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Bayesian inference is a common method for conducting parameter estimation for
dynamical systems. Despite the prevalent use of Bayesian inference for performing
parameter estimation for dynamical systems, there is a need for a formalized and detailed
methodology. This paper presents a comprehensive methodology for dynamical system
parameter estimation using Bayesian inference and it covers utilizing different distribu-
tions, Markov Chain Monte Carlo (MCMC) sampling, obtaining credible intervals for pa-
rameters, and prediction intervals for solutions. A logistic growth example is given to
illustrate the methodology.

© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A common method for performing parameter estimation for dynamical systems is to use Bayesian inference (Ghasemi
et al., 2011; Higham & Husmeier, 2013; Ma & Berndsen, 2014; Periwal et al., 2008; Vanlier, Tiemann, Hilbers, & van Riel,
2012). Despite the popularity of using Bayesian inference for performing parameter estimation for dynamical systems and
useful computational manuals, there is a need for a formalized and comprehensive methodology.

The methods described in this paper assume that the behaviors of the dynamical system of interest have been mathe-
matically analyzed and that the solutions of the dynamical system are well-behaved. Additionally, it is assumed that if a
numerical scheme is being used to solve the dynamical system that the numerical scheme is stable. The methodology is
presented from a mathematical biology perspective and it will focus on systems of ordinary differential equations (ODEs);
however, the Bayesian inference methodology presented can be applied to other areas of applied mathematics and other
differential equations systems such as partial differential equations (PDEs). This paper will provide a formalizedmethodology
for dynamical systemparameter estimation using Bayesian inference and it will cover utilizing different distributions, Markov
Chain Monte Carlo (MCMC) sampling, obtaining credible intervals for parameters, and prediction intervals for solutions. The
methodology is illustrated by using a logistic growth example.

2. Dynamical system

Assume that the dynamical system of interest can be described by the following autonomous ODE system (1) written as a
vector differential equation:
unications Co., Ltd.

ting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the
icenses/by-nc-nd/4.0/).
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x’¼ fðxÞ; (1)

where x¼ Cx1;…; xkD and f ¼ Cf1ðxÞ;…; fkðxÞD, with the vector of initial conditions x0 ¼ Cx01;…;x0k D.
It is assumed that the that the unique solution vector, xðtÞ, of system (1) exists and can be obtained either explicitly or

using numerical approximation. If a numerical approximation method is used, it is assumed that the numerical approxi-
mation scheme is stable.

All the parameters in system (1) will be denoted by the vector b. If the initial conditions x01;…; x0k will also be estimated,
then let the initial conditions x01;…; x0k be contained in vector b as well.

The dependence of the unique solution vector x on both time, t, and the vector of parameters, b, will be emphasized and
the unique solution vector will be denoted as xðb; tÞ.

3. Data

Suppose there arem time series data sets. It is important to ensure that the correct ODE model solution or combination of
ODE model solutions is fit to the jth time series data set (j ¼ 1;…;m).

Sometimes a data set is scaled differently than the model solutions or the data set can be described by a summation of the
ODEmodel solutions. In order to include these situations, we can use a linear combination of the ODEmodel solutions, aj1x1ðb;
tÞþ…þ ajkxkðb;tÞ, to fit to the jth time series data set. (The simpler case where only the ith specific ODEmodel solution xiðb; tÞ
is to be fit to the jth time series data set, is included in the linear combinationwhere aji ¼ 1 and the other constants are zero.) If
the nonzero vector of constants, aj, will be estimated, then let the nonzero vector of constants, aj, for j ¼ 1;…m, be contained
in vector

n¼

2664
b
a1

«
am

3775:
Also, if the jth data set can be described by a nonlinear combination of the ODE model solutions, then, similarly, let any
estimated nonzero vector of constants, aj, be contained in vector

n¼

2664
b
a1

«
am

3775:
So, in general, we fit the function, Fðx1ðb; tjiÞ;…;xkðb; tjiÞ;a1;…;amÞ, to the jth data set.

4. Distribution of data over time

The distribution of the observations over time for each jth data set must be chosen before fitting system (1) to the data. The
following sections will describe the Gaussian, Poisson, Negative Binomial, and other distribution options.

4.1. Gaussian distribution

Let Y be a random variable from the Gaussian distributionwith parameters m and s2 ¼ 1
t>0, YeNðm;q2Þ. The formulation of

the Gaussian distribution is given by the following continuous probability density function (pdf), f ðyÞ (Bain & Engelhardt,
1987):

f ðyÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p exp
�
� 1
2s2

ðy� mÞ2
�

¼
ffiffiffiffiffiffi
t

2p

r
exp

�
� 1
2
tðy� mÞ2

�
: (2)
The mean, E½Y�, of the Gaussian distribution is given by m and the variance, Var½Y �, of this distribution is given by s2 ¼ 1
t.

Assume that the jth time series data set is given by observations Dj ¼ fdj1;…; djnj
g with corresponding times Tj ¼ ftj1;…;

tjnj
g. and that the probability of observing dji is given by the Gaussian distribution:

f
�
dji

�
¼

ffiffiffiffiffiffi
tj

2p

s
exp

�
� 1
2
tj
�
dji � mji

�2 �
; (3)

where the mean mji changes depending on the time, tji and the variance 1
tj
is specific to the jth data set.



Fig. 1. The true logistic growth model for the spread of viral infection in the small town with x0 ¼ 3, r ¼ 0:8 and.N ¼ 3000
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Given our assumption of fitting the function of the ODEmodel solutions and any necessary constants, Fðx1ðb;tjiÞ;…;xkðb;tjiÞ;
a1;…;amÞ, to the jth time series data set, we set

E
h
Dj
i

i
¼mji ¼ F

�
x1
�
b; tji

�
;…; xk

�
b; tji

�
; a1;…; am

�
: (4)
Equation (4) can be thought of as a type of link function. In statistics, for generalized linear models (GLMs), a link function
is defined as the function that transforms the mean of a distribution to a linear regression model (Montgomery, Peck, &
Vining, 2006). Equation (4) equates the mean of the Gaussian distribution to the ODE model solutions.

4.2. Poisson distribution

Let Y be a random variable from the Poisson distribution with parameter m>0, YePOIðmÞ. The formulation of the Poisson
distribution is given by the following discrete pdf, f ðyÞ (Bain & Engelhardt, 1987):

f ðyÞ ¼ expð � mÞmy
y!

; (5)

where y ¼ 0;1;….
The mean, E½Y�, of the Poisson distribution is given by m. For the Poisson distribution, the variance is equal to the mean,

Var½Y� ¼ E½Y� ¼ m.
Assume that the jth time series data set is given by observationsDj ¼ fdj1;…; djnj

gwith corresponding times Tj ¼ ftj1;…; tjnj
g

and that the probability of observing dji is given by the Poisson distribution:

f
�
dji
�
¼

exp
�
� mji

�
m
j
�
dj
i

�
i

dji!
; (6)

where the mean E½Dj
i� ¼ mji changes depending on the time, tji. Hence, the variance, Var½Dj

i� ¼ E½Dj
i� ¼ mji, also changes over

time.
Again, we will use equation (4) to equate the mean, E½Dj

i� ¼ mji, to the ODE model solutions.
The Poisson distribution is used for count data of rare events. The fact that the variance is dependent on the mean is

particularly useful since in practice when observing count data over time the count data generally expresses more variability
at higher values than at lower values (Bolker, 2007). The restriction that the variance is strictly equal to themean is commonly
violated for many types of count data. Count data where the variance is larger than the mean is called overdispersed. The
negative binomial distribution can be used for count data with overdispersion.
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4.3. Negative binomial distribution

Let Y be a random variable from the negative binomial distribution with parameters 0< p<1 and r � 0, Ye NBðr;pÞ. The
formulation of the negative binomial distribution is given by the following discrete pdf, f ðyÞ (Linden & Mantyniemi, 2011):

f ðyÞ ¼ Gðyþ rÞ
y!GðrÞ prð1� pÞy; (7)

where y ¼ 0;1;2….
The interpretation of this formulation of the negative binomial distribution is that y are the number of failures before the

rth success and p is the probability of success per trial (Linden & Mantyniemi, 2011).
The mean, E½Y �, of the negative binomial distribution is given by m ¼ rð1�pÞ

p and the variance, Var½Y �, of this distribution is
given by

s2 ¼ rð1� pÞ
p2

¼m

p
:

For count data, the negative binomial distribution can be interpreted as the mean number of counts E½Y� ¼ m with the
variance Var½Y� ¼ m

p overdispersed, since 0<p<1, Var½Y�>E½Y� (Bolker, 2007).
Assume that the jth time series data set is given by observationsDj ¼ fdj1;…; djnj

gwith corresponding times Tj ¼ ftj1;…; tjnj
g

and that the probability of observing dji is given by the negative binomial distribution:

f
�
dji
�
¼

G
�
dji þ rji

�
dji!G

�
rji

� �pj�ðrjiÞ�1� pj
�dj

i
; (8)

where rji ¼
ðpjÞðmj

iÞ
1�ðpjÞ⇔mji ¼

ðrjiÞð1�pjÞ
pj changes depending on the time, tji and pj is specific to the jth data set. Hence, the variance,

Var½Dj
i� ¼

mj
i

pj , also changes over time.
As before, we will use equation (4) to equate the mean, E½Dj

i� ¼ mji, to the ODE model solutions.

4.4. Other distributions

It is seen from sections 4.1, 4.2, and 4.3 that in general if the jth time series data set is given by observationsDj ¼ fdj1;…; djnj
g

with corresponding times Tj ¼ ftj1;…; tjnj
g and the probability of observing dji is given by the distribution with pdf f ðdjiÞ with

mean E½Dj
i� ¼ mji, then equation (4) is used to equate the mean, E½Dj

i� ¼ mji, to the ODE model solutions.

5. Likelihood function

In a dynamical system, the dependency of solutions x1;…; xk on each other is built into the mathematical model itself.
Assuming that the mathematical model correctly describes the data sets of interest, the data sets can be considered
Fig. 2. The generated data for the spread of a viral infection in the small town.
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independent from each other. Withm independent time series data sets, there will bem likelihood functions associated with
each of the independent data sets and the combined likelihood function is given by

LðqÞ ¼ CL1ðqÞ,…,LmðqÞ; (9)
where q is the vector of parameters to estimate, and C is any positive constant not depending on q used to simplify the

likelihood function (Kalbfleisch, 1979).

5.1. Gaussian probability model for m data sets and combined likelihood function

Assume, for j ¼ 1;…;m, that the jth time series data set is given by observations Dj ¼ fdj1;…; djnj
gwith corresponding times

Tj ¼ ftj1;…; tjnj
g and that the probability of observing dji is given by the Gaussian distribution in equation (3) where the mean

mji changes depending on the time, tji and the variance 1
tj
>0 is specific to the jth data set. Then the probability of the observed

counts D ¼ fD1;…;Dmg is given by

PðDjqÞ ¼
Ym
j¼1

Ynj

i¼1

ffiffiffiffiffiffi
tj

2p

s
exp

�
� 1
2
tj
�
dji � mji

�2 �

¼
�

1
2p

��Pm

j¼1

nj
2

��
t1
�n1

2
,…,ðtmÞ

nm
2 exp

0@� 1
2

Xm
j¼1

tj
Xnj

i¼1

�
dji � mji

�21A;

(10)

where equation (4) is used to equate the mean, mji, to the ODE model solutions and
q¼

2664
n
t1

«
tm

3775:

The Gaussian probability model is very beneficial for fitting since even poor initial guesses of the vector of parameters, q,

will still produce a nonzero probability.
The combined likelihood function is given by

LðqÞ ¼ C
�

1
2p

��Pm

j¼1

nj
2

��
t1
�n1

2
,…,ðtmÞ

nm
2 exp

0@� 1
2

Xm
j¼1

tj
Xnj

i¼1

�
dji � mji

�21A

¼
�
t1
�n1

2
,…,ðtmÞ

nm
2 exp

0@� 1
2

Xm
j¼1

tj
Xnj

i¼1

�
dji � mji

�21A;

(11)

where C ¼
�

1
2p

���
Pm

j¼1

nj
2

�
simplifies the likelihood function. The value of q that maximizes PðDjqÞ will also maximize LðqÞ

(Kalbfleisch, 1979).

5.2. Poisson probability model for m data sets and combined likelihood function

Assume, for j ¼ 1;…;m, that the jth time series data set is given by observations Dj ¼ fdj1;…; djnj
gwith corresponding times

Tj ¼ ftj1;…; tjnj
g and that the probability of observing dji is given by the Poisson distribution in equation (6) where the mean mji

(and hence the variance, mji) changes depending on the time, tji. Then the probability of the observed counts D ¼ fD1;…;Dmg is
given by

PðDjqÞ ¼
Ym
j¼1

Ynj
i¼1

exp
�
� mji

�
m
j
�
dj
i

�
i

dji!

¼ 1

d11!,…,d1n1
!
,…,

1
dm1 !,…,dmnm

!
exp

0@�
Xm
j¼1

Xnj
i¼1

mji

1AYm
j¼1
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mj1

�dj
1
,…,

�
mjnj

�dj
nj

!
;

(12)
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where equation (4) is used to equate the mean, mji, to the ODE model solutions and q ¼ n.
The combined likelihood function is given by

LðqÞ ¼ C
1

d11!,…,d1n1
!
,…,

1
dm1 !,…,dmnm

!
exp

0@�
Xm
j¼1

Xnj
i¼1

mji

1AYm
j¼1

 �
mj1

�dj
1
,…,

�
mjnj

�dj
nj

!

¼ exp

0@�
Xm
j¼1

Xnj
i¼1

mji

1AYm
j¼1

 �
mj1

�dj
1
,…,

�
mjnj

�dj
nj

!
;

(13)

where C ¼ ðd11! ,… ,d1n1
!Þ,…,ðdm1 ! ,… ,dmnm

!Þ simplifies the likelihood function.
5.3. Negative binomial probability model for m data sets and combined likelihood function

Assume, for j ¼ 1;…;m, that the jth time series data set is given by observations Dj ¼ fdj1;…; djnj
gwith corresponding times

Tj ¼ ftj1;…; tjnj
g and that the probability of observing dji is given by the negative binomial distribution in equation (8) where

the mean mji (and hence the variance Var½Dj
i� ¼

mj
i

pj) changes depending on the time, tji. Then the probability of the observed
counts D ¼ fD1;…;Dmg is given by
Fig. 3. Marginal unnormalized posterior distribution for (a) x0, (b)r, (c)N, and (d)p.
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PðDjqÞ ¼
Ym
j¼1

Ynj

i¼1

G
�
dji þ rji

�
dji!G

�
rji

� �pj�ðrjiÞ�1� pj
�dj

i

¼
 

1

d11!,…,d1n1
!
,…,

1
dm1 !,…,dmnm

!

!
0@G
�
d11 þ r11

�
,…,G

�
d1n1

þ r1n1

�
G
�
r11
�
,…,G

�
r1n1

� ,…,
G
�
dm1 þ rm1

�
,…,G

�
dmnm

þ rmnm

�
G
�
rm1
�
,…,G

�
rmnm

�
1A

 �
p1
�Pn1

i¼1
rji
,…,ðpmÞ
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i¼1

rji

! �
1� p1

�Pn1
i¼1

dj
i
,…,ð1� pmÞ

Pnm
i¼1

dj
i

!
;

(14)

where rj ¼ ðpjÞðmj
iÞ
j ⇔mj ¼ ðrjiÞð1�pjÞ

j , equation (4) is used to equate the mean, mj, to the ODE model solutions and
i 1�ðp Þ i p i

q¼

2664
n
p1

«
pm

3775:
The combined likelihood function is given by

LðqÞ ¼ C
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þ r1n1

�
G
�
r11
�
,…,G

�
r1n1

� ,…,
G
�
dm1 þ rm1

�
,…,G

�
dmnm

þ rmnm

�
G
�
rm1
�
,…,G

�
rmnm

�
1A

 �
p1
�Pn1

i¼1
rji
,…,ðpmÞ

Pnm
i¼1

rji

! �
1� p1

�Pn1
i¼1

dj
i
,…,ð1� pmÞ

Pnm
i¼1

dj
i

!

¼
0@G
�
d11 þ r11

�
,…,G

�
d1n1

þ r1n1

�
G
�
r11
�
,…,G

�
r1n1

� ,…,
G
�
dm1 þ rm1

�
,…,G

�
dmnm
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i
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i¼1
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i

!
;

(15)

where C ¼ ðd11! ,… ,d1n1
!Þ,…,ðdm1 ! ,… ,dmnm

!Þ simplifies the likelihood function.

6. Bayesian framework

The Bayesian framework is set up by first assuming a probability model for the observed data D given a p� 1 vector of
unknown parameters q, which is PðDjqÞ. Then it is assumed that q is randomly distributed from the prior distribution PðqÞ.
Statistical inference for q is based on the posterior distribution, PðqjDÞ. Using Bayes’ theorem we have

PðqjDÞ ¼ PðDjqÞPðqÞ
PðDÞ

¼ PðDjqÞPðqÞZ
U

PðDjqÞPðqÞdq
(16)

fLðqÞPðqÞ ¼ pðqjDÞ;



Fig. 4. Posterior predictive distribution with the posterior predictive mean.
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where U is the parameter space of q and LðqÞ is the likelihood function. PðDÞ ¼ RUPðDjqÞPðqÞdq is called the prior predictive
distribution and it is the normalizing constant of the posterior distribution PðqjDÞ (Chen, Shao, & Ibrahim, 2000). The
unnormalized posterior distribution is given by pðqjDÞ ¼ LðqÞPðqÞ.

The Bayesian framework is very useful to use for statistical inference that occurs in mathematical biology since there is
generally prior information about the unknown parameters in the literature.
6.1. Prior distribution

In biological applications there may exist literature regarding an appropriate prior distribution for a parameter of interest.
However, in many cases, only a general range is known from the literature about a parameter of interest and the uniform
distribution is chosen as the prior distribution for the parameter of interest.
7. Markov Chain Monte Carlo algorithms

Markov Chain Monte Carlo (MCMC) algorithms are designed to sample and to fully explore the parameter space where the
unnormalized posterior distribution is positive (Lynch, 2007). The MCMC algorithms involve a process where a new vector of
parameter values is sampled from the posterior distribution, qðtÞ, based off of the previous vector of parameter values, qðt�1Þ. A
successful MCMC algorithm results in a sample path (also called a chain or walker) that has arrived at a stationary process
and covers the domain of the target unnormalized posterior distribution.
7.1. Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is one of the classic MCMC algorithms (Chen et al., 2000):
A starting point qð0Þ is selected.
For every iteration t ¼ 1;2;…;T:

randomly select a proposal for qðtÞ, g, from the proposal distribution f ðqðtÞ		qðt�1ÞÞ

proposal for qðtÞ is accepted with probability a ¼ min


1; pðgjDÞ

pðqðt�1Þ jDÞ f ð qðt�1Þ jgÞ

f ðgjqðt�1ÞÞ

�
random sample u from Uð0;1Þ
if u<a, the proposal is accepted and qðtÞ ¼ g.

If not, qðtÞ ¼ qðt�1Þ
;

where pðqjDÞ is the unnormalized posterior distribution.



Fig. 5. Best fit and true model for the spread of a viral infection in the small town with 95% prediction interval.
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7.1.1. Random-walk Metropolis-Hastings algorithm
If a symmetric proposal distribution is chosen in the Metropolis-Hastings Algorithm, then the proposal distribution

randomly perturbs the current position of the vector of unknownparameters, qðt�1Þ, and these algorithms are called Random-
Walk Metropolis-Hastings algorithms (Lynch, 2007).

A symmetric proposal distribution has the property that f ðg		qðt�1ÞÞ ¼ f ðqðt�1Þ		gÞ and this simplifies the acceptance
probability to a ¼ min



1; pðgjDÞ

pðqðt�1Þ jDÞ
�.

7.2. Affine invariant ensemble Markov Chain Monte Carlo algorithm

The affine invariant ensemble MCMC algorithm is shown to perform better than the Metropolis-Hastings algorithm and
other MCMC algorithms (Goodman & Weare, 2010). The algorithm uses K walkers and the positions of the walkers are
updated based on the present positions of the K walkers (Weikun, 2015, pp. 1e8). The following is the affine invariant
ensemble MCMC algorithm:

A starting point qð0Þi is selected for each of the walkers, i ¼ 1;2;…;K .
For every iteration t ¼ 1;2;…;T:
For i ¼ 1;2;…;K:

randomly select a walker j from the K walkers such that jsi
randomly choose z from the distribution f ðzÞ ¼ 1ffiffiffiffi

az
p , 1a � z � a

proposal for qðtÞi is g ¼ q
ðt�1Þ
j þ zðqðt�1Þ

i �q
ðt�1Þ
j Þ (Stretch Move)

proposal for qðtÞi is accepted with probability a ¼ min

(
1;zp�1 pðgjDÞ

pðqðt�1Þ
i jDÞ

)
random sample u from Uð0;1Þ. If u<a, the proposal is accepted and q

ðtÞ
i ¼ g. If not, qðtÞi ¼ q

ðt�1Þ
i ;

where pðqjDÞ is the unnormalized posterior distribution, a>1 is adjusted to improve performance, and f ðzÞ satisfies the

symmetry condition f
�
1
z

�
¼ zf ðzÞ.

The equation q
ðt�1Þ
j þ zðqðt�1Þ

i �q
ðt�1Þ
j Þ is the equation of a line parallel to the vector ðqðt�1Þ

i � q
ðt�1Þ
j Þ. By randomly choosing

z, the stretch move in the algorithm moves to a vector position, g, a certain distance up or down the line. Then the vector
proposal, g, is either accepted or rejected based on the acceptance probability, a.

The set of samples from each of the K walkers will converge to the unnormalized posterior distribution, pðqjDÞ. After
running the method, the set of samples from each of the K walkers can be pooled together to form a larger sample from the
unnormalized posterior distribution, KT samples. Since the samples from the first iterations are generally far away from the
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highest density of the unnormalized posterior distribution, the first iterations are usually deleted from each of the Kwalkers;
the deletion of the first iterations is called burn-in. Let H be the number of pooled samples after the burn-in is completed.

8. Diagnostics

The samples from theMCMC provide a sample path. It is important to diagnose if this sample path produces a sample from
the target unnormalized posterior distribution, pðqjDÞ. In other words, the sample path converges to the target unnormalized
posterior distribution, pðqjDÞ. From the plot of the sample path, it is vital to find that the sample path has arrived at a sta-
tionary process and the sample path covers the domain of the target unnormalized posterior distribution, pðqjDÞ.

The sample path for each parameter qi should be plotted. It is ideal to find that the sample path for each parameter qi is
oscillating very fast and displays no apparent trend; this indicates that the sample path has arrived at a stationary process. By
observing themarginal posterior distribution, pðqijDÞ for each parameter qi, it should be observed that the sample path covers
the domain of the target unnormalized posterior distribution, pðqjDÞ.

A formalized test of the convergence of theMCMC sampling to the estimated unnormalized posterior distribution for each
parameter qi is found by using a general univariate comparison method (Gelman & Brooks, 1998). The general univariate
comparisonmethod uses the distance of the empirical 100ð1�aÞ% interval for the pooled samples, S, and divides this distance
by the average of the distances of the empirical 100ð1�aÞ% interval for each of the Kwalkers, si, to receive the potential scale
reduction factor, h (Gelman & Brooks, 1998):

h ¼ SPK
i¼1

si
K

: (17)
When the potential scale reduction factor, h, is close to 1 for all the estimated parameters, this indicates that the MCMC
sampling converged to the estimated posterior distribution for each parameter.

9. Credible intervals for parameters

For a unimodel, symmetric marginal posterior distribution, pðqijDÞ, for qi, the 95% credible interval for qi is given by the 2.5
and 97.5 percentiles of the marginal posterior distribution of pðqijDÞ (Chen et al., 2000).

9.1. Non-uniqueness

Non-uniqueness occurs when there is more than one solution vector q that explains the data, D, equally as well.
When there is non-uniqueness, the marginal posterior distribution, pðqijDÞ, for qi is constant over an interval and the

credible interval for qi is given by the upper and lower limits of the interval (Chen et al., 2000).
The credible intervals resulting from non-uniqueness are still very beneficial since they are often more specific than the

initial prior distributions specified for the parameters.

10. Posterior predictive distribution

Let ~D ¼ f~D1;…; ~Dmg be future responses of interest for them datasets. The posterior predictive distribution of ~D is given by

Pð~DjDÞ ¼
Z
U

Pð~DjqÞPðqjDÞdq; (18)

where PðqjDÞ is the posterior distribution and Pð~DjqÞ is the same probability model for the data specified in the Bayesian
framework (16).

To generate the posterior predictive distribution.
For each pooled sample t ¼ 1;2;…;H:

randomly sample ~D from the probability distribution specified for the data PðD		qðtÞÞ at qðtÞ;
where H is the number of samples from the unnormalized posterior distribution.

The 95% prediction intervals for each data set Dj is found by determining the 2.5 and 97.5 percentiles of the posterior
predictive distribution at each tji.

The posterior predictive mean is found by taking the mean of the posterior predictive distribution at each tji.
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11. An example: logistic growth

Assume there are three people infected with a virus in an isolated town of 3000 people. Furthermore, assume that the true
model for the first 15 days of the virus across the population is plotted in Fig.1 and given by the following differential equation

dx
dt

¼ x
�
r � r

N
x
�
; (19)

where x0 ¼ 3, r ¼ 0:8 and N ¼ 3000.
Now, this differential equation (19) can be solved analytically and we receive the logistic equation

xðb; tiÞ ¼
rx0

r
Nx0 þ

�
r � r

Nx0
�
e�rti

; (20)

where
b¼
24 x0r
N

35:

Now, assume that the town collects count data for the number of people infected with the virus. We will generate this

observed data by randomly sampling from the Negative Binomial distribution with mean given by (20) with x0 ¼ 3, r ¼ 0:8
and N ¼ 3000, and variance given by the mean divided by p, where p is chosen as 0.005. The generated observed data for the
first 15 days of the virus across the population is plotted in Fig. 2.

Now, we will use Bayesian inference to determine the following unknown vector of parameters

q¼
�
b
p



2
x0
3

¼ 664 r
N
p

775:
In this scenario, equation (4) is E½Di� ¼ mi ¼ xðb; tiÞ and the negative binomial distribution (8) is chosen to describe the
observed data.

The following uniform prior distributions are chosen for the parameters:

x0 with distribution Uð1;50Þ
r with distribution Uð0:1;2Þ
N with distribution Uð100;6000Þ
p with distribution Uð1 � 10�5;1 � 10�1Þ.

The affine invariant ensemble MCMC algorithm is used with T ¼ 100000 iterations and K ¼ 8 walkers. The potential scale
reduction factor, h, for each parameter:

h ¼ 0:9941 for x0
h ¼ 0:9977 for r
h ¼ 0:9963 for N
h ¼ 0:9987 for p.

All potential scale reduction factors are close to 1 and this indicates that the algorithm converged to the posterior
distribution.

The marginal unnormalized posterior distribution for each parameter is plotted in Fig. 3. The estimated parameters with
95% credible intervals are the following:

x0 is estimated to be 4.13 (1.68, 19.58),
r is estimated to be 0.690 (0.474, 0.834),
N is estimated to be 2:99� 103 (2:46� 103, 4:47� 103), and
p is estimated to be 0.0070 (0.0032, 0.0111).
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The true parameter values for x0, r, N, and p all lie within the 95% credible intervals.
Samples from the posterior predictive distribution and the posterior predictive mean are displayed in Fig. 4. The true

model, best fit model (model with the highest unnormalized posterior probability), and posterior predictive mean are
compared in Fig. 5. It is seen that the best fit model (red curve) lies very close to the posterior predictive mean (black curve)
and is near the true model (blue curve). It is observed that the true model (blue curve) and all of the generated data (red
circles) lie within the 95% prediction intervals (dashed black curves).
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