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Abstract 

Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors that lacks effective 
treatment options. Cancer-associated fibroblasts (CAFs), an important component of the tumor microenvironment, 
associated with tumor progression, prognosis, and treatment response. This work aimed to explore the novel CAFs-
associated target to improve treatment strategies in PDAC.

Methods The PDAC single-cell sequencing data (CRA001160, n = 35) were downloaded and integrated based on GSA 
databases to classify fibroblasts into fine subtypes. Functional enrichment analysis and coexpression regulatory 
network analysis were used to identify the functional phenotypes and biological properties of the different fibroblast 
subtypes. Fibroblast differentiation trajectories were constructed using pseudochronological analysis to identify initial 
and terminally differentiated subtypes of fibroblasts. The changes in the proportions of different fibroblast subtypes 
before and after PDAC immunotherapy were compared in responsive and nonresponding patients, and the rela-
tionships between fibroblast subtypes and PDAC immunotherapy responsiveness were determined based on GSA 
and GEO database. Using molecular biology methods to confirm the effects of BNIP3 on hypoxia and inflammation 
in CAFs. CAFs were co cultured with pancreatic cancer cells to detect their effects on migration and invasion of pan-
creatic cancer.

Results Single-cell data analysis divided fibroblasts into six subtypes. The differentiation trajectory suggested 
that BNIP3+ Fibro subtype exhibited terminal differentiation, and the expression of genes related to hypoxia 
and the inflammatory response increased gradually with differentiation time. The specific overexpressed genes 
in the BNIP3+ Fibro subtype were significantly associated with overall and disease progression-free survival 
in the patients with PDAC. Interestingly, the greater the proportion of the BNIP3+ Fibro subtype was, the worse 
the response of PDAC patients to immunotherapy, and the CRTL treatment regimen effectively reduced the propor-
tion of the BNIP3+ Fibro subtype. After knocking out BNIP3, the hypoxia markers and inflammatory factors of CAFs 
were inhibited. Co-culture of CAFs with pancreatic cancer cells can increase the migration and invasion of pancreatic 
cancer, but this could be reversed by knocking out BNIP3.
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Conclusions This study revealed the BNIP3+ Fibro subtype associated with hypoxia and inflammatory responses, 
which was closely related to the poor prognosis of patients with PDAC, and identified signature genes that predict 
the immunotherapy response in PDAC.

Keywords Pancreatic ductal adenocarcinoma, BNIP3+ fibroblasts, Prognosis, Immunotherapy

Introduction
Pancreatic ductal adenocarcinoma (PDAC) accounts 
for approximately 90% of all pancreatic cancers. Pan-
creatic cancer is characterized clinically by its gradual 
onset, high invasiveness, and propensity for easy metas-
tasis [1]. Therefore, the majority of patients with PDAC 
are diagnosed at an advanced stage. It is extremely 
malignant and has a 5-year survival rate of less than 
10%. According to the American Cancer Statistics 
Association, pancreatic cancer will become the second 
leading cause of cancer death worldwide in 2030 [2]. 
Immunotherapy has seen widespread application and 
remarkable progress in treating various solid tumors in 
recent years. However, strategies aimed at deconstruct-
ing the surrounding desmoplastic stroma and targeting 
the immunosuppressive pathways have largely failed in 
PDAC [3]. Recent study has found that pancreatic can-
cer tissue contains abnormally abundant tumor stroma, 
and remodeling or alleviating the tumor microenviron-
ment may make PDAC sensitive to immune checkpoint 
inhibitors.

A dense stromal tumor microenvironment accounts 
for 90% of pancreatic tumor masses [4]. Fibroblasts are 
the main component of the matrix and can secrete large 
amounts of extracellular components, such as extracel-
lular matrix and matrix metalloproteinases, thereby 
producing unique PDAC tumors with immunosuppres-
sive effects [5]. Activated cancer-associated fibroblasts 
(CAFs) can also release collagen, fibronectin and hya-
luronic acid. These extracellular matrices infiltrate the 
tumor microenvironment, increasing tumor density and 
preventing killer T cells from infiltrating the tumor to a 
large extent. Moreover, the response of PDAC to immu-
notherapy is limited [6, 7]. Fibroblast populations exhibit 
extensive heterogeneity in terms of cell origin and phe-
notype, which leads to differences in behavior during 
tumor development, with most fibroblast subtypes act-
ing as tumor promoters, whereas other subtypes simul-
taneously play a tumor suppressor role. In addition, the 
mutual transformation between different subtypes also 
indicates the plasticity and pluripotency of fibroblasts. 
The proportions of different fibroblast subtypes may 
change dynamically with the progression of tumors or 
the progression of immunotherapy [8]. Therefore, iden-
tifying reliable and specific cell surface markers is the key 
to distinguishing different fibroblast subtypes [9, 10].

Single-cell sequencing, capable of quantifying the 
attributes of individual cells, serves as a powerful tool for 
examining the cellular components and their interactions 
within the tumor microenvironment. This study used sin-
gle-cell sequencing data to divide the patients with PDAC 
into fine subtypes, identify the biological functions and 
differentiation trajectories of the fibroblast subtypes, 
and explore the relationships between the fibroblast sub-
types and the prognosis and immunotherapy response 
of patients with PDAC. We found that the COLEC11+ 
Fibro and PLA2G2A+ Fibro subtypes were dominant in 
normal pancreatic tissue. In PDAC tissue, these two sub-
types were significantly reduced, and a specific BNIP3+ 
Fibro subtype differentiated. In the immunotherapy 
cohort, the greater the proportion of patients in the 
COLEC11+ Fibro and PLA2G2A+ Fibro subtypes was, 
the greater the immunotherapy response was, while the 
proportion of patients in the BNIP3+ Fibro subtype in 
the poor response group increased, which provides theo-
retical basis for the selection of immunotherapy options 
for PDAC patients.

Materials and methods
Single‑cell data download and preprocessing
The pancreatic cancer single-cell data were downloaded 
with the data number CRA001160 in the GSA database 
(https:// ngdc. cncb. ac. cn/ gsa/) [11]. Whole single-cell 
transcriptome data analysis was completed using the 
Seurat package (version: 4.0.3) in R language. The Crea-
teSeuratObject function was used for the merged sample 
to construct a single-cell analysis object. The parameter 
“min.features = 100” was used to ensure that the initial-
ized cells had at least 100 genes. The “min.cells = 10” 
parameter was used to ensure that the genes were present 
in at least 10 cells. The initial filtering process involves 
certain expressions.

Integrated analysis of single‑cell data and cell type 
annotation
After data preprocessing and quality control, we 
obtained high-quality expression data for 35 samples. 
To avoid the influence of sample batch effects, we used 
canonical correlation analysis (CCA) to analyze multi-
ple samples. Unbiased integration was performed. The 
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FindIntegrationAnchors function was subsequently used 
to find similarity anchors between pairs of data, and the 
IntegrateData function was used to integrate multiple 
sample groups.

After the sample integration step, we performed 
dimensionality reduction clustering and cell type anno-
tation on the data and used the FeaturePlot function 
to mark the expression of various cell landmark genes 
and annotate cell types. Subtypes without marker gene 
expression, as well as cell groups expressing two or more 
cell marker genes, were defined as low-quality cells and 
double cells, respectively. Low-quality cells and double 
cells were uniformly removed and were not subjected to 
further analysis. A total of 57,340 high-quality single-cell 
expression data points were ultimately obtained.

Single‑cell pathway activity and functional enrichment 
analysis
The R package G SVA (version 1.40.1) was used to 
implement the gene set variation analysis (GSVA) algo-
rithm. The overall process is divided into three steps: 
1. The average expression function in Seurat was used 
to calculate the number of genes in each cell subtype. 
Mean expression matrix; 2. The getGmt function con-
structs the set of pathways and genes to be analyzed. 
The metabolic pathway genes were obtained from pub-
lished articles (https:// doi. org/ 10. 1126/ sciadv. abd97 
38). The Hallmark50 gene set was downloaded from the 
Molecular Signatures Database (v7.5.1) (https:// www. 
gsea- msigdb. org/ gsea/ index. jsp); 3. The gsva function 
was used to perform G SVA analysis, and the parameters 
were set to min.sz = 5 and max.sz = 500.

The R package fgsea (version: 1.18.0) was used to imple-
ment the G SEA (Gene Set Enrichment Analysis) algo-
rithm, which is divided into four steps: 1. The Wilcoxon 
function of the R package presto (version: 1.0.0) was used 
to calculate the differences in gene expression between 
the tumor tissue and control tissue; 2. The gmtPathways 
function was used to construct the pathways and gene 
sets to be analyzed. The Hallmark50 gene set was down-
loaded from the Molecular Signatures Database (v7.5.1) 
(https:// www. gsea- msigdb. org/ gsea/ index. jsp); 3. The 
fgseaMultilevel function performs G SEA analysis and 
sets the parameters minSize = 10, maxSize = 500 and 
eps = 0; 4. The plotEnrichment function was used to plot 
the gene set enrichment.

Pseudosequential differentiation trajectory inference 
and analysis
To conduct an in-depth analysis of the progression and 
differentiation of different fibroblast subtypes in pan-
creatic cancer, Monocle2 (version: 2.20.0) software was 
first used to perform pseudochronological analysis of 

pancreatic cancer and adjacent fibroblasts to construct 
and visualize cell differentiation path. The analysis 
involved the following four steps: (1) The newCellData-
Set function was used to construct a CellDataSet object, 
and the expressionFamily parameter was set to negbino-
mial.size(); (2) the estimateSizeFactors and estimateDis-
persions functions were used to calculate the factors and 
divergences of gene expression, after which differential-
GeneTest was used to select the top 1000 highly variable 
genes of each subtype for trajectory construction; and 
(3) the DDRTree method of the reduceDimension func-
tion was used to reduce the dimensionality of the gene 
expression matrix, after which the orderCells function 
was used to restore the cell differentiation path from the 
dimensionally reduced data. The position of cells on the 
differentiation path was fixed. (4) Visualization of cell 
differentiation trajectories included the following meth-
ods. The plot cell trajectory function visualizes the cell 
differentiation path. The plot genes in pseudotime and 
heatmap functions visualize a specific gene and multi-
ple genes, respectively, in the pseudotime sequence. The 
expression change trend, plot genes branched pseudo-
time and plot genes branched heatmap functions were 
used to visualize the change in gene expression of a spe-
cific gene and multiple genes before and after a specific 
branch point, respectively, in the pseudotime series. The 
selection of key genes at the bifurcation point was com-
pleted by the BEAM algorithm function.

Monocle2 was used to construct the tree differentiation 
structure of the data. To better reflect the high-dimen-
sional characteristics of the data, Mono cle3 (version 
1.2.9) was further used to study the differentiation tra-
jectory. The analysis involved the following four steps: 
(1) The new cell data set function created the Mono cle3 
analysis object; (2) Based on the Seurat software, the 
clustering results were mapped to Monocle 3; (3) The 
learn graph function inferred the cell differentiation tra-
jectory, and the order cell function was sorted according 
to the order of differentiation; (4) The graph test function 
was used to perform differential gene calculations based 
on the graph and then calculate the coexpressed gene 
module in the high-dimensional space based on Moran’s 
index. The biological function of the module was deter-
mined with the clusterProfiler package.

Identification of subtype transcription factors
The gene regulatory network (GRN) is composed of 
transcription factors (TFs), cofactors and their regu-
lated target genes (target genes), which together deter-
mine the transcriptional status of cells in a certain state. 
SCENIC software (version 1.2.4) was used to identify 
transcriptional regulators of different subtypes. The over-
all SCENIC process includes three steps: (1) GENIE3/

https://doi.org/10.1126/sciadv.abd9738
https://doi.org/10.1126/sciadv.abd9738
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
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GRNBoost (gradient boosting) was used to infer the 
coexpression module between transcription factors and 
candidate target genes based on coexpression; and (2) 
since the GENIE3 model is based only on coexpression, 
there will be many false-positives and indirect regula-
tory effects. To identify direct binding targets, RcisTar-
get was used to construct cis-regulatory motifs in each 
coexpression module. TF-motif enrichment analysis was 
then performed to identify direct targets. Each TF and its 
potential direct target genes are called a regulon. (3) The 
AUCell algorithm was used to score the activity of each 
regulon in each cell. For a regulon, comparing AUCell 
scores between cells can reveal which cells have signifi-
cantly greater activity. This will determine in which cells 
regulon is actively turned on. The reference database 
used in the above analysis process was downloaded from 
the website (https:// resou rces. aerts lab. org/ cista rget/ 
datab ases). The cell type-specific transcription factors 
were evaluated based on the regulation specificity score 
(RSS).

Weighted gene coexpression regulatory network analysis
Weighted gene coexpression regulatory network 
(WGCNA) is a method used to analyze and describe 
gene association patterns between different samples. 
The tool can be used to identify gene sets that change 
highly collaboratively and to identify key factors based 
on the interconnectivity of gene sets and the associa-
tions between gene sets and phenotypes. Compared with 
studies that only focus on differentially expressed genes, 
WGCNA (version 1.71) uses the information of thou-
sands or nearly 10,000 most highly expressed genes or all 
genes to identify gene sets of interest and performs sig-
nificant correlation analysis with phenotypes.

Survival analysis
Survival analysis was completed through the online web-
site GEPIA (http:// gepia. cancer- pku. cn/), and pancreatic 
cancer patient survival data from The Cancer Genome 
Atlas were selected for analysis. Patients were sorted 
according to gene expression levels and divided into 
high- and low-expression groups using upper and lower 
quartiles. Overall survival and progression-free survival 
were analyzed. The log rank p value was calculated, and 
a log rank p value < 0.05 was considered to indicate a sig-
nificant difference in survival.

Immunotherapy data download and preprocessing
The data number GSE202051 (https:// www. ncbi. nlm. 
nih. gov/ geo/ query/ acc. cgi? acc = GSE202051) was down-
loaded comprehensively used single-cell transcriptome 
sequencing technology to analyze single-cell data before 
and after neoadjuvant treatment for pancreatic cancer 

and the response of patients to different treatment regi-
mens [12]. The data included data from 43 pancre-
atic cancer patients, 25 of whom were untreated tumor 
samples and 18 of whom had undergone neoadjuvant 
treatment. We selected all the samples for subsequent 
integrated analysis and research. The data preprocess-
ing procedure was consistent with the aforementioned 
method, and a total of 224,988 high-quality single-cell 
expression data points were ultimately obtained.

Immunotherapy data integrated analysis and cell type 
annotation
In order to compare neoadjuvant treatment data with 
previous data, we performed data integration and cell 
type identification based on comparison of reference data 
and query data. First, the previously annotated fibro-
blast subpopulation was used as a reference data set, and 
the overall fibroblasts after neoadjuvant treatment were 
extracted as a query data set. FindTransferAnchors func-
tion was used to calculate the anchor points between the 
two data sets. Then TransferData function was carried 
out to convert and annotate the calculated anchor points. 
Finally, MapQuery function was used to display the query 
data set in the UMAP space of the reference data set.

Analysis of cell state transition based on cell rank
CellRank software was used to calculate the pseudontime 
of differentiation to estimate the possibility of various 
cells differentiating into stable cell types [13]. Moreo-
ver, the authors estimated which cells were at the start-
ing point and end of differentiation based on the transfer 
characteristics of cells on the Markov chain. To further 
determine the initial and terminal differentiation sub-
types of fibroblast subtypes, CellRank software was used 
to infer the states of the cells based on Pseudotime in 
Monocle3.

Cell culture
Pancreatic cancer cells (Panc-1, BxPC-3 and Panc02) 
were purchased from Procell Life Science & Technology 
(Wuhan, China), and the cells were cultured according 
to the manual instructions. The cell lines were cultured 
in RPMI-1640 medium (Gibco, USA) supplemented with 
10% fetal bovine serum (FBS) (Gibco, USA) and 1% peni-
cillin/streptomycin (Gibco, USA).

Extraction of pancreatic cancer‑associated fibroblasts 
through the collagenase method
Surgically-resected PDAC tissues and paracancerous 
normal pancreatic tissues were collected and immedi-
ately placed in DMEM culture medium supplemented 
with a penicillin–streptomycin dual antibiotic solu-
tion. An electronic balance was used to weigh 40  mg 

https://resources.aertslab.org/cistarget/databases
https://resources.aertslab.org/cistarget/databases
http://gepia.cancer-pku.cn/
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of type II collagenase (ThermoFisher, USA). A total 
of 10 ml of DMEM culture medium was added to the 
collegenase and mixed by pipetting until it was fully 
dissolved. This yielded a 0.4% type II collagenase solu-
tion, which was then passed through a 0.22  µm filter 
and stored in a refrigerator at 4  °C. Next, ophthalmic 
scissors were used to remove adipose tissue and other 
tissues from around the PDAC and normal paracan-
cerous pancreatic tissues. The specimens were cut 
into 1–2  mm3-sized pieces, placed in a 0.1% type II 
collagenase solution, with a volume approximately 
five times that of the specimen, and shaken for mix-
ing. Then, the specimens were left to digest at 37  °C 
in an incubator containing 5% CO2 for 4  h and were 
retrieved and shaken every 20 min. Next, the mixture 
was passed through a 4-μm cell strainer to remove tis-
sue debris, and the filtrate was transferred to a 15-ml 
centrifuge tube, centrifuged at 1500 rpm for 5 min, and 
the supernatant was discarded. The cells were washed 
twice, transferred to a T25 culture flask, and cultured 
in an incubator. Non-adherent cells were discarded 
after 24  h. The medium was changed every 2  days. 
When the cells reached 80% confluence, EDTA-trypsin 
was used to passage the cells at a 1:2 ratio. The cells 
were ready for use in cytological experiments after 3–6 
passages.

CAF were cultured in 24-well plates and transfected 
with previously constructed RNA interference lenti-
viral vectors (Genechem, China) or a negative control 
(empty plasmid) for 24  h. Interference sequences of 
lentiviral are shown in Additional file  1. The medium 
was changed to complete medium, and cell culture was 
continued for 1  week. The medium was then changed 
to complete medium containing puromycin. After 72 h, 
the fluorescence intensity was observed under a fluo-
rescence microscope, and the visible fluorescence of the 
cells indicated that the transfection was successful. The 
lentivirus was resistant to puromycin, and the stable 
expression lentiviral cell lines were screened by adding 
puromycin in the medium. In the process of culture, 
the cells were overgrown in 24-well plates, and gradu-
ally passed into 12-well plates and 6-well plates.

Co‑culture of pancreatic cancer cells and cancer‑associated 
fibroblasts
Pancreatic cancer cells (Panc-1, BxPC-3) and CAFs 
were adjusted to a concentration of 1 ×  106 cells/ml 
using DMEM complete medium. Then, the pancreatic 
cancer cells and CAFs were co-cultured in a six-well 
plate cell culture chamber (pore size: 0.4 um; LAB-
SELECT, China) (Fig.  7E). A total of 200  μl of CAF 

suspension was added to the chamber and 800  μl of 
pancreatic cell suspension was added to the plate.

Colony formation assay
Cells were cultured following the method described 
above for the co-culture of CAFs and pancreatic cancer 
cells. A total of 1 ×  103 pancreatic cancer cells (Panc-1, 
BxPC-3) were seeded onto a six-well plate and colony 
formation was observed with the naked eye 1 week after 
incubation. Then, after fixing with 4% paraformaldehyde 
for 15 min, the cells were stained with 0.5% crystal violet 
for 15 min.

Wound‑healing assay
Cells were cultured following the method described 
above for the co-culture of CAFs and pancreatic cancer 
cells. When pancreatic cancer cells filled the six-well 
plate, the medium in the chamber and six-well plate was 
substituted with DMEM supplemented with 1% fetal 
bovine serum. The tip of a 10-μl pipette was used to 
scratch the pancreatic cancer cell layer on the six-well 
plate to form a wound. Then, the cells were further incu-
bated in an incubator containing 5%  CO2 at 37 °C. Images 
were captured using a microscope at 0 and 24 h to deter-
mine the degree of wound healing.

Transwell assays
Pancreatic cancer cells were seeded at a concentration of 
2 ×  105 cells per well in a transwell chamber (pore size: 
8  μm; Corning, USA) containing 200  μl of serum-free 
DMEM, while CAFs were seeded at a concentration of 
1 ×  106 cells per well in a lower culture plate containing 
800 μl of DMEM complete medium. After incubation for 
24 h, the cells were stained with crystal violet for 15 min. 
Five random fields of view were selected under a micro-
scope for capturing images and performing cell counts.

Western blotting
Sodium dodecyl sulfate polyacrylamide gel electropho-
resis (SDS-PAGE, Epizyme, China) was used for west-
ern blotting of gastric cancer cells. After lysing cells, 
the lysate was subjected to electrophoresis, membrane 
transfer, and blocking of non-specific antigens. This was 
then incubated overnight at 4 °C with primary antibodies 
specific for anti-BNIP3 (Abcam, USA), anti-HIF-a (Affin-
ity, USA), anti-GLUT1 (Affinity, USA), anti-IL1 (Affinity, 
USA), anti-IL6 (Affinity, USA), anti-IL8 (Affinity, USA), 
anti-TNF-a (Affinity, USA) and GAPDH (ImmunoWay, 
USA). The following day, the membrane was incubated 
with secondary antibodies for 1 h at room temperature. 
After visualization of protein bands, grayscale analysis 
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was performed using the ImageJ software (version 1.8.0). 
The grayscale of the target protein was divided by the 
grayscale of Actin to obtain the relative amount of the 
target protein in each protein sample. Then GraphPad 
Prism 8.0 software was used for statistical analysis of tar-
get protein levels between samples.

Immunofluorescence staining
Immunofluorescence staining was performed using pri-
mary antibodies anti-BNIP3 and anti-FAP. Correspond-
ing Alexa Fluor dyes were used for fluorescent detection. 
DAPI was used for nuclear counter staining. Images were 
captured on the Zeiss LSM780 laser scanning confocal 
microscope. Quantitative analysis of immunohistochem-
istry and immunofluorescence images was performed 
using ImageJ software by measuring mean optical density 
values, and differences were analyzed using the t test.

Statistics
Data were analyzed and visualized using the GraphPad 
Prism 8.0 software. The Student’s t test was used to com-
pare means between two groups, and one-way ANOVA 
was conducted to determine the significance of differ-
ences among multiple groups (> 2). Subcutaneous tumor 
growth curves were analyzed using two-way ANOVA. 
p < 0.05 was considered statistically significant.

Results
Single‑cell data analysis and fibroblast subtypes
Single-cell sequencing data on pancreatic cancer were 
downloaded and organized through the use of the GSVA 
database. The data were obtained from 35 patients with 
untreated pancreatic cancer, including 24 tumor sam-
ples and 11 adjacent healthy control samples. After data 
preprocessing and quality control, 57,340 high-quality 
single-cell expression data points were obtained from 

35 samples. The FeaturePlot function was used to deter-
mine the expression of various cell landmark genes, and 
the cell types were annotated; these genes were divided 
into 11 cell clusters (Fig.  1A; Fig.  S1A, B). The 11 cell 
clusters included T cells (CD3D and CD3E) [14], B cells 
(CD79A, CD79B and MS4A1) [15], plasma cells (CD79A 
and MZB1) [16], myeloid cells (AIF1 and LYZ) [17], 
fibroblasts (DCN and COL1A2) [18], stellate cells (RGS5 
and ACT2), endothelial cells (CLDN5 and RAMP2) [19], 
acinar cells (PRSS1 and REG1A), endocrine cells (CHGB 
and PCSK1N), Ducatl-N cells (KRT8), and Ducatal-T 
cells (KRT8 and KRT9) (Fig.  1B; Fig.  S1C, D). The per-
centage chart shows that fibroblasts, stellate cells and 
endothelial cells account for the highest proportions of 
cells (Fig.  1C). Fibroblast and stellate cell counts were 
greater in tumor samples, while the endothelial cell count 
was greater in normal samples. Dynamic remodeling of 
the TME plays a key role in tumor progression, and fibro-
blasts are considered key stromal cells involved in TME 
remodeling [20, 21]. However, the high heterogeneity of 
fibroblast populations often results in functional diversity 
[10, 22]. We further divided fibroblasts into fine subtypes 
and clustered them into 6 subtypes (Fig. 1D–F). Analysis 
of the distribution of cell proportions revealed that two 
subtypes, COLEC11+ Fibro and PLA2G2A+ Fibro, were 
dominant in the normal group, while both subtypes were 
significantly reduced in the tumor group. However, four 
subtypes with specific states were differentiated: CST2+ 
Fibro, COL11A1+ Fibro, MX1+ Fibro and BNIP3+ Fibro 
(Fig. 1G–I). It is suggested that there is obvious transcrip-
tional reprogramming of fibroblasts in PDAC, and nor-
mal fibroblasts are specifically induced to differentiate 
into tumor-associated fibroblasts to adapt to the special 
microenvironment of PDAC growth and metastasis.

(See figure on next page.)
Fig. 1 Single-cell data analysis of the heterogeneity of fibroblasts in pancreatic cancer. A The Seurat package (4.0.3) of the R package was used 
to construct a UMAP diagram, and all cells were annotated into 11 cell types according to the expression of various cell marker genes. Each point 
in the image represents a single cell, whose position is derived by the UMAP algorithm. B A bubble chart was drawn based on the featureplot 
function to display the percentage and abundance of the iconic genes expressed in different cell clusters. The horizontal axis represents the marker 
genes of different cell subsets, and the vertical axis represents the 11 cell subsets. The size of the dots represents the percentage of expression, 
and the color of the dots represents the abundance of expression. C The ggplot2 package was used to construct a percentage histogram showing 
the proportions of various types of cells in normal and tumor tissues. D Based on the FindNeighbors function, the Mutual Nearst Neighbor 
(MNN) algorithm was used to calculate the similarity between cells, subdivide fibroblasts into 6 subtypes, and annotate the key marker genes 
of each subtype. E Annotation of fibroblast subtypes according to normal and PDAC tissue sources. The dot plots on the left represent normal 
pancreas samples, and the dot plots on the right represent PDAC tissue samples. F UMAP diagram showing the distribution of key marker genes 
in the fibroblast subtype in two-dimensional space. The color of the dots represents the abundance of expression. G Percentage histogram showing 
the proportions of six fibroblast subtypes in normal and tumor tissues. H Percentage histogram showing the proportions of six fibroblast subtypes 
in different sample sources. I COLEC+ Fibro (p = 0.00027) and PLA2G2A+ Fibro (p = 0.51) subtypes have a higher proportion in Normal, CST2+ Fibro 
(p = 0.00013), COL11A1+ Fibro (p = 0.0024), MX1+ Fibro (p = 0.32) and The BNIP3+ Fibro (p = 0.018) subtype has a higher proportion in tumor. J,K The 
GSVA algorithm was used to evaluate the differences in the gene set variation scores of six fibroblast subtypes in metabolic pathways and tumor 
hallmark 50 pathways. L The GSEA algorithm was used to analyze the enrichment of gene sets in six fibroblast subtypes
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Functional characteristics of fibroblast subtypes
GSVA and GSEA revealed that different fibroblast 
subtypes were associated with different biological 

functions. In addition, COL11A1+ Fibro is related to 
tumor EMT, matrix remodeling and other processes; 
CST2+ Fibro is related to myogenesis and the Wnt 
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pathway; MX1+ Fibro is related to oxidative phospho-
rylation; and BNIP3+ Fibro is related to the inflam-
matory response, hypoxia, and glycolysis. Analysis of 
pathways related to specific immune and inflamma-
tory responses revealed that PLA2G2A+ Fibro had 
the strongest correlation, followed by BNIP3+ Fibro 
(Fig.  1J). However, the BNIP3+ Fibro subtype exhib-
ited stronger responses related to hypoxia and glyco-
lysis (Fig. 1I), and metabolic pathway analysis revealed 
significant differences in metabolism between the two 
groups (Fig.  1K). The distributions of these two sub-
types in normal and PDAC tissues were also exactly 
opposite (Fig. 1I). The above results suggest that there 
are fibroblasts related to specific immune regulation 
in normal pancreatic tissue and that a group of special 
fibroblast subtypes related to both inflammatory and 
hypoxic responses are specifically induced during the 
progression of PDAC.

Significant correlation analysis between fibroblast 
subtypes and phenotypes was performed through 
WGCNA, and 8 was selected as the optimal soft 
threshold for subsequent analysis (Fig. 2A). The Pheat-
map clustering tree clusters highly correlated genes 
into a single branch. The gray modules are composed 
of ungrouped genes and should be ignored for all 
downstream analyses (Fig.  2B). Correlation analysis 
of the coexpression modules revealed that the yellow 
module was most strongly correlated with BNIP3+ 
Fibro, and the brown module was most strongly corre-
lated with PLA2G2A+ Fibro (Fig. 2C, D, G). Figure 2E 
plots the genes and functional enrichment results 
that are strongly related to BNIP3+ Fibro. The results 
showed that the function of this subtype of genes was 
closely related to hypoxia and glycolysis (in response 
to hypoxia and canonical glycolysis). Figure  2F plots 
the genes and functional enrichment results that are 
strongly associated with PLA2G2A+ Fibro. The results 
showed that the function of this subtype of genes was 
closely related to the immune-inflammatory response 

(in response to interleukin-1 and inactivation of 
MAPK activity).

Pseudochronological differentiation trajectory inference 
and analysis of fibroblast subtypes
To study the differentiation relationships between differ-
ent fibroblast subtypes, we evaluated the expression pat-
terns of key genes based on the gene expression of each 
single cell to sort the cells and deduce the differentiation 
trajectory of the fibroblast subtypes. The results showed 
that, starting from COLEC11+ Fibro, the cells gradu-
ally differentiated into two branches over time (Fig. 3A, 
B). The entire trajectory involved a differentiation pro-
cess from normal to PDAC (Fig.  3C). The two subtypes 
COLEC11+ Fibro and PLA2G2A+ Fibro, which were 
more abundant in the normal group, were enriched in 
the early stage of the differentiation trajectory, while the 
subtype with a greater proportion in the PDAC group 
was enriched in the later stage of the differentiation tra-
jectory (Fig.  3D, E). The BNIP3+ Fibro subtype, which 
we are particularly interested in, differentiates indepen-
dently, exists on an upward branching branch and is in 
a terminally differentiated state (Fig.  3D). The genes 
that play major roles in pseudochronological changes 
were clustered into four clusters, among which were 
BNIP3, hypoxia, and immune- and inflammation-related 
genes (ADM, CCL26, HILPDA, and VEGFA) [23–26]. 
The genes were highly expressed in Cluster 4 (Fig.  3F). 
Therefore, it can be inferred that BNIP3+ fibroblasts are 
a subtype of fibroblasts in the terminal differentiation 
state, and their biological functions are related mainly 
to hypoxia and immune-inflammatory responses. In sin-
gle-cell pseudochronological analysis, there are several 
branch points, and these branch nodes usually represent 
programmed changes in cells. The BEAM algorithm was 
used to identify key genes at the bifurcation point. The 
heatmap shows that ADM, HILPDA, and CCL26 play 
key roles in the differentiation of prebranch cells to the 
cell fate 1 state (Fig. 3G). Representative gene expression 

Fig. 2 WGCNA modular analysis of the subtypes of fibroblasts. A Finding the optimal soft threshold makes the constructed network more 
consistent with the scale-free topology. The left picture shows the scale-free fit indices (y-axis) under different soft thresholds (x-axis). The red 
line indicates the selected scale-free fit index value. The picture on the right shows the network connectivity under different soft thresholds. B 
Hierarchical clustering diagram of gene coexpression modules. The upper part is the hierarchical clustering dendrogram of genes, and the lower 
part is the coexpression gene modules. The same color indicates the same module, and gray indicates that it does not belong to any module. C 
Heatmap of the correlations between different gene coexpression modules and different fibroblast subtypes. D Based on the topological overlap 
matrix, a correlation heatmap was drawn between genes. The brighter the color is, the stronger the interaction between genes, and the same 
module generally has the strongest correlation. E,F The scatter plot on the left plots the correlation between the correlation between genes 
and modules (module membership, MM) and the correlation between genes and traits (gene significance, GS). Genes that are highly correlated are 
located in the upper right corner and are marked. The right panel shows the functional enrichment results of the significantly associated genes. G 
Both the hierarchical clustering on the left and the correlation heatmap on the right represent the close relationships between different modules 
and subtypes

(See figure on next page.)
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profiles suggest that the BNIP3+ Fibro subtype and the 
ADM, CCL26, HILPDA, and VEGFA genes are highly 
expressed on the upwardly bifurcated branches. Moreo-
ver, COL11A1+ Fibro and EMT, matrix remodeling and 
other functional genes (C1QTNF3, FNDC1, MFAP5, and 
SDC1) are highly expressed on downwardly branching 
branches, which is consistent with previous biological 
function analysis results (Fig. 3H) [27, 28]. In addition to 
using branched linear inference, we also use Monocle3 
(version: 1.2.9) analyzes spatial trajectory differentiation 
based on UMAP [29]. It was also found that, starting 
from COLEC11+ Fibro, the tumors gradually differenti-
ated into terminal BNIP3+ Fibro (Fig. 4A, B). We subse-
quently identified several genes related to differentiation 
trajectories, such as genes related to hypoxia and immune 
inflammation, whose expression increased gradually with 
differentiation time (Fig. 4C). Through spatial gene simi-
larity module mining, several modules related to BNIP3+ 
Fibro were identified (Modules 10, 19, 20, and 31), whose 
functions still support special functions such as hypoxia 
(Fig. 4D–F). We also identified modules (Modules 5, 26, 
27, and 35) related to PLA2G2A+ Fibro, whose functions 
are related to immune regulation, the cell matrix, etc. 
(Fig. 4D, G, H).

Identification of transcription factors in fibroblast subtypes
The phenotype of cells is shaped by the temporal and 
dynamic expression of different genes. The expression of 
genes is regulated by transcription factors. The differen-
tiation of different fibroblast subtypes must be regulated 
by transcription factors. Transcription factor analysis was 
performed through SCENIC (1.2.4), and highly enriched 
transcription factors in different fibroblast subtypes were 
identified from the expression abundance of transcrip-
tion factors (Fig. 5A–D). The results showed that MXI1, 
the CEBPG transcription factor, had the highest specific-
ity and transcription factor activity among the BNIP3+ 
Fibro subtype. Among the PLA2G2A+ Fibro subtype, the 
EGR3 and CHD1 transcription factors have the highest 
specificity and transcription factor activity. Moreover, we 
identified 4 transcription factors (ATF5, CEBPG, DDIT3, 

and MXI1) that are closely related to BNIP3+ Fibro dif-
ferentiation and plotted the area under the curve dis-
tribution diagram of these 4 transcription factors in all 
the cell data, which was greater than the specificity of 
this transcription factor. Cells with a sexual threshold 
had higher corresponding regulon activity (Fig. 5E). The 
UMAP map showed that four transcription factors were 
highly expressed in the BNIP3+ Fibro subtype (Fig. 5F). 
Further evaluation of the overall expression of genes 
regulated by these transcription factors revealed that the 
overall expression of genes regulated by these transcrip-
tion factors was significantly greater in BNIP3+ Fibro 
(Fig. 5G).

Analysis of the effect of fibroblast subtypes on the survival 
and immunotherapy response of PDAC patients
Based on the TCGA database, we analyzed the sur-
vival of PDAC patients. The top 5 genes (ADM, TGFBI, 
TMEM158, SLC16A3, and ERO1L) that are specific 
and highly expressed in the BNIP3+ Fibro were identi-
fied. The violin plot shows the expression of these genes 
in all fibroblast subtypes. The results showed that these 
genes were expressed at high levels in the BNIP3+ Fibro 
but were expressed at lower levels in the other subtypes 
(Fig.  6A). PDAC patients were divided into a high-
expression group and a low-expression group according 
to the expression level of the landmark genes. The results 
showed that the overall survival rate and disease-free sur-
vival time of the high-expression group were significantly 
lower than those of the low-expression group (Fig.  6B, 
C). Moreover, we screened the top 50 genes according 
to their expression levels in the BNIP3+ Fibro subtype 
to determine the expression profile of the BNIP3+ Fibro 
in the transcriptome dataset. The results showed that the 
overall survival and disease-free survival of the high-50 
signature group were significantly lower than those of the 
low-50 signature group (Fig.  6D, E). The above analysis 
revealed that the BNIP3+ Fibro subtype was significantly 
related to the prognosis of PDAC patients.

To further analyze the impact of the fibro-
blast subtype on the response of PDAC patients to 

(See figure on next page.)
Fig. 3 Monocle2 (2.20.0) was used to perform pseudochronological analysis of fibroblasts to construct and visualize cell differentiation pathways. 
A–C Distribution of fibroblast subtypes; pseudochronological time; and disease groups, differentiation trajectories. D,E Pseudochronological 
differentiation trajectories are displayed separately according to fibroblast subtype and disease group. F Representative heatmap of the changes 
in gene expression levels with pseudotime. The heatmap is arranged from left to right as the pseudotime increases. The colours from blue to red 
indicate that the gene expression values ranged from low to high. G Heatmap of gene expression patterns that play a major role at the bifurcation 
point of the cell differentiation trajectory. The gray symbol represents the gene expression pattern before the bifurcation point of the trajectory. 
Red represents the gene expression pattern of cells on the upward bifurcation trajectory (cell fate 1). Blue represents the gene expression pattern. 
(Cell fate 2) Gene expression patterns in cells with downward bifurcating trajectories. H Linear fitting graph of the change trend of representative 
gene expression levels with pseudotime. The solid line Y_37 represents the branch that bifurcates upward (cell fate 1), and the dotted line Y_51 
represents the branch that bifurcates downward (cell fate 2)
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immunotherapy, we downloaded and integrated the 
largest single-cell dataset of PDAC immunotherapy, 
which included 43 untreated and immunotherapy 
PDAC patients (Fig.  S2). The data of patients who 
received immunotherapy and treatment plan informa-
tion in this dataset were integrated separately (Fig. S3). 
All the fibroblasts in this dataset were mapped into 
five previously annotated subtypes (Fig.  S4A). We 
also focused on the differences in the proportions of 
patients in each subtype before and after immunother-
apy, between responding patients and nonresponding 
patients, and between different immunotherapy regi-
mens. Patient information, immunotherapy response, 
and immunotherapy regimen were mapped to fibro-
blasts (Fig.  S4B–F). We found that the two subtypes, 
PLA2G2A+ Fibro and COLEC11+ Fibro, increased 
significantly after immunotherapy, and the better the 
patient responded to immunotherapy was, the greater 
the proportion of these two subtypes (Fig.  7A, B, D). 
In contrast, for the BNIP3+ Fibro, COL11A1+ Fibro 
and CST2+ Fibro subtypes, the greater the response 
to immunotherapy was, the lower the proportion was 
(Fig. 7D). This result is opposite to what was observed 
for the normal and tumor tissues in the CRA001160 
dataset, reflecting the effectiveness of immunotherapy 
in changing the composition of the fibroblast subtype. 
The better the treatment effect is, the closer the sam-
ple is to the composition state of normal. Interestingly, 
the BNIP3+ Fibro subtype increased significantly in the 
poor response group, indicating that this subtype has a 
clear correlation with the response to immunotherapy. 
In patients who had a low response to treatment, this 
group of cells increased instead. Leading to poor prog-
nosis (Fig. 7A, B, D). The treatment plans for different 
patients were integrated and mainly divided into CRT, 
CRTL and other treatment plans (Fig.  S5A). Interest-
ingly, the CRT treatment regimen effectively increased 
the proportion of PLA2G2A+ Fibro and COLEC11+ 
Fibro cells and reduced the proportion of COL11A1+ 
Fibro and CST2+ Fibro cells but did not effectively 
reduce the proportion of BNIP3+ Fibro cells (Fig. S5B, 
D). The CRTL treatment regimen effectively increased 
the proportion of PLA2G2A+ Fibro cells and reduced 

the proportions of BNIP3+ Fibro, COL11A1+ Fibro 
and CST2+ Fibro cells (Fig. S5B, D). It is suggested that 
different treatment options have different effects on dif-
ferent patient subtypes, and appropriate immunother-
apy needs to be selected to target different fibroblast 
subtypes.

To understand the cell state transformation in the 
fibroblast differentiation pathway, we used the CellRank 
algorithm to determine the initial and terminal states of 
cells in the cell population through the similarity of cells 
combined with the RNA rate and plotted the cell dif-
ferentiation trajectory [13, 30, 31]. Figure  9A shows the 
differentiation relationships between different fibroblast 
subtypes. COLEC11+ Fibro cells were in the early stage 
of differentiation, and BNIP3+ Fibro cells were in the late 
stage of differentiation (Fig. 8B, C). Figure 8D shows that 
random seed cells were used to mark the starting point 
and end point of cell differentiation. The results showed 
that cells at the starting point of differentiation were 
mainly concentrated in the COLEC11+ Fibro subtype 
(Fig.  8E), while cells at the end point of differentiation 
were concentrated in the PLA2G2A+ Fibro and BNIP3+ 
Fibro subtypes (Fig.  8F). The UMAP diagram shows 
the two-dimensional spatial distribution of six repre-
sentative genes in fibroblasts. These genes were mainly 
concentrated in COL11A1+ Fibro and BNIP3+ Fibro 
(Fig.  8G). The pseudochronal differentiation expression 
trend chart showed that the expression of representative 
genes in the terminal stage of differentiation was signifi-
cantly increased in the BNIP3+ Fibro subtype, while the 
increase in the PLA2G2A+ Fibro subtype was not obvi-
ous (Fig. 8H).

BNIP3+ CAFs enhanced pancreatic cancer cell 
proliferation, migration and invasion
CAFs were isolated from surgically removed pancreatic 
cancer tissues and paracancerous tissues. Immunofluo-
rescence results showed that the expression of BNIP3 and 
FAP in fibroblasts isolated from tumor tissues was signifi-
cantly higher than that in paracancerous tissues (Fig. 9A). 
Then BNIP3 was knocked down in CAFs by lentiviral 
transfection (Fig. 9B). The expression of hypoxia marker 
proteins HIFA and GLUT1 was significantly decreased in 

Fig. 4 Monocle3 (1.2.9) plots fibroblast subtype differentiation trajectories and calculates coexpressed gene modules in high-dimensional space. 
A,B distribution of cell subtypes and pseudotimes in UMAP plots; curves represent inferred differentiation pathways. C Representative heatmap 
of the changes in gene expression levels with pseudotime. The heatmap is arranged from left to right as the pseudotime increases. The colours 
from blue to red indicate the gene expression values from low to high. D Heatmap representing the expression of different gene modules 
in different subtypes based on Moran’s I calculation. E,F UMAP plot showing the expression distribution of four gene modules related to the BNIP3+ 
Fibro subtype (left panel) and the PLA2G2A+ Fibro subtype (right panel) in all fibroblasts. G,H Bubble heatmap showing the functional enrichment 
of four gene modules related to the BNIP3+ Fibro subtype (left picture) and PLA2G2A+ Fibro subtype (right picture)

(See figure on next page.)
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the BNIP3-KD group (Fig.  9C). At the same time, mul-
tiple inflammatory-related factors (IL1, IL6, IL8, TNF-a) 
were also inhibited to varying degrees in the BNIP3-KD 
group (Fig.  9D). After indirect co-culture of CAFs and 
pancreatic cancer cells (PANC-1, BxPC-3) (Fig.  9E), the 
proliferation, migration and invasion abilities of pancre-
atic cancer cells were significantly enhanced. However, 
after knocking down BNIP3 in CAFs, this enhancement 
was weakened to varying degrees (Fig. 9F–H).

Discussion
CAFs are the predominant cell type in the stroma of pan-
creatic cancer, known for producing extensive extracellu-
lar matrix components that contribute to stromal fibrosis. 
They serve as a crucial source of the dense tissue archi-
tecture characteristic of PDAC [32]. CAFs in pancreatic 
cancer exhibit a variety of sources, phenotypes, and func-
tions, which dynamically shift as the tumor progresses 
[33]. Studies have shown that CAFs engage in extensive 
and intricate interactions with tumor cells and other stro-
mal cells, playing an active role in the malignant advance-
ment of tumors [34]. However, the specifics of how these 
interactions govern pancreatic cancer and the ways in 
which CAFs can be targeted for effective treatment are 
still not fully understood. CAFs have the dual ability to 
both stimulate and inhibit tumor growth, suggesting that 
functionally distinct fibroblast populations may coexist 
within the tumor microenvironment [35, 36]. The high 
heterogeneity of CAFs, attributable to their origins from 
diverse fibroblast lineages and cell types, may be the rea-
son for their complex nature, rendering them challenging 
to precisely define and characterize [37].

As an emerging sequencing technology, scRNA-seq 
has shown irreplaceable advantages in revealing the het-
erogeneity of fibroblasts and mapping cell differentiation 
trajectories [38]. We divided fibroblasts into 6 subtypes 
through cell type annotation and found that COLEC11+ 
Fibro was highly expressed in normal pancreatic tissue, 
while the BNIP3+ Fibro subtype was highly expressed 
in PDAC tissue. PDAC usually exhibits a high degree 
of fibrosis because fibroblasts accumulate in the matrix 
of the tissue microenvironment, which also leads to the 
hypovascularization and hypoxic phenotype of PDAC. 

These conditions create infiltration barriers for T cells 
and myeloid cells in the PDAC tumor microenvironment. 
By analyzing the enrichment of functional features and 
differentiation trajectories, we found that hypoxia path-
way and glycolysis pathway were significantly enriched in 
the BNIP3+ Fibro subtype and in the hypoxia-inducible 
genes BNIP3 [39], ADM [23], and VEGFA [26]. Similarly, 
the expression of HILDPA in this subtype showed a clear 
upward trend with differentiation time [40]. Hypoxia 
can lead to the activation of ATF transcription factors, 
thereby upregulating the expression of LC3B and ATG5 
and maintaining high levels of autophagic degradation. 
These molecular mechanisms promote the autophagy-
mediated survival of tumor cells under hypoxic con-
ditions [41]. It has been reported that activating the 
transcription factor ATF3 played an important role in 
KRAS-mediated malignant process in PDAC. Knock-
ing out ATF3 may prevent the occurrence of PDAC [42]. 
Gene regulatory network analysis revealed that the tran-
scriptional activity of ATF5 was significantly increased 
in the BNIP3+ Fibro subtype, suggesting that activation 
of ATF5 under hypoxia may promote the progression 
of PDAC. We found in vitro experiments that knocking 
out BNIP3 in CAF resulted in a decrease in the expres-
sion of hypoxia markers, demonstrating the positive cor-
relation between BNIP3 and hypoxia. Moreover, a variety 
of inflammation-related pathways, such as the oxidative 
phosphorylation, IL6/JAK/STAT3, and TNFA/NFKB 
pathways, were also enriched in the BNIP3+ Fibro sub-
type, reflecting the inflammatory characteristics of this 
subtype. After knocking out BNIP3 in vitro experiments, 
the expression of inflammatory factors in CAF decreased, 
demonstrating the pro-inflammatory effect of BNIP3. 
TGF-β is the most important and critical signaling factor 
that promotes the activation and conversion of normal 
long-fiber cells into CAFs [43]. CAFs usually transdif-
ferentiate through TGFB1 signaling, produce contractile 
cells, express a-SMA, secrete collagen-rich extracellular 
matrix, and promote the development of various malig-
nant tumors [44]. In this study, TGFB1, a signature gene 
of the BNIP3+ Fibro tissue, was highly expressed and sig-
nificantly associated with OS and DFS in PDAC patients. 
A large number of studies have shown that fibroblasts 

(See figure on next page.)
Fig. 5 Fibroblast subtype transcription factor identification and regulon activity scoring. A The activity distribution of all transcription factors. B 
The activity distribution of the top 10 transcription factors highly expressed in each subtype. C Bubble heatmap showing the activity of specific 
transcription factors in each fibroblast subtype. The size of the dot indicates the degree of specificity (RSS: regulation specificity score), and the color 
of the dot indicates the level of activity (RAS: regulon activity score). D Scatter plot showing the specific ranking of transcription factors in each 
fibroblast subtype. The horizontal axis represents the ranking position, and the vertical axis represents the specificity. E Distribution diagram 
of AUC values of four representative transcription factors screened in the BNIP3+ Fibro subtype in all cells. The dotted line, which is the AUC value, 
is the threshold for determining that cells are specific for this transcription factor. F Expression distribution of transcription factors on the UMAP plot. 
G Expression distribution of transcription factors and target gene sets on the UMAP plot



Page 15 of 22Gao et al. Journal of Translational Medicine          (2024) 22:937  

A

B

C D

E

●

●

●

●

●

●

●
●
●

EGR3(+)CHD1(+)

RFX2(+)

PPARG(+)

NFATC1(+)

0.1

0.2

0.3

0 100 200 300
rank

rs
s

PLA2G2A+ Fibro

●

●
●

●

●

●
●

●
●

●

●
●

●

BHLHE22(+)KLF15(+)

PTF1A(+)

HLF(+)

MEOX2(+)

0.1

0.2

0.3

0 100 200 300
rank

rs
s

COLEC11+ Fibro
●

●

●

●

●

●

●

●
●
●
●

●
●

NR2F2(+)

ELK1(+)KLF12(+)

KLF11(+)GLI2(+)

0.05

0.10

0.15

0.20

0 100 200 300
rank

rs
s

CST2+ Fibro

●

●

●

●

●

●

●

●

SOX11(+) FOXQ1(+)

HOXC9(+)TCF12(+)

TWIST1(+)

0.1

0.2

0.3

0.4

0 100 200 300
rank

rs
s

COL11A1+ Fibro
●
●

●

●
●

●

●

●

●
●
●
●

●

●
●
●

●

●

HOXA13(+)HOXB5(+)

IRF8(+)

TBX2(+)ETV6(+)

0.00

0.01

0.02

0.03

0.04

0.05

0 100 200 300
rank

rs
s

MX1+ Fibro
●

●

●

●
●
●

●
●
●
●

MXI1(+) CEBPG(+)

SPI1(+)

HOXA13(+)ATF5(+)

0.00

0.05

0.10

0.15

0.20

0 100 200 300
rank

rs
s

BNIP3+ Fibro

ATF5(+)

AUC
AUC histogram

Fr
eq

ue
nc

y

0.00 0.05 0.10 0.15 0.20 0.25

0
50

10
0

15
0

20
0

25
0

CEBPG(+)

AUC
AUC histogram

Fr
eq

ue
nc

y

0.00 0.04 0.08 0.12

0
50

10
0

20
0

30
0

DDIT3(+)

AUC
AUC histogram

Fr
eq

ue
nc

y

0.00 0.05 0.10 0.15

0
50

10
0

20
0

30
0

MXI1(+)

AUC
AUC histogram

Fr
eq

ue
nc

y

0.00 0.05 0.10 0.15 0.20

0
10

0
20

0
30

0
40

0

COLEC11+ Fibro
PLA2G2A+ Fibro
MX1+ Fibro
CST2+ Fibro
COL11A1+ Fibro
BNIP3+ Fibro

Regulon activity

−2
−1
0
1
2

COLEC11+ Fibro
CST2+ Fibro
MX1+ Fibro
COL11A1+ Fibro
PLA2G2A+ Fibro
BNIP3+ Fibro

VE
N

TX
(+

)
IR

F8
(+

)
ZN

F7
80

B(
+)

YY
1(
+)

SO
X2

1(
+)

H
O
XB

5(
+)

ZN
F6

55
(+
)

R
XR

B(
+)

SP
3(
+)

PP
AR

D
(+
)

FO
XA

1(
+)

ST
AT

5B
(+
)

M
YL

K(
+)

TW
IS
T1

(+
)

D
LX

5(
+)

FO
XP

4(
+)

SO
X1

1(
+)

H
O
XC

9(
+)

H
O
XC

6(
+)

ZN
F3

41
(+
)

H
ES

7(
+)

KL
F1

2(
+)

N
R
2F

2(
+)

TF
EB

(+
)

FO
XK

1(
+)

KL
F1

1(
+)

EL
K1

(+
)

KD
M
4C

(+
)

ZN
F4

15
(+
)

ZN
F7

1(
+)

PD
X1

(+
)

R
FX

4(
+)

ET
V3

(+
)

SR
EB

F1
(+
)

TB
X2

1(
+)

AT
F6

(+
)

H
O
XB

1(
+)

N
EU

R
O
D
2(
+)

M
G
A(
+)

M
AX

(+
)

JU
N
B(
+)

R
FX

2(
+)

C
R
EB

5(
+)

EG
R
3(
+)

N
FA

TC
1(
+)

FO
SB

(+
)

KL
F1

6(
+)

R
EL

(+
)

N
FI
L3

(+
)

KL
F5

(+
)

TA
F7

(+
)

M
XI
1(
+)

AT
F5

(+
)

SP
I1
(+
)

AT
F4

(+
)

C
EB

PG
(+
)

D
D
IT
3(
+)

C
R
EB

3(
+)

FO
XI
1(
+)

H
D
AC

2(
+)

Regulon activity

−2
−1
0
1
2

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

MXI1(+)
CEBPG(+)

SPI1(+)
ATF5(+)
BRF2(+)
NFYC(+)
DDIT3(+)

GTF2F1(+)
HOXB7(+)

TAF7(+)
NELFE(+)

ATF4(+)
HOXA13(+)
HOXB5(+)

IRF8(+)
TBX2(+)
ETV6(+)
TCF3(+)

NR2F2(+)
ELK1(+)

KLF12(+)
BHLHE22(+)

KLF15(+)
PTF1A(+)

HLF(+)
MEOX2(+)
SOX11(+)
FOXQ1(+)
HOXC9(+)
TCF12(+)

TWIST1(+)
DLX5(+)

CTNNB1(+)
ZCCHC14(+)

VDR(+)
PRRX1(+)

LEF1(+)
ZNF281(+)

SOX4(+)
TEAD1(+)
PRDM1(+)
NR2F6(+)
EGR3(+)
CHD1(+)
RFX2(+)

PPARG(+)
NFATC1(+)
CREB5(+)

MAFF(+)
NFKB1(+)
NFIL3(+)
KLF5(+)
MYC(+)

MSX1(+)

PL
A2

G
2A

+ 
Fi

br
o

C
O

L1
1A

1+
 F

ib
ro

C
O

LE
C

11
+ 

Fi
br

o
C

ST
2+

 F
ib

ro
M

X1
+ 

Fi
br

o
BN

IP
3+

 F
ib

ro

RSS
●

●

●
●

0.1
0.2
0.3
0.4

1.8
2.1
2.4

Z

−5

0

5

−5.0−2.50.0 2.5 5.0
UMAP_1

U
M

AP
_2

0.0
0.5
1.0
1.5
2.0

ATF5

−5

0

5

−5.0−2.50.0 2.5 5.0
UMAP_1

U
M

AP
_2

0.0
0.5
1.0
1.5

CEBPG

−5

0

5

−5.0−2.5 0.0 2.5 5.0
UMAP_1

U
M

AP
_2

0

1

2

3

DDIT3

−5

0

5

−5.0−2.50.0 2.5 5.0
UMAP_1

U
M

AP
_2

0.0
0.5
1.0
1.5

MXI1

−5

0

5

−5.0−2.50.0 2.5 5.0
UMAP_1

U
M

AP
_2

0.10

0.15

0.20

0.25

ATF5 (76 genes)

−5

0

5

−5.0−2.50.0 2.5 5.0
UMAP_1

U
M

AP
_2

0.06

0.08

0.10

0.12

CEBPG (233 genes)

−5

0

5

−5.0−2.50.0 2.5 5.0
UMAP_1

U
M

AP
_2

0.10
0.12
0.14
0.16
0.18

DDIT3 (76 genes)

−5

0

5

−5.0−2.50.0 2.5 5.0
UMAP_1

U
M

AP
_2

0.09
0.12
0.15
0.18
0.21

MXI1 (176 genes)

F

G

Fig. 5 (See legend on previous page.)



Page 16 of 22Gao et al. Journal of Translational Medicine          (2024) 22:937 

A

B

C

D E

0
1
2
3
4

COL1
1A

1+
 Fibr

o

COLE
C11

+ F
ibr

o

PLA
2G

2A
+ F

ibr
o

CST2+
 Fibr

o

BNIP3+
 Fibr

o

MX1+
 Fibr

oEx
pr

es
si

on
 L

ev
el ADM

0
1
2
3

COL1
1A

1+
 Fibr

o

COLE
C11

+ F
ibr

o

PLA
2G

2A
+ F

ibr
o

CST2+
 Fibr

o

BNIP3+
 Fibr

o

MX1+
 Fibr

o

TGFBI

0
1
2
3

COL1
1A

1+
 Fibr

o

COLE
C11

+ F
ibr

o

PLA
2G

2A
+ F

ibr
o

CST2+
 Fibr

o

BNIP3+
 Fibr

o

MX1+
 Fibr

o

TMEM158

0

1

2

COL1
1A

1+
 Fibr

o

COLE
C11

+ F
ibr

o

PLA
2G

2A
+ F

ibr
o

CST2+
 Fibr

o

BNIP3+
 Fibr

o

MX1+
 Fibr

o

SLC16A3

0

1

2

3

COL1
1A

1+
 Fibr

o

COLE
C11

+ F
ibr

o

PLA
2G

2A
+ F

ibr
o

CST2+
 Fibr

o

BNIP3+
 Fibr

o

MX1+
 Fibr

o

ERO1L

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Disease Free Survival

Months

Pe
rc

en
t s

ur
vi

va
l

Low ADM TPM
High ADM TPM

Logrank p=0.013
 HR(high)=2.2
 p(HR)=0.014

 n(high)=45
n(low)=45

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Disease Free Survival

Months

Pe
rc

en
t s

ur
vi

va
l

Low TGFBI TPM
High TGFBI TPM

Logrank p=0.0048
 HR(high)=2.5

 p(HR)=0.0059
 n(high)=45

n(low)=45

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Disease Free Survival

Months

Pe
rc

en
t s

ur
vi

va
l

Low TMEM158 TPM
High TMEM158 TPM

Logrank p=0.012
 HR(high)=2.2
 p(HR)=0.013

 n(high)=45
n(low)=45

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Disease Free Survival

Months

Pe
rc

en
t s

ur
vi

va
l

Low SLC16A3 TPM
High SLC16A3 TPM

Logrank p=0.0042
 HR(high)=2.6

 p(HR)=0.0052
 n(high)=45

n(low)=45

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Disease Free Survival

Months

Pe
rc

en
t s

ur
vi

va
l

Low ERO1L TPM
High ERO1L TPM
Logrank p=0.027

 HR(high)=2.1
 p(HR)=0.031

 n(high)=44
n(low)=45

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overall Survival

Months

Pe
rc

en
t s

ur
vi

va
l

Low ADM TPM
High ADM TPM

Logrank p=0.043
 HR(high)=1.8
 p(HR)=0.045

 n(high)=45
n(low)=45

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overall Survival

Months

Pe
rc

en
t s

ur
vi

va
l

Low TGFBI TPM
High TGFBI TPM
Logrank p=0.021

 HR(high)=2
 p(HR)=0.024

 n(high)=45
n(low)=45

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overall Survival

Months

Pe
rc

en
t s

ur
vi

va
l

Low TMEM158 TPM
High TMEM158 TPM

Logrank p=0.015
 HR(high)=2

 p(HR)=0.016
 n(high)=45

n(low)=45

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overall Survival

Months

Pe
rc

en
t s

ur
vi

va
l

Low SLC16A3 TPM
High SLC16A3 TPM

Logrank p=0.041
 HR(high)=1.9
 p(HR)=0.044

 n(high)=45
n(low)=45

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overall Survival

Months

Pe
rc

en
t s

ur
vi

va
l

Low ERO1L TPM
High ERO1L TPM
Logrank p=0.027

 HR(high)=1.9
 p(HR)=0.03
 n(high)=44

n(low)=45

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overall Survival

Months

Pe
rc

en
t s

ur
vi

va
l

Low 50 Signatures Group
High 50 Signatures Group

Logrank p=0.0035
 HR(high)=2.3

 p(HR)=0.0043
 n(high)=45

n(low)=45

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Disease Free Survival

Months

Pe
rc

en
t s

ur
vi

va
l

Low 50 Signatures Group
High 50 Signatures Group

Logrank p=0.0015
 HR(high)=2.6

 p(HR)=0.0023
 n(high)=45

n(low)=45

Fig. 6 Impact of the BNIP3+ Fibro subtype on the survival of PDAC patients. A Violin plot plots showing the expression of specific genes 
in fibroblast subtypes. B,C Kaplan–Meier curves showing the impact of specific gene expression levels on patient overall survival and disease-free 
survival. D,E Kaplan–Meier curves showing overall survival and disease-free survival of PDAC patients in the low- and high-grade Top 50 signature 
groups

(See figure on next page.)
Fig. 7 Correlation between the fibroblast subtype and immunotherapy response in PDAC patients. A UMPA diagram showing the two-dimensional 
spatial distribution of different fibroblast subtypes in the untreated, poorly responsive and with responsive groups. B Percentage histogram 
showing the proportions of different fibroblast subtypes in the untreated, poorly responsive and with responsive groups. C Percentage bar chart 
showing the sample origin of fibroblasts in the untreated, poorly responsive and with responsive groups. D Differential expression of different 
fibroblast subtypes in the untreated, poor response and with response groups
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were highly plastic and multipotent [45]. This implies 
that within the dynamic regulation of the tumor micro-
environment, a fibroblast subtype can transform into 
another subtype through transdifferentiation, leading 
to alterations in the fibroblast’s function and charac-
teristics [46]. This study analyzed the state transition of 
fibroblasts based on the CellRank algorithm and revealed 
that COLEC11+ fibroblasts were the starting point of dif-
ferentiation. Most of the normal parts differentiate into 
PLA2G2A+ Fibro, and abnormal pathological conditions 
differentiate into CST2+ Fibro, MX1+ Fibro, COL11A1+ 
Fibro and BNIP3+ Fibro. Among them, PLA2G2A+ 
Fibro and BNIP3+ Fibro were used as the end points of 
differentiation. Metabolic pathway analysis revealed that 
these two terminally differentiated subtypes not only 
had significant differences in metabolic functions but 
also exhibited complete resistance to immunotherapy in 
PDAC patients.

CAFs are the major source of extracellular matrix in 
the tumor microenvironment. There is evidence that 
a dense collagen matrix is resistant to PDAC treatment 
[47]. It has been reported that in samples from patients 
with PDAC who underwent neoadjuvant therapy, there 
was an increase in inflammation-related CAF levels. 
Particularly in patients treated with a combination of 
gemcitabine and the protein paclitaxel, there was an 
observed upregulation of the metallothionein gene in 
iCAFs. This variation could be associated with resistance 
to chemotherapy [48]. Our study demonstrated that the 

composition of fibroblast subtypes underwent changes 
following neoadjuvant therapy in patients with PDAC. 
BNIP3+ Fibro expression was significantly increased in 
the poor response group, while the proportion was sig-
nificantly decreased in the with response group. After we 
co cultured CAFs with pancreatic cancer cells indirectly, 
the proliferation, migration and invasion of pancreatic 
cancer cells were enhanced. However, after knocking 
out BNIP3 in CAF, this trend was reversed. Moreover, 
the expression of MMP7 in the BNIP3+ Fibro subtype 
also gradually increased with differentiation time. Study 
revealed that matrix metalloproteinases inhibitors could 
be effectively used to treat pancreatitis-related malignant 
process [49]. Moreover, it has been found that TGF-β-
driven LRRC15+ CAFs were associated with low respon-
siveness to anti-PD-L1 immunotherapy in PDAC [7]. 
This work revealed that understanding the characteris-
tics of specific CAF subtypes was critical for improving 
immunotherapy responsiveness in patients with PDAC. 
In addition, although BNIP3+ Fibro may lead to a low 
responsiveness to immunotherapy, it does show a better 
response to CRTL treatment regimens. Responsiveness 
also provides a theoretical basis for the selection of clini-
cal immunotherapy options.

In conclusion, this study characterized the heterogene-
ity and pluripotency of fibroblasts in PDAC and identi-
fied a terminally differentiated BNIP3+ Fibro subtype. 
The gene expression pattern of this subtype can affect the 
responsiveness of PDAC patients to immunotherapy and 

Fig. 8 Cell state transition analysis based on CellRank. A Differentiation trajectories of different fibroblast subtypes. The arrow indicates 
the fibroblast differentiation trajectory predicted by RNA rate analysis. B Color depth shows the differentiation period. C The differentiation 
time for each cell was calculated, and the overall differentiation time of the different fibroblast subtypes was determined, which is equivalent 
to the quantitative statistics of A and B. D The starting point and end point of differentiation are shown for the randomly seeded cells based 
on differentiation time. The black dots indicate cells at the starting point, and the yellow dots indicate the positions of these cells from the starting 
point to the terminal state. E Representative starting cells and inferred origins. F Representative endpoint cells and inferred endpoints. The F plot 
infers two end points. G Expression of representative genes in the UMAP plot. H Expression trends of representative genes in two different endpoint 
state cell populations over differentiation time

(See figure on next page.)
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Fig. 8 (See legend on previous page.)
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lead to poor prognosis by forming a hypoxic and inflam-
matory tumor microenvironment.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12967- 024- 05674-x.

Additional file 1: Fig. S1. Cell type annotation and visual display of 
single-cell data. A UMAP plot showing single-cell data; each point 
represents a cell, and the colours correspond to different patient sample 
sources. B UMAP diagram showing the distribution of 11 cell clusters in 
normal and tumor samples. C The level of expression of the iconic genes 
in 11 cell clusters in the form of a violin plot. D UMAP diagram showing 

the 9 most highly expressed landmark genes in the single-cell data. E 
Based on the sample source, a UMAP diagram was generated to display 
the distribution of fibroblasts in two-dimensional space. F, G Bubble 
charts and heatmaps showing the expression of signature genes in 6 
fibroblast subtypes.

Additional file 2: Fig. S2. Cell type annotation of single-cell data for 
PDAC immunotherapy. A Unsupervised clustering of all cells from 43 
patients with pancreatic cancer. The UMAP diagram shows their two-
dimensional spatial distribution. Different cell clusters are represented 
by different colors. B UMAP graph showing the expression of landmark 
genes in all the cell data. C Bubble chart showing the percentage and 
abundance of signature genes expressed in different cell clusters.

Additional file 3: Fig. S3. Annotations based on patient immuno-
therapy response and immunotherapy regimen in the dataset. A Cell 

Fig. 9 In vitro and in vitro experiments of BNIP3+ CAFs and pancreatic cancer cells. A Immunofluorescence experiments of fibroblasts derived 
from pancreatic cancer tissues and adjacent tissues. B WB evaluation of BNIP3 lentiviral knockdown efficiency. C Changes in the levels of HIF-a 
and GLUT1 after BNIP3 knockdown. D Changes in the levels of inflammatory factors (IL1, IL6, IL8, TNF-a) after BNIP3 knockdown. E Schematic 
diagram of indirect culture of CAFs and pancreatic cancer cells. F–H Plate cloning experiment, scratch experiment, Transwell experiment results 
and statistical analysis. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001
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class annotation of single-cell data based on the expression of landmark 
genes. B All the cell data were labeled according to the source of the cell 
sample. C, D All cells are labeled according to the patient’s response to 
immunotherapy. E, F All cells are labeled according to the patient’s choice 
of immunotherapy regimen. G UMAP graph showing the four most highly 
expressed landmark genes in the single-cell data.

Additional file 4: Fig. S4. Fine subtype division of fibroblasts and annota-
tion according to immunotherapy status. A Fibroblasts were extracted 
from the subtype and integrated with the subtype of the CRA001160 
single-cell dataset. B Fibroblast subtypes are annotated according to the 
source of the cell samples. C, D Fibroblast subtypes are annotated accord-
ing to the patient’s choice of immunotherapy regimen. E, F Fibroblast 
subtypes are annotated according to the patient’s choice of immuno-
therapy regimen.

Additional file 5: Fig. S5. Correlations between fibroblast subtypes and 
immunotherapy regimens in PDAC patients. A UMPA diagram showing 
the two-dimensional spatial distribution of different fibroblast subtypes 
in the untreated, CRT, CRTL and other groups. B Percentage histogram 
showing the proportions of different fibroblast subtypes in the Untreated, 
CRT, CRTL and other groups. C Percentage bar graph showing the sample 
origin of fibroblasts in the untreated, CRT, CRTL and other groups. D Dif-
ferential analysis of the expression of different fibroblast subtypes in the 
Untreated, CRT, CRTL and other groups.

Additional file 6: Table. S1. Interference sequences of Vector.

Additional file 7. 
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