probes by both
manufacturers were used for comparisons. By employing
this conservative methodology, we reduce the risk of inap-
propriately comparing data from probes designed to
detect different transcripts or genes despite having a simi-
lar annotation. Importantly, we used a common build of
UniGene cluster IDs to find unique gene probes which
overlap between the two products.

When comparing between the two platforms using tissue
ratio data without regard for noise, the correlation
between platforms is not very strong (r = 0.62, Figure 3A),
similar to what was reported by Tan et al. 2003 [7]. This
brings us to the second step, removing background
signals. Considering background noise has random
sources and sources that are different in nature for the two
platforms, one would not expect to find a strong correla-
tion when using noise values in platform comparisons.

Table 3: List of genes evaluated using qrtPCR. For each gene, the microarray and qrtPCR brain/pancreas log2 ratios are listed. Raw CT 

values, qrtPCR primer/probe sequences, and corresponding array probe names are available in supplementary material [see additional 
files 1, 2, and 3, respectively].

Gene NCBI Acc Description qrtPCR CodeLink GeneChip

MLP NM_023009.1 MARCKS-like protein 2.33 2.08 4.20
COX7A2L NM_004718.1 cytochrome c oxidase subunit VIIa polypeptide 2 like 1.19 0.10 -0.31
COL6A3 NM_004369.1 collagen, type VI, alpha 3, transcript variant 1 -4.80 -4.75 -5.02
PRDX3 NM_006793.1 peroxiredoxin 3, nuclear gene encoding mitochondrial protein 0.82 0.81 -0.42
CDKN1A NM_000389.1 cyclin-dependent kinase inhibitor 1A -3.25 -2.89 -3.47
NUTF2 NM_005796.1 nuclear transport factor 2 1.25 1.25 -0.12
CEBPD NM_005195.1 CCAAT/enhancer binding protein, delta -0.54 0.41 -0.07
COL9A3 NM_001853.1 collagen, type IX, alpha 3 2.62 2.35 2.22
GLDC NM_000170.1 glycine dehydrogenase 5.93 3.33 2.85
TGFA NM_003236.1 transforming growth factor, alpha 2.44 1.54 1.43
GALK2 NM_002044.1 galactokinase 2 0.64 1.73 -0.39
ESR1 NM_000125.1 estrogen receptor 1 0.03 0.39 -0.28
FMO3 NM_006894.2 flavin containing monooxygenase 3 -1.06 -0.49 1.22
AKT1 NM_005163.1 v-akt murine thymoma viral oncogene homolog 1 0.14 0.40 0.34
PRPS1 D00860.1 phosphoribosyl pyrophosphate synthetase subunit I 1.53 0.62 -0.04
RPA3 NM_002947.1 replication protein A3 1.30 0.57 -0.97
SLIT2 NM_004787.1 slit homolog 2 (Drosophila) 2.81 1.64 0.51
HIC AF054589.1 HIC protein isoform p40 and HIC protein isoform p32 0.70 1.83 -0.22
HSA275986 NM_018403.1 transcription factor SMIF 1.51 1.41 -0.06
TFCP2L1 NM_014553.1 transcription factor CP2-like 1 -1.55 -1.23 -0.66
PPIE NM_006112.1 peptidylprolyl isomerase E (cyclophilin E) 0.00 -0.29 -1.10
FLJ14800 NM_032840.1 hypothetical protein FLJ14800 0.97 1.41 1.20
MGC24039 AL137364.1 cDNA DKFZp434E0626 2.70 1.92 2.29
USF1 X55666.1 late upstream transcription factor 2.18 0.81 -0.86
B4GALT7 NM_007255.1 xylosylprotein beta 1,4-galactosyltransferase, polypeptide 7 0.45 -0.41 -0.44
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Each manufacturer warns users to be critical of confidence
in calls that are below the defined threshold or considered
'absent'. Therefore, we removed noise and made correla-
tions based only on calls that were 'present' in both tissue
samples and microarray systems. Kuo et al. made a limited
but similar attempt to reduce noise by using what they
termed a "variance filter" [4]. Our process of filtering
noise reduced the overlap of 10,763 genes to 3,362, 2,569
or 1,760 genes if one accepts 'present' calls on at least 1, 3
or all 5 of the array replicates, respectively, across both tis-
sues and platforms. Using this methodology, however, we
found a stronger ratio correlation between the two plat-
forms (r = 0.70, 0.74 or 0.79, Figure 3B,3C,3D). We have
found that when limiting the comparison set to those
probes which are uniquely represented, specific for their
targets of interest, and called 'present' in the samples
tested on each platform, the correlation between technol-
ogies is very reasonable for data sharing. Supporting this
methodology, a recent study found a substantial improve-
ment in the correlation between spotted long-oligo arrays
and the Affymetrix platform with data filtering by

removing low intensity signals below the median [11].
Interestingly, when Barczak and colleagues removed low
intensity signals, the Pearson correlation coefficient
improved from 0.60 to 0.80, which is in the same range as
in our study [11]. Rather than removing all low intensity
signals below the median, we recommend data filtering
by using each manufacturer's standard software package
to identify those genes which are within noise. This
approach to filtering noise offers great value to microarray
users since our recommendation does not require the
immediate loss of 50% of the data in making cross-plat-
form comparisons.

Finally, an alternative expression-profiling technology,
qrtPCR, was used to follow up on a smaller subset of the
concordantly correlated set to demonstrate that the data
generated here was not merely an anomaly specific to oli-
gonucleotide arrays (Figure 7). Both platforms correlated
well to this alternative expression-profiling technology
with r values of 0.92 and 0.79 for CodeLink and Gene-
Chip, respectively. Previous studies have found agreement

Power analysis estimating the number of technical array replicates needed to achieve a reasonable level of statistical power or confidence for CodeLink (blue) and GeneChip (red) when noise was included (solid diamonds) or excluded (open diamonds)Figure 6
Power analysis estimating the number of technical array replicates needed to achieve a reasonable level of statistical power or 
confidence for CodeLink (blue) and GeneChip (red) when noise was included (solid diamonds) or excluded (open diamonds). 
For both graphs the alpha was set at 0.01. (A) Relationship between power and arrays necessary to statistically discriminate 
two-fold changes in expression. To achieve a power of 0.90 using all 10,763 genes, 3 arrays are minimally necessary for Code-
Link while 8 are required for GeneChip. However, when noise is excluded, both GeneChip and CodeLink require only 1 array 
to achieve this same level of power. In fact, when noise is excluded, 1 array for both GeneChip and CodeLink has a power of 
0.99 to detect two-fold changes in expression. B.) In order to detect 1.5 fold changes in expression, at a 0.90 power, when 
noise is excluded, CodeLink minimally requires 2 arrays while GeneChip requires 3.
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between genes screened with microarray technology and
subsequent qrtPCR verification of those expression meas-
urements [12,13]. We are in the experimental process of
using qrtPCR with a larger set of genes as an independent
method to resolve discordant gene expression results
between the two microarray platforms.

The comparison described here parses the data into three
sets: (1.) Concordantly 'present' which was used to
calculate the correlation comparisons; (2.) Concordantly
'absent', where both platforms agree that the transcript is
not 'present' in the samples tested; and (3.) 'Present' on
one microarray platform but not the other, which are con-
sidered a separate set of discrepant results. In the studies
presented here, the CodeLink platform generates a higher
percentage of detectable signals above noise (Figures 1, 2,
and 5). This finding is consistent for all replicate arrays
across both tissues analyzed. Previously, Ramakrishnan et
al. 2002 reported detection down to an estimated sensitiv-
ity level between 1:750,000 and 1:900,000 for the Code-
Link platform [14]. However, biological validity of these
low level calls by qrtPCR or other method have not been
confirmed the results. In addition, a significant number of
signals were detected by the GeneChip platform and were

not detected by the CodeLink platform. Therefore, follow
up studies are necessary to definitively determine which of
the discordant calls are biologically relevant and which
may be potential false positive calls. It would be informa-
tive to understand the underlining basis of the discordant
calls. Assigning cause such as differences in sensitivity,
analysis algorithms, or characteristics of the two platforms
would be of great values to furthering comparative
studies.

Discrepant calls between the two platforms may derive
from differences in the GeneChip and CodeLink platform
technologies. The platforms differ in the oligodeoxyribo-
nucleotide probe length and number of probes per gene.
A microarray study, using covalently attached oligodeox-
yribonucleotides, found that 30- and 35-mer oligodeox-
yribonucleotides generated signals two- to five-fold
higher than 25-mers [15]. Relogio et al. suggested that 30-
mers offered the best compromise between sensitivity and
specificity [15]. However, the GeneChip platform offers
multiple probes per gene, potentially offsetting the need
for longer probes through multiple hybridization points.
The CodeLink platform contains one pre-validated probe
per gene that was screened for performance from an orig-
inal panel of three probes per gene. Previous research has
demonstrated that one probe per gene is sufficient to
accurately measure differential expression [16]. Having
one pre-validated probe per gene rather than a panel of
probes per gene on a microarray platform may be
advantageous towards improving sensitivity since there is
no requirement that many probes within a gene must
agree for expression to be detected and called. A single
probe must, however, be very accurately designed to cover
the range of splice variants feasible, and must reside in an
area accessible to the RNA or DNA fragments hybridizing.
Variation in signals may also derive from the nature of the
substrate for probe attachment. Previous publications
have indicated that the use of a three-dimensional matrix
coated slide results in a larger number of potential attach-
ment sites than modified glass [17-19]. Stillman and
Tonkinson [20] have shown higher specific hybridization
signals on a three-dimensional matrix compared with
glass. In addition, it has been demonstrated that the
CodeLink three-dimensional matrix allows for reduced
steric hindrance and increased availability of the entire
oligonucleotide for hybridization with its intended target
[21]. Side-by-side comparisons of the performance of the
same probe set and analysis technique would be required
to confirm any contribution to discrepant results observed
in this study.

Discrepant calls between the two platforms may also
likely derive from differences in the GeneChip and Code-
Link analysis algorithms. The use of mismatches on the
GeneChip platform may limit detection since others have

Accuracy of CodeLink and GeneChip differential-expression ratios relative to qrtPCRFigure 7
Accuracy of CodeLink and GeneChip differential-expression 
ratios relative to qrtPCR. Expression ratios for each micro-
array platform were measured against results from qrtPCR 
for a randomly selected subset of 25 genes. Pearson correla-
tion coefficients (r) are shown for each comparison.
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reported that, in general, one third of GeneChip mis-
matches are higher in signal than their perfect match
counterparts [9,22,23]. Alternative analysis methodolo-
gies that do not utilize the mismatch controls may alter
the discordant set, but as described earlier, there is a large
potential variation in the different methodologies and a
lack of a single majority method. Therefore, we chose to
analyze the dataset in this study with the MAS 5.0 algo-
rithms, as recommended by Affymetrix. It is likely that
each of the aforementioned factors, in addition to anno-
tation differences, contribute to variable results, and taken
together account for the set of discrepant calls observed
between the GeneChip and CodeLink platforms (Figure
5).

Conclusions
This paper highlights the value of separating signal from
noise in order to improve microarray cross-platform cor-
relations. We also demonstrate a stronger correlation
between platforms than previously reported based on our
data filtering and parsing methodology. We believe there
is strong similarity in calls by each system and differences
in sensitivity and levels of noise are largely responsible for
lower levels of correlation. Furthermore, as a standardized
annotation system develops and freely open access to the
use of microarray probe sequences is realized, it will help
clear up discrepancies on a case by case basis.

Methods
Array design and fabrication
CodeLink UniSet Human 20 K Bioarray (Amersham Bio-
sciences, Chandler, AZ) contains a collection of approxi-
mately 20,289 probes within a single reaction chamber on
each individual slide. All oligonucleotide probes are 30
bases in length. The core of the CodeLink platform is a
glass slide coated with a polyacrylamide gel matrix to cre-
ate a three-dimensional aqueous hybridization environ-
ment. Modified 5'-amine-terminated oligonucleotides are
deposited onto the polymer using piezoelectric dispens-
ing robots and then covalently attached to activated func-
tional groups within the gel matrix. Oligonucleotides are
co-dispensed with a fluorescein-derivative dye, which
enables scanning and inspection of every feature element
on every slide after the dispensing. Additional sites are
then blocked and slides are washed, rinsed and dried prior
to attachment of an integrated, proprietary, polypropyl-
ene hybridization chamber. All probes appearing on the
final product have been pre-validated for performance
and screened from an original panel of up to three probes
per gene.

The HG-U133 GeneChip Set from Affymetrix (Santa
Clara, CA, USA) contains 44,928 probes, on 2 chips, that
represent 42,676 unique sequences from the GenBank
database corresponding to 28,036 unique UniGene clus-

ters. The GeneChip technology is based on a photolitho-
graphic in situ synthesis. Individual probes consist of 25
base DNA sequences.

Target preparation and array hybridization
One lot of human brain and pancreas total RNA (brain
lot#033P010402009A and pancreas lot#022P0102B from
Ambion) was assessed for quality using the Agilent 2100
Bioanalyzer and split equally between Amersham Bio-
sciences in Chandler, Arizona and the Genomics Shared
Service at the Arizona Cancer Center. The Affymetrix target
preparations and hybridizations were performed entirely
at the Arizona Cancer Center to ensure that these microar-
rays were run by an independent party with GeneChip
expertise. In addition, an aliquot from these lots of total
RNA was saved and subsequently used in qrtPCR reac-
tions for verifying the expression profiles obtained by
each microarray platform.

For each Affymetrix GeneChip, double-stranded cDNA
was synthesized from 5 ug of total RNA with the Super-
Script Double-Stranded cDNA Synthesis Kit (Invitrogen)
and dT24-T7 primer (Operon) according to the manufac-
turer's instructions. Biotin-labeled cRNA was prepared by
in vitro transcription using the BioArray High Yield RNA
Transcript Labeling Kit (Enzo). The dsDNA was mixed
with 1× HY reaction buffer, 1× biotin labeled ribonucle-
otides (NTPs with Bio-UTP and Bio-CTP), 1× DTT, 1×
RNase inhibitor mix and 1× T7 RNA polymerase. The mix-
ture was incubated at 37°C for 5 hours. The labeled cRNA
was then purified using an RNeasy mini kit (Qiagen)
according to the manufacturer's protocol and ethanol pre-
cipitated. Fragmentation of cRNA, hybridization, wash-
ing, staining, and scanning were performed as described
in the Affymetrix GeneChip Expression Analysis Technical
Manual [24]. Briefly, the purified cRNA was fragmented in
1× fragmentation buffer (40 mM Tris-acetate, 100 mM
KOAc, 30 mM MgOAc) at 94°C for 35 minutes. For
hybridization with GeneChip cartridge (Affymetrix), 15
ug of fragmented cRNA was incubated with 50 pM control
oligonucleotide B2, 1× eukaryotic hybridization control
(1.5 pM BioB, 5 pM BioC, 25 pM BioD, and 100 pM cre),
0.1 mg/ml herring sperm DNA, 0.5 mg/ml acetylated BSA
and 1× manufacturer recommended hybridization buffer,
and hybridization was performed with a GeneChip Flu-
idic Station (Affymetrix) using the appropriate antibody
amplification, washing and staining protocol. The phyco-
erythin-stained array was scanned, resulting in a digital
image file. In all, 5 replicates of U133A and U133B were
processed for each total RNA sample. Therefore, 10 target
preparation reactions were performed for each of the two
tissues to generate the necessary cRNA for this study.

For each CodeLink Bioarray, double-stranded cDNA and
subsequent cRNA was synthesized from 5 ug of total RNA
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using the CodeLink Expression Assay Kit (Amersham Bio-
sciences) according to manufacturer's instructions [25].
Briefly, cRNA was prepared by in vitro transcription using
a single, labeled nucleotide, biotin-11-UTP in the IVT
reaction at a concentration of 1.25 mM. Unlabeled UTP
was present at 3.75 mM, while GTP, ATP, and CTP were at
5 mM. The mixture was incubated at 37°C overnight for
14 hours. The labeled cRNA was then purified using an
RNeasy® mini kit (Qiagen). Fragmentation of cRNA,
hybridization, washing, staining, and scanning were per-
formed as described [26]. Briefly, the purified cRNA was
fragmented in 1× fragmentation buffer (40 mM Tris-ace-
tate pH 7.9, 100 mM KOAc, 31.5 mM MgOAc) at 94°C for
20 minutes. For hybridization with CodeLink bioarrays
(Amersham Biosciences), 10 ug of fragmented cRNA in
260 ul of hybridization solution was added to each bioar-
ray via the Flex Chamber port and incubated for 18 hours
at 37°C, while shaking at 300 r.p.m. in a New Brunswick
Innova™ 4080 shaking incubator. The 10 bioarrays, in this
study, were processed in parallel using the CodeLink
Shaker Kit and CodeLink Parallel Processing Kit (Amer-
sham Biosciences). Bioarrays were stained with Cy5™-
streptavadin (Amersham Biosciences) and scanned using
a GenePix® 4000 B scanner (Axon Instruments).

Deriving expression values and classifying probes within 
noise ('absent') for each platform
For the U133 GeneChip technology, each gene is repre-
sented by 11 probe pairs containing both a perfect match
probe (PM) and a mismatch probe (MM) where the mid-
dle (13th) base of each 25-mer probe is incorrect. The MM
probe is designed to give an indication of the degree of
nonspecific hybridization [26]. The MAS 5.0 software uses
both PM and MM values for the expression calculation,
one that avoids the production of negative values. MAS
5.0 employs a scenario-based approach to expression cal-
culations and in general hypothesizes that MM probes
should show lower hybridization signal than the corre-
sponding PM probes. A decision process is used when this
PM > MM assumption is broken. When all MM values are
less than their PM counterparts, an expression value is cal-
culated using a one-step bi-weight estimate of the log(PM
– MM) values for each probe pair. However, when the MM
value for a probe pair is greater than the PM value, two dif-
fering scenarios are applied. 1.) If the values of the PM
probes are sufficiently large and separable from the back-
ground and MM signals, then the MM value is replaced
with a value calculated as typical for the probe set. 2.) If it
is difficult to separate the probe signals from background
then the MM signal is substituted with a value slightly less
than the PM signal. Once an expression value is calculated
for each probe set the next step is the calculation of a
Detection p-value and the comparison of each Discrimi-
nation score to the user-definable threshold (Tau). Tau is
a small positive number that can be adjusted to increase

or decrease sensitivity and/or specificity of the analysis
(default value = 0.015). The One-sided Wilcoxon's Signed
Rank test is the statistical method employed to generate
the Detection p-value. It assigns each probe pair a rank
based on how far the probe pair discrimination score is
from Tau. The user-modifiable Detection p-value cut-offs,
Alpha 1 (α1) and Alpha 2 (α2) provide boundaries for
defining 'Present', 'Marginal' or 'Absent' calls. At the
default settings (α1 = 0.04 and α2 = 0.06), any p-value
that falls below α1 is assigned a 'Present' call, and above
α2 is assigned an 'Absent' call. 'Marginal' calls are given to
probe sets which have p-values between α1 and α2. In our
study, the MAS 5.0 default parameters were retained. For
a complete description of the MAS 5.0 algorithms and
statistical tests please refer to the Affymetrix manuals
[10,27,28].

For the CodeLink bioarrays, spot signals are quantified
using ImaGene 5.5 software (BioDiscovery, Marina Del
Ray, CA). The mean intensity is taken for each spot and
background corrected by subtracting the surrounding
median local background intensity. A spot is considered
'absent' (within noise) if the spot's signal mean is less
than its corresponding local background mean plus one
standard deviation of local background pixels. For each
probe the local background is comprised of a circular area
of pixels surrounding the segmented signal. The image
segmentation and quantification process is outlined in
the ImaGene 5.5 user's manual [29].

Cross-platform comparisons of expression data
To facilitate comparisons between data sets, CodeLink
probes and GeneChip probe sets were mapped to specific
sequence clusters according to the NCBI Human UniGene
build #166 relative to the manufacturer's provided NCBI
accession numbers. Multiple probe or probe sets targeting
a single UniGene cluster or single probe or probe sets tar-
geting multiple clusters were removed from considera-
tion. The overlapping and uniquely represented UniGene
clusters were used to identify 10,763 gene probes for com-
parison between platforms. Gene-expression values were
global linearly normalized according to manufacturers'
standard normalization procedure [9,26]. The 96% trim-
mean of the entire GeneChip array was used for Affyme-
trix normalization while CodeLink values were normal-
ized against the array median. The globally normalized
data from both platforms were scaled to 1.0 in order to
bring both platforms to the same intensity range for com-
parative purposes. The analysis was performed using SAS
statistical software and Microsoft Excel.

Power analysis of CodeLink and GeneChip platforms
A power analysis is a computational tool used to deter-
mine the replication needed to achieve a desired level of
confidence in results from a particular experiment [30-
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32]. Determining the number of microarray replicates
necessary for classification of expression profiles has been
presented as an important issue [33,34] and should be
one of the first things to consider when designing any
experiment. Fore each tissue we hybridized the same tar-
get on each of five microarrays; therefore the expected flu-
orescence values for each independent probe should be
the same from each array to array replicate, making the
expected fold change equal to 1 (i.e. µ1 = µ2). The power
analysis was modeled from log2 transformed ratios
derived from all pair-wise array-to-array combinations
across the five replicates within the brain sample, since
this tissue had the greatest similarity in performance
between microarray platforms. Expression profiling of the
pancreas sample showed many more genes within noise
('absent') for the GeneChip platform relative to Code-
Link. The power analysis was conducted as previously
described [35,36] for the population of all 10,763 genes
within each platform and the population of genes above
noise ('present').

Real-time PCR
The TaqMan® One-Step RT-PCR Master Mix Reagent Kit
(Applied Biosystems, Foster City, CA, USA) was used with
each custom designed, gene-specific primer/probe set to
amplify and quantify each transcript of interest. Optimal
primer/probe sets were selected using Primer Express soft-
ware version 1.0 B6 (Applied Biosystems). Reactions (25
ul) contained 100 ng of total RNA, 300 nM forward and
reverse primers, 200 nM TaqMan probe, 12.5 uL 2X Mas-
ter Mix without the enzyme uracil DNA glycosylase
(UNG), 0.625 mL MultiScribe™ and RNAase Inhibitor
Mix, and 6.875 uL RNAse-free water. RT-PCR amplifica-
tion and real-time detection were performed using an ABI
PRISM 7700 Sequence Detection System (Applied Biosys-
tems) for 30 min at 48°C (reverse transcription), 10 min
at 95°C (AmpliTaq Gold activation), 38 cycles of denatur-
ation (15 s at 95°C), and annealing/extension (60 s at
60°C). Data were analyzed using ABI PRISM Sequence
Detection Software version 1.6.3 and then further proc-
essed using Microsoft® Excel (Microsoft, Redmond, WA).
Cyclophilin (PPIE) served as the endogenous control for
the normalization of input target RNA. Raw CT values, qrt-
PCR primer/probe sequences, and corresponding array
probe names are available in supplementary material [see
additional files 1, 2, and 3, respectively].
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