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Abstract: Outbreaks of viral diseases, which cause morbidity and mortality in animals and humans,
are increasing annually worldwide. Vaccines, antiviral drugs, and antibody therapeutics are the
most effective tools for combating viral infection. The ongoing coronavirus disease 2019 pandemic,
in particular, raises an urgent need for the development of rapid and broad-spectrum therapeutics.
Current antiviral drugs and antiviral antibodies, which are mostly specific at protein levels, have
encountered difficulties because the rapid evolution of mutant viral strains resulted in drug resistance.
Therefore, degrading viral genomes is considered a novel approach for developing antiviral drugs.
The current article highlights all potent candidates that exhibit antiviral activity by digesting viral
genomes such as RNases, RNA interference, interferon-stimulated genes 20, and CRISPR/Cas
systems. Besides that, we introduce a potential single-chain variable fragment (scFv) that presents
antiviral activity against various DNA and RNA viruses due to its unique nucleic acid hydrolyzing
characteristic, promoting it as a promising candidate for broad-spectrum antiviral therapeutics.

Keywords: viral disease; viral genome degradation; broad-spectrum antiviral drugs; 3D8 scFv; ISGs;
CRISPR/Cas; antiviral antibodies; RNAi

1. Introduction

Viral infections pose a major risk to global health. The most recent case is the coro-
navirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), which has infected more than 513 million people
worldwide, with 6.2 million deaths as of May 2022 [1]. Other coronavirus strains cause life-
threatening diseases such as SARS and the Middle East respiratory syndrome (MERS) [2,3].
Re-emerging virus infection, such as the Ebola virus, was reported in West Africa in
2014–2016, causing an outbreak with a case fatality rate of up to 50%, and the most recent
case, which is still ongoing, has been reported in the Democratic Republic of Congo with a
case fatality rate of 66% [4]. In April 2022, new Ebola virus cases were reported in the Mban-
daka, Equateur Province of the Democratic Republic of Congo, indicating that the Ebola
virus remains a major threat to global health [5]. On the other hand, viral infections caused
by human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus
(HCV) continue to pose a threat to global health. Globally, it is reported that approximately
1.7 million people have been newly infected with HIV, with 700,000 HIV-related deaths [6].
In addition, approximately 250 million and 71 million people have been reported to have
chronic HBV and HCV, respectively, and the death toll caused by this viral hepatitis is
estimated at approximately 1.34 million [7]. Flu caused by the influenza virus is also a
global health issue yearly. In 2009, a global pandemic caused by the influenza A (H1N1)
pdm09 virus resulted in more than 150,000–570,000 deaths worldwide, and it is currently

Microorganisms 2022, 10, 1552. https://doi.org/10.3390/microorganisms10081552 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms10081552
https://doi.org/10.3390/microorganisms10081552
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0002-7814-8721
https://doi.org/10.3390/microorganisms10081552
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms10081552?type=check_update&version=1


Microorganisms 2022, 10, 1552 2 of 17

circulating as a virus causing seasonal flu [8]. Avian influenza A (H5N1), another variant
of influenza viruses, has become a concern since its first human infection in 1997 [9]. The
viral epidemic and pandemic have caused many casualties throughout history, which are
summarized in Table 1.

Table 1. The global epidemic and pandemic of viral diseases throughout history.

No. Year 1 Disease Virus Death 2

1 1520 Smallpox Variola virus 500 million
2 ~1800 Yellow fever Yellow fever virus >210,000
3 1918 Spanish flu Influenza A virus (H1N1) 50 million
4 1957 Asian flu Influenza A virus (H2N2) 2 million
5 1968 Hong Kong flu Influenza A virus (H3N2) 1 million
6 1976 Ebola Ebola virus ~15,300
7 1981 HIV/AIDS HIV ~37 million
8 1990 Dengue fever Dengue virus >680,000
9 2002 SARS SARS-CoV 774
10 2009 Swine flu Influenza A virus (H1N1) 284,000
11 2012 MERS MERS-CoV 891
12 2014 Chikungunya Chikungunya virus rare
13 2015 Zika Zika virus ~1000
14 2020 COVID-19 SARS-CoV-2 ~6.2 million

1 Refer to the year of the first outbreak case, 2 refer to the estimated number of deaths until recently.

The viral life cycle consists of several major stages, including virus attachment to the
membrane of the host cell, viral entry (i.e., endocytosis), viral uncoating, viral genome
transcription and replication, viral proteins translation, viral assembly, and viral bud-
ding/release. The mechanisms of viral transcription and replication vary depending on
their genome type (RNA/DNA; single- or double-stranded; and positive (+) or negative
(−) polarity) [10]. Notably, regardless of the virus type, all viruses must release the viral
genomes to the cytoplasm, produce mRNA, and replicate their genomes. Most DNA
viruses transcribe their genome in the nucleus of the host cells and use the host enzymes
for their DNA replication and gene expression; except the Poxvirus such as the Vaccinia
virus, which can independently replicate in the cytoplasm because of its viral genome
that encodes viral proteins responsible for transcription and replication processes [11].
The RNA viruses replicate their genome in the cytoplasm of the host cell with the help
of RNA-dependent-RNA polymerase (RdRp). However, in retroviruses such as HIV, the
RNA genome is reversely transcribed by RNA-dependent-DNA polymerase (RdDp) and
subsequently delivered to the nucleus to integrate with the host genome [12,13]. Another
example of RNA viruses replicating within the nucleus is influenza viruses [14].

The stages of the viral life cycle have become a common target for the development
of antiviral drugs against viral or host cell proteins to inhibit viral replication [10,15].
Although numerous approaches against viral infection have been developed and approved,
the fact that drug-resistant virus strains are increasing has made it difficult to use current
drugs for treating viral diseases [16–20]. Therefore, in an effort to discover new drugs
capable of combating a broad spectrum of viruses, we introduce a novel platform that
directly targets viral genome degradation to inhibit viral replication. Here, to the best
of our knowledge, we reviewed all candidates that show antiviral effects in the in vitro
and in vivo tests of viral genome cleavage, including ribonucleases (RNases), interferon
(IFN)-stimulated genes 20 (ISG20), RNA interference (RNAi), CRISPR/Cas systems, and
a catalytic single-chain variable fragment 3D8 (3D8 scFv). They presented as the most
straightforward and universal strategies for cleaving the viral genomes.
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2. Antiviral Approach Targeting Viral Genomes
2.1. RNases

RNases, as a classical component of host defense, have been proposed as therapeutic
candidates by catalyzing viral RNA. RNases, in addition to degrading viral RNA, play
roles in IFN activation, viral replication inhibition, and apoptosis induction [21]. RNases
have the potential to degrade viral genomes, but a major challenge is to limit host cell
destruction. Numerous RNases exhibit antiviral properties against single-stranded RNA
(ssRNA) viruses [22,23]. Here, we briefly described the RNase antiviral candidates pro-
moted by viral RNA degradation. RNase A superfamily, EDN/RNase 2, cleaved the viral
RNA against HIV-1 [24]. RNase L is induced by IFN to cleave cytoplasmic RNA through
the OAS/RNase L signal pathway. RNase L is activated by 2′-5′ oligoadenylates (2–5A).
OAS is activated by double-stranded RNA (dsRNA) binding to synthesize 2–5A. RNase L
catalyzed viral RNAs of IAV [25] and WNV [26,27] in an in vitro experiment. Viral RNAs
of HCV and DENV were digested by Regnase/MCPIP1 [28,29]. Recently, the antiviral
RNases, such as OSA/RNase L have been well-characterized and exhibit multiple antiviral
mechanisms. However, they present several challenges. There is incomplete cell protection
against viruses via RNases, for instance, viruses escaping from RNases L have indicated
the following in some cases: a neurotropic Theiler’s picornavirus produces a helper protein
that inhibits RNases L [30], or DENV and IAV mRNAs escape RNase L-mediated decay,
resulting in the production of viral protein [31]. RNases must be retained at the appropriate
concentration to exhibit antiviral activity without exaggerated RNases cytotoxicity [32].

2.2. RNAi

RNAi is a cellular gene-silencing pathway that degrades the sequence-specific mRNA [33].
Since its discovery in 1998, RNAi has rapidly devolved as a therapeutic drug application
with small interfering RNAs (siRNAs) being the most commonly used drugs. siRNAs have
been widely studied against different viruses that degrade all types of viral genomes ds or
ss DNA/RNA such as HIV [34,35], influenza virus [36,37], SARS-CoV [38,39], HBV [40,41],
HPV [42], and WNV [43]. The FDA approved the first siRNA-based drug in 2018, followed
by three more commercial drugs until now [44]. This was a significant step in siRNA
research toward practicality. This indicated the potential of siRNAs as antiviral drugs in
the future when some siRNA-based antiviral drugs entered the clinical phases, for instance,
NucB1000 in phase I targets four HBV genes [45], ALN-RSV01 in phase II targets the
nucleocapsid gene of RSV [46], pHIV7-shI-TAR-CCR5RZ in phase I targets multiple genes
of HIV [33], TKM-Ebola in phase I targets multiple transcripts of Ebola virus [47]. The
mechanism of siRNAs is as follows: after being taken up by the cell, numerous processes
are performed by entering endosomes and following the endosomal escape. Then, siRNAs
are released into the cytoplasm and taken up by the multiprotein RNA-induced silencing
complex (RISC), and siRNAs guide the RISC complex to identify and cleave the targetable
regions [44]. One of the barriers to its application is the delivery of siRNA to the target
cells and cell penetration. In addition, siRNA technology has faced and overcome several
challenges, such as poor stability, immunostimulation, off-target effects, viral escape due to
mutations, and durable viral silencing to achieve sustainable antiviral therapy [33,44].

2.3. ISG20

IFN or dsRNA induces ISG20 expression and its presence in the cytoplasm and
nucleus [48–50]. ISG20 is a 3′-5′ exonuclease that belongs to the DEDDh subgroup of the
DEDD exonuclease superfamily [51]. ISG20 cleaved both ssRNA and DNA but showed a
preference for RNA substrates over DNA by Met14 and Arg53 to accommodate hydrogen
bonds with the 2′-OH group of UMP ribose [52,53]. Therefore, IGS20 exhibited greater
antiviral activity to multiple RNA viruses than to DNA viruses [54] but failed to prevent
SARS-CoV and DNA viruses, such as adenoviruses. Viral RNA degradation and direct
or indirect inhibition of viral translation are the two proposed antiviral mechanisms of
ISG20 (recently reviewed in [55]). The lack of viral inhibition by catalytically inactive
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ISG20 form-D94G supports the hypothesis that ISG20 exonuclease activity determines viral
genome degradation. However, the specific action of viral genome degradation without
damaging the host cells is yet to be investigated [52,56]. ISG20 has no apparent sequence
specificity for viral genome degradation. However, in HBV infection, its overexpression
does not cause cellular RNA degradation by the cellular cofactor YTHDF2. YTHDF2 is a
cytoplasmic YT521-B homology domain-containing protein, the main group of m6A readers
in the m6A pathway. The recruitment of ISG20 for RNA degradation through the binding
of YTHDF2 to m6A modified the HBV pregenomic RNA. This study demonstrated that
HBV RNA was selectively degraded by IGS20 [57–60].

Three factors regulate the selective binding of ISG20 to viral RNA of HBV: the appro-
priate specific binding site (the sequence GGACA of HBV ε loop), m6A modification, and
the host factor, YTHDF2. Although this mechanism is specific to HBV, a similar scheme
may be applied to other viral RNAs [57]. Most recent studies have shown the antiviral
effect of ISG20 via the ectopic expression or generation of transgenic cell lines; therefore, it
is necessary to focus on the mechanism underlying the intracellular delivery of ISG20 as an
antiviral agent (Table 2).

The finding that ISG20 antiviral activity was not mediated by RNA degradation but
rather by translation inhibition demonstrated the exonuclease-independent antiviral ac-
tivities of ISG20. The overexpression of ISG20 correlated with the expression of IFIT1
preventing viral RNA translation with non-2′O-methylated 5′ caps [61]. The viral transla-
tion inhibition is mediated by ISG20 discrimination of self-nucleic acid from nonself [60].
Furthermore, ISG20 exhibited HBV replication inhibition via exonuclease-independent ac-
tivities [56]. Obviously, ISG20 acquired multiple antiviral mechanisms, which prompted the
development of a potential antiviral drug that is not limited to viral genome degradation.

Table 2. ISG20 exhibited an antiviral effect against viruses via viral genome degradation.

ISG20 Derivation Virus Genome Replication Genus Family Ref

Ectopic expression HBV
Double-stranded,
relaxed circular
DNA (rcDNA)

Nucleus Orthohepadnavirus Hepadnaviridae [56–58]

Ectopic expression YFV (+)ssRNA Cytoplasm Flavivirus Flaviviridae
[62]Transgenic cell line BVDV (+)ssRNA Cytoplasm Pestivirus Flaviviridae

Transgenic cell line HAV (+)ssRNA Cytoplasm Hepatovirus Picornaviriade

Transgenic cell line VSV (−)ssRNA Cytoplasm Vesiculovirus Rhabdoviridae
[63]Transgenic cell line Influenza (−)ssRNA Nucleus Alphainfluenzavirus Orthomyxoviridae

Transgenic cell line EMCV (+)ssRNA Cytoplasm Cardiovirus Picornaviriade

Transgenic cell line WNV (+)ssRNA Cytoplasm Flavivirus Flaviviridae
[64]Transgenic cell line DENV (+)ssRNA Cytoplasm Flavivirus Flaviviridae

Transgenic cell line HCV (+)ssRNA Cytoplasm Hepacivirus Flaviviridae [65]

2.4. CRISPR/Cas System

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-
associated proteins), known as the immune system of bacteria and archaea, has been a
powerful tool for editing genes. Nevertheless, it has been developed as a CRISPR/Cas-
based antiviral therapy, making it one of the potential candidates for viral treatment. In this
section, we only focused on the feasibility of directly targeting the virus of CRISPR/Cas
without modifying the host genome. CRISPR/Cas can be categorized into two main classes,
with six types and several subtypes based on the effector Cas domain content [66,67]. Of
these, class II Cas endonucleases have recently been a popular topic for antiviral studies,
with the ability of dsDNA digestion of effectors, such as Cas9, Cas12, and ssRNA cutting
of Cas13 [68]. The CRISPR/Cas system works on the principle that a single-guide RNA
(sgRNA), after transcribing into small antisense CRISPR RNA (crRNA), guides the crRNA-
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Cas ribonucleoprotein complex, which eventually recognizes the specific sequences and
destroys the viral targets (including intracellular viral genome and viral mRNAs) [67,68].

The CRISPR/Cas9 method is a promising tool for chronic diseases, as demonstrated by
the studies shown in Table 3, which show decreased viral genome [69,70], declined latency
reactivation [71–73], reduced GFP expression [71–74], and viral protein [72,74]. Within the
six domains (REC I, REC II, Bridge Helix, PAM-interacting, HNH, and RuvC) of Cas9, the
PAM-interacting domain binds to the sequence that matches its PAM after scanning the
target DNA, and then the guide RNA (gRNA) complex melts the bases right upstream
of PAM and complement them with the target on the gRNA. If this association occurs
appropriately, RuvC and HNH-nuclease domains will cleave the target DNA after the
third nucleotide upstream of PAM [66,75]. Similar to Cas9, Cas12 attacks dsDNA but has
fewer off-target effects than Cas9. However, both require PAM with G-rich PAM for Cas9
and T-rich PAM for Cas12. The mechanism of Cas12 has some differences compared with
that of Cas9 because Cas9 digests a target that is right next to PAM with the blunt-ended
dsDNA breaks, but Cas12 exerts its effects downstream at some distance from PAM with
sticky ends [76]. Although Cas9 can inhibit both DNA and RNA viruses by introducing
DNA intermediates into the host cell, most of the viruses that infect humans are RNA
viruses with more than 180 of 200 RNA viruses infecting humans [77–79]. Therefore,
RNA-targeting CRISPR/Cas13 has been studied to address this issue. The Cas13 family
contains at least four subtypes: Cas13a, b, c, and d. Unlike Cas9 and Cas12, Cas13 has
a dual conserved higher eukaryote and prokaryote nucleotide-binding domain (HEPN)
instead of the DNase domain (RuvC and HNH), as well as recognizes target RNA based on
the PFS domain instead of the PAM domain [80]. Subsequently, target RNA is identified
via PFS, and bound by gRNA, and Cas13 then cleaves the target RNA [80,81]. The first
approach of Cas13 against SARS-CoV-2 in human cells (PACMAN-prophylactic antiviral
CRISPR in human cells) used pan-coronavirus crRNAs; Abbott et al. discovered that six
crRNAs could target 91% of the sequenced coronaviruses, leading to several other studies
using Cas13-targeted SARS-CoV-2 and influenza virus, resulting in positive outcomes
in vitro and in vivo [68,82,83]. Additionally, targeting positive-sense viruses results in the
degradation of viral gene expression by Cas13 and the preparation of RNA for assembling
new particles as well as viral RNA genome serving as templates for replication [68,82].

Apart from the apparent advantages, the main challenges include accurate delivery,
high specificity, lower immunogenicity, and long-lasting effect on inoculated in vivo models.
To date, there is consensus over whether Cas13 exhibits significant off-target effects. In
most HIV research, no off-target effect has been reported, and the collateral damage is
undetectable in many applications using Cas13s as the RNA targeting system in mammalian
cells, animal models, and plants [75,84–90]. Nonetheless, the extent of the off-target effects
indicated the differences based on the cell type and target RNA observed. For instance,
Yuxi Ai et al. showed that the extension of the off-target effects of CRISPR/Cas13s limited
their utility in eukaryotic cells [91]. Therefore, this notion remains a challenge limiting
their clinical trial. Notably, Cas13 research design and interpretation should be carefully
performed to achieve potential results [91].

To use the CRISPR/Cas system, sgRNAs must be designed and constructed based
on highly conserved regions of the viral genome to avoid escape mutants and reduce
the possibility of off-target effects. This is followed by cloning these sgRNAs into an
expression plasmid or viral vector, and then expressed using lipofectamine transfection or
lentiviral/adenoviral transduction [68].
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Table 3. Viral genome-specific cleavage by CRISPR with different Cas effector.

Cas Experiment Target Gene Virus Genome Replication Genus Family Ref.

Cas9

WSL-gRp30 cell p30 gene (CP204L) ASFV (BA71V) dsDNA Cytoplasm Asfivirus Asfarviridae [92]

Vero, ICP0-complementing L7 cell line 27,
TC620 ICP0, ICP4, and ICP27 genes

HSV-1 dsDNA Nucleus Simplexvirus Herpesviridae

[93]

Vero, 239T, and BALB/c mice UL7 genes [94]

Vero cell
UL15, UL27, UL29, UL30, UL36,
UL37, UL42, UL5, UL52, UL8,
UL54, UL9, US3, and US8

[95]

Vero cell UL8, UL29, and UL52 [96]

297T, HaCaT, HaCaT IFNAR2-knockout, THP-1,
primary mouse corneal stromal cell, and
C57BL/6J mice

UL8 and UL29 genes [97]

HEK293T, HeLa, and Jurkat c5 and c19 cells TLR

HIV-1 (−)ssRNA

Reverse
transcription in
cytoplasm
Replication in
nucleus

Lentivirus Retrovirus

[82]

CHME5 cell, HeLa-derived TZM-bI cells,
promonocytic U-937 cell subclone U1 TLR-U3 [83]

Transgenic mice 5′-LTR and Gag gene [98]

Human T-lymphoid cell, Jurkat 2D10, PBMCs LTR-U3 [99]

NRG mice LTR [71]

HEK293T, Jurkat C11, and TZM-bl cells
LTR7, LTR8, and structural region
(env5, vif2, rev3, gag8, pol6, and
pol7)

[100]

HEK293T LTR, gag, and pol [84]

Tg26 transgenic mice, BLT mice, NCr nude mice LTR, gag, and pol [101]

HEK293FT, primary human monocytes LTR, gag, env, ref, tat [102]

Cas12a HEK293T cell LTR, gag, env, pol, tat, rev, nef, vpr [70]

Cas13a HEK293T cell, HEK293 cell LTR, gag, tat, and rev [103]

Cas9

HepG2.2.15 cell HBV DNA sequences

HBV

Double-
stranded,
relaxed
circular DNA
(rcDNA)

Nucleus Orthohepadnavirus Hepadnaviridae

[72]

HepG2 cell, and Balb/c mice Conserved regions of HBV [74]

Huh7 cell, HepG2.2.15 cell, and Balb/c mice 20 nucleotide HBV DNA sequences [104]

HepG2 cell Conserved regions of HBV [105]

Huh7 cell, and C57BL/6 mice Conserved regions of HBV [106]
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Table 3. Cont.

Cas Experiment Target Gene Virus Genome Replication Genus Family Ref.

Cas9

PK-15 cell UL30
PRV dsDNA Nucleus Varicellovirus Herpesviridae [73]

Vero cell Essential and nonessential genes [107]

Vero cell EBNA1, OriP EBV DNA Nucleus Lymphocryptovirus Herpesviridae [95]

Vero cell UL54, UL44, UL57, UL70, UL105,
UL86, and UL84 HCMV DNA Nucleus Cytomegalovirus Herpesviridae [95]

Cas9

Hela cell, Caski, HEK293T, Jurkat,
Hela-FLAG16E7MYC cell, and Rag1 mice E6 and E7

HPV dsDNA Nucleus Alphapapillomavirus Papovaviridae

[108]

SiHa, C33-A, and BALB/c nude mice E6 and E7 [109]

SiHa cell, and nude mice E7 [110]

Hela, HCS-2, SKG-I, 293, and BALB/c nude
mice E6 [111]

Hela, 293T, and SiHa cell E6 and E7 HPV dsDNA Nucleus Alphapapillomavirus Papovaviridae [112]

Cas12a BmN-SWU1 cell, and transgenic silkworm ei-1 gene BmNPV dsDNA Nucleus Alphabaculovirus Baculovirudae [69]

Cas13a

Mice PB1 and PB2 genes of influenza IAV-H1N1
(A/WSN/33) (−)ssRNA Nucleus Alphainfluenzavirus Orthomyxoviridae [89]

MDCK cell Conserved regions of H1N1
IAV-H1N1
(A/Puerto
Rico/8/1934)

(−)ssRNA Nucleus Alphainfluenzavirus Orthomyxoviridae [81]

A549 cell Conserved regions of H1N1 IAV-H1N1 (−)ssRNA Nucleus Alphainfluenzavirus Orthomyxoviridae [77]

Hamsters Replicase and nucleocapsid genes
of SARS SARS-CoV2 (+)ssRNA Cytoplasm Betacoronavirus Coronaviridae

[89]

HepG2 cell, and AT2 cell S gene SARS-CoV2 [113]

A549 cell, and HEK293T cell RdRp (ORF1ab) and N gene SARS-CoV2 (+)ssRNA Cytoplasm Betacoronavirus Coronaviridae [77]

- Replicase and transcriptase
(ORFab) and S gene SARS-CoV2 (+)ssRNA Cytoplasm Betacoronavirus Coronaviridae [114]

HEK293FT cell Conserved regions of LCMV Wild type-LCMV
Armstrong (−)ssRNA Cytoplasm Mammarenavirus Arenaviridae [81]

HEK293FT cell Conserved regions of VSV VSV (−)ssRNA Cytoplasm Vesiculovirus Rhabdoviridae [81]

HEK293T, HEK293FT, and MARC-145 cell ORF5 and ORF7 PRRSV (+)ssRNA Cytoplasm Porartevirus Arteriviridae [115]
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2.5. 3D8 Single-Chain Variable Fragment (3D8 scFv)

A monoclonal antibody (mAb) named 3D8 was discovered and isolated as an anti-
DNA Abs from the spleen cells of MRL-lpr/lpr mice, an autoimmune-prone mouse model
that resembles human systemic lupus erythematosus. Sequentially, a recombinant 3D8
single-chain variable fragment (3D8 scFv), 27kD, was generated in the formation of the
heavy chain variable single domain (VH) connecting the light chain variable single domain
(VL) via a flexible (Glycine4-Serine1)3 linker [116]. The 3D8 scFv protein can bind and hy-
drolyze nonspecific on both DNA (dsDNA, ssDNA) and RNA (dsRNA, ssRNA) in the pres-
ence of Mg2+ [117,118]. Although methylated and histone-bound DNA were not cleaved
by 3D8 scFv, viral RNA hydrolyzed in vRNP form was recently reported [119,120]. The
3D8 scFv protein can be obtained from different systems, and the protein retains functional
activities such as E. coli bacterial expression system [116,117], Lactobacillus paracasei [121], or
in vegetatively reproductive kalanchoe pinnata via planta transformation [122]. However,
human embryonic kidney 293f (HEK293f)-derived 3D8-His scFvs lost all DNA-hydrolyzing
activity but retained its DNA-binding activity [123]. Unlike other cell-penetrating anti-
DNA, Abs reported so far eventually traffic toward the nucleus. The 3D8 scFv can penetrate
cells via caveolae/lipid raft endocytosis, which is mediated by heparan sulfate proteogly-
cans (HSPGs) and chondroitin sulfate proteoglycans (CSPGs) that function as endocytic
receptors on the cell surface [124] and accumulate and remain up to 48 h in the cytosol
without further translocation into endosomes, lysosomes, endoplasmic reticulum, Golgi,
or nucleus [125]. Organ penetration of 3D8 scFv in vivo was revealed by its localization
in the intestinal villi and lamina propria [121], epithelial cells, medium diameter bronchi
and alveoli [126], and muscle, liver, lung, and brain tissues [118]. Furthermore, 3D8 scFv
was maintained in the lung for 12 h by IN injection; in the liver, kidney, plasma, and lung
for up to 6 h by IV or IP injection. An increase in the injection frequency extended 3D8
scFv retention time in the organ. In all transgenic chicken, mice, plants, or stable cell lines
harboring the 3D8 scFv gene, the protein concentration was expressed as too low to be
detectable, which is sufficient for conferring antiviral effects without incurring damage to
host DNA/RNA. A sufficient 3D8 scFv dose is critical to target only viral DNA and RNA
but not their host genetic material. Nucleic acid hydrolyzing 3D8 scFv treatment exerted
some cytotoxic effects on cells because of its ability to hydrolyze cellular RNAs at high
concentrations [125]. A treatment with 5 µM of 3D8 scFv caused no cytotoxicity for 48 h
in cells [127]. There were no dead mice found for up to 5 d at 20, 50 µg [118,126], or up to
300 µg of 3D8 scFv injection [120]. Nucleic acid-hydrolyzing catalytic and cell penetration or
organ distribution activities of 3D8 scFv has prompted its investigation in multiple antiviral
applications. Interestingly, 3D8 scFv has shown antiviral activity against a broad spectrum
of DNA and RNA viruses in both in vitro and in vivo experiments (Table 4). As a result,
3D8 scFv can be applied as a feed additive. Assessment for the use of purified 3D8 scFv
as a feed additive according to the concept of substantial equivalence was confirmed, in
which oral injection of E. coli 3D8 scFv was excreted from mice within the normal digestive
transit time of the animals without colonization to the gastrointestinal tract [128]. Moreover,
the administration of Lactobacillus salivarius expressing 3D8 scFv or Lactobacillus reuteri
harboring 3D8 scFv as a feed additive enhances growth performance, immune homeostasis,
and gut microbiota of chickens [129,130]. A metagenomic analysis revealed that probiotic
Lactobacillus paracasei expressing 3D8 scFv enhances the probiotic activities in mice without
any observable side effects [131]. 3D8scFv that originated from mouse (m3D8 scFv) were
humanized (h3D8 scFv) or chickenized (ck3D8 scFv). Both h3D8 scFv and ck3D8 scFv
retained the biochemical properties of m3D8 scFv as well as the structure. Importantly,
ck3D8 scFv expressed lower immunogenicity than m3D8 scFv in chickens [132,133].
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Table 4. 3D8 scFv hydrolyzes viral genomes exhibiting antiviral activity against broad-spectrum
viruses.

Derivation Experiment Virus Genome Replication Genus Family Ref.

Protein expressed in
E. coli PK-15 cells CSFV (+)ssRNA Cytoplasm Pestivirus Flaviviridae [127]

Transgenic cell line

Protein expressed in
E. coli Hela cells VSV (−)ssRNA Cytoplasm Vesiculovirus Rhabdoviridae [134]

Transgenic plants N. tabacum

PMMoV

(+)ssRNA Cytoplasm
Tobamovirus Virgaviridae [135]

TMGMV

ToMV

TMV

CMV Cucumovirus Bromoviridae [135]

Transgenic plants Chrysanthemums CSVd (−)ssRNA Nucleus Pospiviroid Pospiviroidae [136]

Protein expressed in
L. paracase RAW264.7 cells

MNV1 (+)ssRNA Cytoplasm Norovirus Calciviridae [121]
Transgenic bacteria
L. paracase Mice

Protein expressed in
E. coli MDCK cell

H1N1/NWS33

(−)ssRNA Nucleus Influenzavirus A Orthomyxoviridae [120]
H9N2

H1N1/PR8

H3N2

MDCK cell/Mice H1N1/09pdm

Transgenic animal

Chickens

H9N2 (−)ssRNA Nucleus Influenzavirus A Orthomyxoviridae [137]

Transgenic animal
Infectious
bronchitis
virus

(+)ssRNA Cytoplasm Gammacoronavirus Coronaviridae [138]

Transgenic animal Newcastle
disease (−)ssRNA Cytoplasm Avulavirus Paramyxoviridae [139]

Protein expressed in
E. coli

Vero E6

SARS-CoV-2

(+)ssRNA Cytoplasm

Betacoronavirus Coronaviridae

[140]hCo-OC43 Betacoronavirus Coronaviridae

PEDV Alphacoronavirus Coronaviridae

Transgenic cell line
Hela

HSV1 dsDNA Nucleus Simplexvirus Herpesviridae [119]

Transgenic cell line
PRV

dsDNA Nucleus Varicellovirus Herpesviridae [119]

Transgenic animal Mice dsDNA Nucleus Varicellovirus Herpesviridae [118]

Transgenic plants N. tabacum BCTV
ssDNA Nucleus Curtovirus Geminiviridae [141]

Transgenic plants N. tabacum BSCTV

3. Discussion

Since the approval of idoxuridin, the first approved antiviral drug for the treatment of
hepatitis B in 1963, many approved antiviral drugs have been commercially available for
use. These antiviral drugs have a mode of action wherein they target the major stage of
the viral life cycle to interfere with its replication process, as summarized in Figure 1A [15].
Based on the understanding of virology, antiviral drugs have been developed and are
concentrated on two different approaches: targeting the host cell factors or the viral life
cycle at protein levels [11].
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and release of new virions. (B) 3D8 scFv with cell penetration ability via caveolar endocytosis and 
localization in the cytoplasm, intracellular localization of other candidates (CRISPR/Cas, ISG20, 
RNases, and RNAi) are proposed with a delivery system and expressed as protein inside the cells. 
(C) The presence of viral genomes cleavage candidates (3D8 scFv, CRISPR/Cas, ISG20, RNases, 
RNAi) inhibits viral replication. Upon infection, viral genomes distributed in the cytoplasm were 
digested by RNase, ISG20, CRISPR/Cas, 3D8 scFv, and RNAi. 3D8 scFv, RNAi, and CRISPR/Cas 
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Figure 1. Proposed mechanism of viral genome degradation-specific antiviral candidates. (A) Typical
viral life cycle of enveloped viruses; virus infection to host cells includes several main steps, 1. Binding;
2. Fusion; 3. Release of viral genome in the cytoplasm; 4a. Replication in the cytoplasmic or 4b in
the nucleus (viral genome needs to be transported to the nucleus), 5. Transcription and presence of
mRNA in the cytoplasm for translation; 6. Viral genome replication; 7a, 7b. Assembly and release of
new virions. (B) 3D8 scFv with cell penetration ability via caveolar endocytosis and localization in
the cytoplasm, intracellular localization of other candidates (CRISPR/Cas, ISG20, RNases, and RNAi)
are proposed with a delivery system and expressed as protein inside the cells. (C) The presence of
viral genomes cleavage candidates (3D8 scFv, CRISPR/Cas, ISG20, RNases, RNAi) inhibits viral
replication. Upon infection, viral genomes distributed in the cytoplasm were digested by RNase,
ISG20, CRISPR/Cas, 3D8 scFv, and RNAi. 3D8 scFv, RNAi, and CRISPR/Cas were supposed to
degrade viral mRNA in the cytoplasm for translation. Finally, the replicated viral genomes can be
catalyzed using 3D8 scFv, RNAi, and CRISPR/Cas.

In this review, we take the opportunity to propose a novel approach for antiviral drug
degradation of the viral genome, which can be applied against various broad-spectrum
viruses (Figure 1). From a perspective used as an antiviral approach, it is necessary to
ensure that these candidates are correctly delivered to the target. Antiviral activity of these
candidates in the in vitro and in vivo experiments was obtained via the ectopic expression
by transient transfection or generation of transgenic cell lines, and animals. Undoubtedly,
the use of suitable delivery vehicle tools by transfection, viral genome catalytic candidates,
RNases, RNAi, and ISG20 or CRISPR/Cas, could expand the antiviral activity. Furthermore,
3D8 scFv was shown to penetrate cells, and it was localized in the cell cytoplasm via
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caveolae/lipid raft-mediated endocytosis [124,125] (Figure 1B). Each candidate can target
different viral genomes stages, as indicated in (Figure 1C). As described, the presence of
these candidates in the cytoplasm can digest the viral genome at the (1) releasing step,
(2) viral mRNA transcription, or (3) replicated viral genomes for viral assembly.

The discovery of broad-spectrum antiviral agents, or “one drug, multiple viruses,”
have been developed to protect us from various unknown and emerging viruses. However,
a major challenge in developing antiviral drugs is a viral mutation, such as antigenic
drift and antigenic shift in influenza virus, which causes the emergence of novel and
drug-resistant strains of viruses. Other problems include the time and cost required
to develop a new drug. Therefore, we aimed to introduce potential universal antiviral
therapeutic targeting to digest viral genomes, a direct approach to inhibit viral replication.
Notably, each candidate presents specific disadvantages that prompted further studies.
For example, the unspecific cleavage site of RNases, ISG20, and 3D8 scFv encountered
difficulty in discriminating viral genome and host cell nucleic acid, leading to the death
of infected cells. Although many studies reported that a certain amount of 3D8 scFv
demonstrated antiviral activity to various viruses and was not harmful to host cells, the
selectively targeted viral genome requires further modification. Additionally, RNases
and ISG20 exhibited antiviral activity not only by degrading the viral genome but also
by relating to other pathways. RNases regulate the host immune, the formation of stress
granules (SGs), inducing autophagy, and triggering apoptosis [21,22]. ISG20 inhibited
HBV replication by exonuclease-dependent and -independent activities [56]. There are
several challenges in RNAi application, such as, delivery to target cells, stability, and
virus evolution [33,44]. In the case of the CRISPR/Cas system recognizing specific in
the viral genome, CRISPR/Cas9, Cas13 decreases the cleavage activity in the existence
of two or more mismatches between target RNA and crRNA [142]. There have been
several challenges, such as delivery route, standard viral delivery vectors, sgRNA design,
off-target effects, safety, and immunogenicity, which need to be overcome to achieve the
further success of the CRISPR/Cas: approach to the supply chain, clinical development,
and commercialization, with the researchers’ efforts, CRISPR/Cas has been refined over
time. However, it could offer a powerful antiviral treatment against emerging, re-emerging
viruses in the near future.

In conclusion, we introduced a novel approach exhibiting direct and universal antiviral
therapy by cleavage of the viral genomes, regardless of the type of viruses. RNases, ISG20,
a catalytic nucleic acid hydrolyzing 3D8 scFv, RNAi, and CRISPR/Cas systems that target
viral genome degradation have been shown to exhibit antiviral activity. We reviewed all
aspects of the candidates, and proposed insight mechanisms for each one to be considered
as antiviral therapy.
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