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Background: A major motivation in designing the new infant and child magnetoencephalog-
raphy (MEG) system described in this manuscript is the premise that electrophysiological
signatures (resting activity and evoked responses) may serve as biomarkers of neurode-
velopmental disorders, with neuronal abnormalities in conditions such as autism spectrum
disorder (ASD) potentially detectable early in development. Whole-head MEG systems are
generally optimized/sized for adults. Since magnetic field produced by neuronal currents
decreases as a function of distance2and infants and young children have smaller head
sizes (and thus increased brain-to-sensor distance), whole-head adult MEG systems do
not provide optimal signal-to-noise in younger individuals. This spurred development of a
whole-head infant and young child MEG system – Artemis 123.

Methods: In addition to describing the design of the Artemis 123, the focus of this
manuscript is the use of Artemis 123 to obtain auditory evoked neuromagnetic recordings
and resting-state data in young children. Data were collected from a 14-month-old female,
an 18-month-old female, and a 48-month-old male. Phantom data are also provided to show
localization accuracy.

Results: Examination of Artemis 123 auditory data showed generalizability and reproducibil-
ity, with auditory responses observed in all participants.The auditory MEG measures were
also found to be manipulable, exhibiting sensitivity to tone frequency. Furthermore, there
appeared to be a predictable sensitivity of evoked components to development, with
latencies decreasing with age. Examination of resting-state data showed characteristic
oscillatory activity. Finally, phantom data showed that dipole sources could be localized
with an error less than 0.5 cm.

Conclusions: Artemis 123 allows efficient recording of high-quality whole-head MEG
in infants four years and younger. Future work will involve examining the feasibility of
obtaining somatosensory and visual recordings in similar-age children as well as obtaining
recordings from younger infants. Thus, the Artemis 123 offers the promise of detecting
earlier diagnostic signatures in such neurodevelopmental disorders.
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INTRODUCTION
A major motivation in the design of the new infant and child mag-
netoencephalography (MEG) system described in this manuscript
is the premise that electrophysiological signatures (resting activity
and evoked responses) may serve as biomarkers of neurodevel-
opmental disorders, with neuronal abnormalities in conditions
such as autism spectrum disorder (ASD) potentially detectable
very early in development. Opportunity for very early thera-
peutic interventions (behavioral and pharmacological) could be
achieved via the use of diagnostic, stratification and neurobio-
logical biomarkers, derived from resting, evoked and oscillatory
neuronal measures.

Whereas adult whole-head MEG systems have been instrumen-
tal in the investigation of neural activity during development,
adult MEG systems do not provide optimal, or in some cases
even adequate, signal-to-noise ratio (SNR) in younger individu-
als (e.g., Gaetz et al., 2008). Specifically, the smaller head size of
infants and young children leads to an increased distance between
the sites of neuronal activity (brain) and MEG sensors. Further,
conventional systems have an additional relatively large displace-
ment of MEG sensor inside the helmet (∼1.5–2 cm) and thus an
additional head-surface to detection-coil distance. Ultimately, the
distance between brain-source and MEG detection-coil (including
brain-to-helmet and helmet-to-coil distances), coupled with the
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fact that the magnetic field strength produced by neuronal cur-
rents decreases as a function of the square of the distance, leads
to smaller measurable signal amplitudes with conventional MEG
detection hardware. The above factors greatly hinder the accurate
detection, characterization, and localization of neuronal activity
in young children.

Although the generators of neural activity can, in princi-
ple, be recorded from the scalp using electroencephalography
(EEG) at least after the complete closure of the fontanelles (sec-
ondary to skull ossification) by approximately 18-months-old,
the need to obtain accurate measures of left versus right hemi-
sphere activity makes MEG a more attractive method, especially
for auditory studies (e.g., see Edgar et al., 2003). Another advan-
tage of MEG over EEG is decreased contamination from non-brain
high frequency signals (e.g., microsaccades, muscle), especially
when examining beta (12–30 Hz) and gamma (>30 Hz) activity
(Muthukumaraswamy, 2013).

The 76-channel babySQUID®, developed in 2005, showed
the advantage of placing the head closer to the MEG sensors in
infants and children (Okada et al., 2006). In 2009, a whole-head
MEG system was developed for infants and children (Johnson
et al., 2009). This system, with a 53.4 cm circumference helmet
accommodating >90% of 5-year-old US Caucasian boys, pro-
vided excellent recordings of left and right auditory responses in
four-year-old subjects. As Johnson et al. note, the smaller MEG
helmet allowed placement of the MEG sensors closer to the head-
surface as well as a more symmetric placement of the head with
respect to the MEG sensors, thus providing similar left and right
hemisphere SNR (in larger adult-sized helmets the child’s head
is able to move and thus is more likely to be asymmetrically
placed with respect to the helmet sides). Several recent studies
have reported findings from this 64-channel whole-head young
child MEG system, now modified to 151-channels (PQ 1151R;
Yokogawa/KIT, Kanazawa, Japan). Kikuchi et al. (2011) used this
system to examine language lateralization in children aged 2-
to 5-years-old, and Yoshimura et al. (2012) examined the devel-
opment of 50 and 100 ms auditory responses in children aged
2- to 5-years-old. This same laboratory has recently begun to
use this system to examine auditory processes in children with
ASD (Kikuchi et al., 2013; Yoshimura et al., 2013). Findings from
the above studies indicate that this is a fruitful area of research
and emphasize the importance of whole-head (as opposed to
unilateral, or partial coverage) MEG recordings in the investi-
gation of bilateral responses as well as the study of hemispheric
lateralization.

The above considerations spurred development of a novel
whole-head infant and young child MEG system – the Artemis
123. This system, optimized for children 3 years and younger,
was designed around a 50 cm helmet, where 50 cm represents
the median head circumference of a 3-year-old child in the
USA (Centre for Disease Control), thus allowing closer place-
ment of the helmet to the underlying neuronal sources. The
Artemis 123® hardware also incorporates a coil-in-vacuum sen-
sor configuration as opposed to having the sensor geometry
immersed in liquid helium. Sensors immersed in liquid helium
require an insulated dewar helmet with the detection-coils nec-
essarily located at a distance, typically greater than 1.5–2 cm,

from the head-surface. The coil-in-vacuum configuration allows
placement of the detection-coils (sensors) as close as 6 mm from
the scalp, thereby mitigating the second source of source-sensor
displacement (sensor to helmet surface distance), and providing a
substantial increase in brain signal amplitude compared to a MEG
system with the same sensor geometry immersed in liquid helium.
Furthermore, a proprietary method for minimizing dimensional
changes on cooling has an added benefit of greatly reducing the
sensor’s susceptibility to vibration, such as that induced by patient
motion while in the helmet.

As introduced above, a major motivation in the design of
this new infant and child MEG system is the premise that elec-
trophysiological signatures during brain development may serve
as biomarkers of disease/disorder, with neuronal abnormalities
potentially detectable very early in development. Specifically,
growing evidence in school-aged children indicates that MEG-
detected auditory cortex responses to simple tone (e.g., Gage
et al., 2003; Roberts et al., 2010) and changing vowel stimuli
(e.g., Roberts et al., 2011) may delineate children with disorders
such as ASD from typically developing peers (for review see Kujala
et al., 2013) and potentially serve as biomarkers for stratification
in clinical trials. In addition to evoked response latency and ampli-
tude measures, assessment of left and right superior temporal
gyrus neural oscillatory activity in ASD [e.g., total power and inter-
trial coherence (ITC)] also suggests ASD biomarkers (Wilson et al.,
2007; Rojas et al., 2008; Edgar et al., 2013). The use of such audi-
tory neural signatures as“early detection”biomarkers is predicated
on the ability to measure these signals in pre-diagnostic groups.
As autism is typically diagnosed by clinical presentation in young
childhood, earlier diagnosis would require sensitivity to atypical
brain activity in the young infant (<2–3 years of age). Hence the
design of the Artemis 123 is optimized to detect brain activity from
children ∼6- to ∼36-months-old.

Given this clinically motivated backdrop of sensitivity to left
and right auditory evoked-field morphology in infancy and early
childhood, the focus of this manuscript is on the use of Artemis
123 to obtain neuromagnetic auditory recording in children 14
to 48 months. Additionally, given findings that show resting-state
oscillatory abnormalities in ASD (Cornew et al., 2012), resting-
state data is also obtained to examine the feasibility of examining
endogeneous brain rhythms (e.g., 8–12 Hz alpha rhythms). Finally,
phantom data are provided to show the localization accuracy of
the system.

MATERIALS AND METHODS
ARTEMIS123 HARDWARE AND SOFTWARE
The Artemis 123 biomagnetometer is a member of the
babySQUID® product family, used to non-invasively measure
the weak magnetic fields produced by electrical brain activity.
A CAD drawing of the system is shown in Figure 1A. The sen-
sors (Figure 1B), an array of superconducting detection-coils,
are housed within a realistically shaped helmet, with whole-head
coverage optimized for the median three-year-old (i.e., 50 cm
circumference). The Artemis 123 sensor system is comprised of
135 channels of magnetic field pick-up coils, each connected to
a low temperature SQUID (Superconducting QUantum Interfer-
ence Device). The Artemis 123 is located inside a magnetic shielded
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FIGURE 1 | (A) The Tristan Technologies Inc. Artemis 123
biomagnetometer is a member of the babySQUID® product family (CAD
drawing). Shown are the mobile bed, the sensor unit, and cart containing
SQUID electronics, all located within the MSR. (B) View of the helmet and

sensor array (frontal sensors on top): 123 first-order gradiometers (15 mm coil
diameter and 60 mm baseline) are housed within a realistic head-shaped
helmet, with whole-head coverage optimized for the median three-year-old
(50 cm circumference).

room (MSR) manufactured by Vacuumschmelze (GmbH & Co.
KG).

Of the 135 channels, 123 are first order axial gradiometers
(number of turns in the gradiometer are +5 and −5) with a 15 mm
coil diameter and 60 mm baseline. Using a coil-in-vacuum con-
figuration, the distance from these 123 sensors to outer surface is
as little as 6 mm and less than 9 mm throughout, with noise per-
formance better than 10 fT/

√
Hz. The Artemis 123 also includes

twelve reference channels: two sets of 3-axis magnetometers and
two pairs of three reference gradiometers. Reference channels mea-
sure environmental and extraneous brain magnetic signals so that
this “noise” can be removed from the brain signals of interest
detected in the axial gradiometer channels.

For the Artemis 123 SQUID electronics, Tristan Technologies
Inc.’s 400 series iMAG® electronics are used. These are conven-
tional transformer-coupled SQUID electronics following a flux
modulation scheme. Circuit boards are grouped in units of four
channels with a local microprocessor. This architecture provides a
number of important features. First, the flux modulation scheme
gives the SQUIDs a flat frequency response from below 0.5 Hz
to in excess of 40 kHz. Second, transformer coupling of the

SQUID voltage allows the use of high-resistivity cabling in the
dewar, allowing many SQUIDs to be run inside the dewar vacuum
space with minimal impact on liquid helium consumption. Finally,
this method allows for unshielded operation with linearity on the
order of a part per million. The system sensitivity in Tesla (least-
significant bit) is 0.6 fT/bit on gain 100, and the dynamic range in
Tesla (least-significant bit) is +/− 250 nT on gain 1. The optimal
tuning parameters for each SQUID sensor are stored in EEPROM.
Although re-tuning is possible, in our experience daily tuning is
generally not required as the system does not trap flux during
normal operation. In addition, the Artemis 123 has no problem
maintaining lock. For example, at the manufacturing facility (Tris-
tan Technologies Inc.), it was observed that the system held lock in
a completely unshielded environment, despite adjacency to a large
running vacuum pump station.

The Artemis 123 data acquisition system (Figure 2) utilizes a
fiber optic linked expandable PXI architecture, enabling the acqui-
sition chassis to reside just outside the MSR in an RF-shielded
cabinet. The fiber optic link that connects the PXI chassis to the
host PC running the operating software provides galvanic isola-
tion from the electrical circuits outside the MSR while enabling

FIGURE 2 | Block diagram of electronics system functions. The
architecture provides control and real-time processing for MEG, EEG, and
A/D input channels as well as fast off-line processing. The acquisition

hardware consists of up to 160 simultaneously sampled 24-bit channels
with built-in anti-alias filtering, plus up to an additional 96 16-bit auxiliary
channels.
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data transport bandwidth of up to 80 MB/s. The acquisition
hardware consists of up to 160 simultaneously sampled 24-bit
channels with built-in anti-alias filtering, plus up to an addi-
tional 96 16-bit auxiliary channels. Thus, simultaneous EEG,
EMG or other continuous electrical recordings are achievable.
The external electronics cabinet also contains an isolation trans-
former and DC power supplies for the SQUID electronics in the
room, and power from the supplies enter the MSR through EMI
filters.

The control software for the Artemis 123 biomagnetometer
runs on a PC workstation, and Windows OS. The Artemis 123
operating system is written in LabView® for rapid development
and to simplify communications with National Instruments data
acquisition boards. The software features simultaneous displays
in a split-screen configuration (e.g., continuous data on the left
and averaged data on the right). The control software is capa-
ble of graphing all channels on a strip chart display, detecting
and processing event-related averages, continuously refreshing the
averaged data graph, applying filters, and recording the data to
disk, all at a sustained 5 kHz sample rate. The available filtering
options in various points throughout the data stream, coupled
with the ability to “play back” a saved data file, enables the Artemis
123 acquisition software to also be used as a post-processing tool.

Examining recordings obtained in the empty MSR, Figure 3
shows two spectra, one of the raw primary sensor outputs
(Figure 3A) and one with weights generated from the reference
magnetometers applied to all sensors (Figure 3B) as a spatial filter
to reduce external noise sources. The spectrum for each channel
is the grand average of 36 averages of 8192-point FFTs (1.62 s
epochs), with the figure showing the average across all sensor
channels. For Figure 3B, prior to generation of weights, the data
were band-passed from 5 to 200 Hz and then notch filters applied
at the line frequency and all harmonics (i.e., 60, 120, 180, 240,
and 300 Hz). Weights were obtained by calculating the covari-
ance between signal and reference channels across the selected
frequency bands. These weights were then applied to the raw data
with no temporal filtering.

The Figure 3A power spectrum shows several large peaks below
100 Hz. These include the 60 Hz powerline peak as well as a peak
at ∼24 Hz which reflects noise from the local mass transport/train
system. Figure 3B shows that via spatial filtering the reference
channels can be used to remove most of the noise activity below
100 Hz. Of note, the 60 Hz peak observed in Figure 3 is of compa-
rable, or even smaller, amplitude than the 60 Hz peak observed in
the CTF 275 system located in the same room when the CTF 3rd
order noise reduction option is turned off.

PHANTOM RECORDINGS
A custom made Artemis 123 compatible spherical saline-filled
electrolyte phantom was constructed (12.7 cm diameter; 40 cm
circumference, see Figure 4A). Two current dipoles were each con-
structed as a pair of gold spheres of approximately 2 mm diameter
with 9 mm between anode and cathode. The two current dipoles
were positioned at (1.8, 0, 4.0) cm or (−1.8, 0, 2.0) cm, relative to
the center of the sphere.

Dipoles were driven by a 40 Hz sinusoidal current source at
each of two different driving voltages, 1 and 0.5 V. Three head

FIGURE 3 | Recordings obtained in the empty MSR. (A,B) show the
spectra averaged across all sensor channels. The (A) power spectrum
shows several large peaks below 100 Hz. These include the 60 Hz
powerline peak as well as a peak at ∼24 Hz which reflects noise from the
local mass transport/train system. In (B), the reference channels were used
to remove external noise, the weights obtained by calculating the
covariance between signal and reference channels and then the weights
applied to the raw data with no temporal filtering. (B) shows that via spatial
filtering most of the noise activity below 100 Hz is removed.

position indicator coils (HPIs) were affixed to the phantom at
(6.35, 0, 0) cm, (0, −6.35, 0) cm, and (0, 6.35, 0) cm to identify
the phantom location within the sensor array (approximating the
nasion and pre-auricular points that might be used as anatomic
fiducial landmarks). The HPI coils were driven by 0.1 V sinusoidal
current sources each with a unique non-harmonic frequency, 700,
750, and 800 Hz. Ten seconds of data (40 trials of 0.250 s dura-
tion) were acquired for each dipole activation and each driving
voltage strength using a sample rate of 5 kHz. HPI localization
was achieved by first demodulating each of the HPI signals from
the sensor waveforms. Demodulated signals were then low-pass
filtered (8 Hz) and averaged, yielding a single topography for
each of the HPI sources. Magnetic dipoles were fit, using a com-
bination of grid search and gradient descent algorithms, to the
observed topographies, thereby identifying the locations of each of
the HPIs.

For each data acquisition, a single sphere head model (radius
6.7 cm) was determined from the HPI locations. The MEG wave-
forms were down-sampled to 500 Hz and filtered with a 10–50 Hz
band-pass. Sensor waveforms were then averaged across trials and
localized by single equivalent current dipole fitting.
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FIGURE 4 | (A) A custom spherical saline-filled phantom with two dipole
locations indicated with white circles. (B) Observed topographies for
activated Dipoles 1 and 2 are shown for a 40 Hz sinusoidal current source
at 1 and 0.5 driving voltages. (C) The corresponding dipole model
locations and moment traces for each voltage. Estimated source

localization error is less than 0.5 cm. (Of note, the Artemis 123 phantom
is a scaled-down version of the CTF/MISL phantom, designed to fit into
the existing CTF/MISL stand (visible in Figure 3A). In addition, the
electrodes provided by CTF/MISL are the same as those used in the
Artemis 123 phantom.).

FIGURE 5 | A 14-month-old participant undergoing MEG recording.

HUMAN RECORDINGS
MEG data was collected at 5 kHz per channel. Resting-state and
auditory evoked data were collected from a 14-month-old female,
an 18-month-old female, and a 48-month-old male, with data
obtained from all participants in a supine position (Figure 5).
Data were obtained in the 14-month-old female while asleep, and
from the two other participants while they watched a silent video
projected onto the ceiling. All recordings were performed in the
afternoon. All subjects were typically developing.

Resting-state
Resting-state data were obtained over periods of up to 60 s with
minimal observed head motion. In the two awake cases, data was
acquired in the eyes-open state (except for occasional blinks).

Auditory stimulation
500 and 1000 Hz sinusoidal tone stimuli were presented at a
comfortable hearing level using a 60cm × 60cm plane-wave
electrostatic directional flat-panel speaker (Panphonics Sound-
Shower SSHP60x60, Tampere, Finland). Stimuli were of 300 ms
duration (10 ms linear onset ramps) and presented with a 2 s inter-
stimulus interval ( ± 0.3 s). 500 and 1000 Hz tones were presented
in separate non-interleaved blocks. Stimuli were presented until at
least 100 trials per condition were collected.

Auditory data were analyzed using BESATM 6.0 (BESA
Gmbh, Graefelfing, Germany). Data periods exhibiting artifacts
(e.g., muscle) were manually identified and removed. Artifact-free
epochs were then averaged according to stimulus type and filtered
using a 3 Hz (12 dB/octave, zero-phase) to 40 Hz (48 dB/octave,
zero-phase) band-pass. Auditory responses were averaged over
a 600 ms epoch, including a 200 ms pre-stimulus interval. The
presence or absence of middle latency (∼M50) and long latency
(∼M100) responses in the left and right hemisphere was deter-
mined by the magnetic field topography. In particular, presence
of M50- and M100-like evoked response components was deter-
mined based on left and right hemisphere ingoing and outgoing
flux topography (e.g., for “M100” left hemisphere ingoing ante-
rior, outgoing posterior, and vice-versa for the right hemisphere).
In view of the potential application of infant auditory MEG to
detection of early signs of ASD, particular focus was placed on
determining the latency of evoked responses. While latency can
be determined at the sensor-level, a level of noise reduction can
be obtained by principal component analysis (PCA) to more
clearly delineate evoked response components. An additional SNR
advantage can be achieved by estimating the neural timecourse
in source space, through single equivalent dipole fitting, beam-
forming, or other localization techniques. In this manuscript, a
simple standard brain regional source and lead field approach
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(with empirically optimized source orientation) to source space
estimation is presented, which nonetheless confers some SNR
advantage over sensor-level estimates.

Additionally, again following previous results in older chil-
dren, time frequency analysis was demonstrated – using complex
demodulation methods as described in Edgar et al. (2013) and
implemented in BESA to yield spectrotemporal profiles of total
power, evoked power and ITC from left and right hemisphere
auditory sources.

RESULTS
PHANTOM DATA
Topographies are shown in Figure 4B for each dipole and drive
voltage; note that for visualization purposes topologies for each
dipole are scaled separately. Current dipoles were fit using the
Fieldtrip software package (Oostenveld et al., 2011) to the averaged
dataset, yielding locations and time courses for each dipole and
drive voltage (Figure 4C). The mean dipole locations (each dipole
was localized for 1 and 0.5 V drive amplitudes) were as follows:
Dipole 1 – (1.95, −0.28, 3.93) cm, Dipole 2 – (−2.28, −0.23,
2.02) cm with standard deviations (0.03, 0.00, 0.01) cm and (0.08,
0.06, 0.16) cm. Estimated root mean square source localization
error was less than 0.5 cm.

Resting-state
Resting-state data were obtained from all three subjects. Figure 6
shows resting-state activity from a typical subject.

The raw recordings in the left panel show “alpha” activity
(8 Hz), with the top-view inset showing the topography distinctive

to resting-state alpha with alpha activity larger in occipital than
frontal sensors. The panel to the right shows heartbeat in many of
the channels, characteristic of clinical MEG recordings and illus-
trating a potential confounding artifact (note, the physical distance
from heart to helmet is closer in infants than in older children or
adults). Multiple “cardiac artifact” elimination schemes have been
proposed (e.g., Breuer et al., 2013).

AUDITORY DATA
Figure 7 illustrates a sensor-level view of MEG auditory evoked
waveforms along with left- and right-hemisphere “M50” mag-
netic field instantaneous topographic overlays for a 14-month-old
participant undergoing stimulation with a 500 Hz sinusoidal
tone. Clear bilateral evoked responses are resolved, along with
dipolar magnetic field topographies amenable to single equiv-
alent current dipole modeling. Note that the lateral temporal
sensors exhibit greater evoked response amplitudes than frontal
or occipital sensors, indicating the spatial discrimination of the
device.

Figure 8 illustrates post-processing of the averaged evoked
sensor-level response for the 14-month-old participant, showing
source space estimation of the time course of the right superior
temporal gyrus auditory response, revealing resolvable compo-
nent events, characterizable in terms of amplitude and latency.
Figure 8D extends the analysis to the spectrotemporal domain,
allowing resolution of stimulus-related inter-trial coherence in
lower (<20 Hz) domains.

Figure 9 represents the ability of auditory evoked recordings to
assess neuronal encoding of stimulus features such as frequency

FIGURE 6 | (A) Two seconds of resting-state recordings from an 18-month-old
participant. Several channels exhibit resolvable alpha activity in the resting
MEG data with increased amplitude from posterior sensor locations (see the

top-view sensor inset). (B) 3 s of resting-state data showing heart-beat
activity in most MEG channels for the same participant (approximately two
heartbeats per second).
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FIGURE 7 |Top-down view of MEG auditory evoked waveforms and left- and right-hemisphere “M50” magnetic field topographies for an

18-month-old participant (500 Hz tone). In the top-down view frontal sensors are shown at the top and occipital-parietal sensors at the bottom.

FIGURE 8 | (A) Collapsed (“butterfly”) plot of MEG auditory evoked sensor
waveforms for a 14-month-old participant experiencing stimulation with a
1000 Hz tone, showing data from all MEG channels with stimulus locked
averaging from −200 to 600 ms with respect to tone onset (filtered 3–40 Hz).
(B) A dipolar regional source is shown for the right superior temporal gyrus in
a standard head model. (C) Source time course of the right superior temporal

gyrus waveform, indicating a clear deflection at approximately 180 ms
(vertical line). (D) Time-frequency transformation of the single–trial data
allows estimation of inter-trial coherence (ITC), or phase-locking, for the
source (time on x axis and frequency on y axis). Bright red regions
post-stimulus indicate increased superior temporal gyrus phase-locking to the
1000 Hz tone, particularly at lower frequencies.

in young children. In this example, an 18-month-old participant
underwent stimulation with 500 and 1000 Hz sinusoidal tones.
Sensor-level waveforms were averaged and decomposed using
PCA, and the PCA waveforms for each stimulus overlaid to illus-
trate a stimulus-frequency-dependent latency shift of the M50
evoked response (analogous to that described by Roberts and
Poeppel, 1996). Sensor-level findings are recapitulated in source
space using regional source modeling, with a similar auditory
latency shift observed.

Middle latency responses (analogous to the M50 described
in older children and adults) also appear to exhibit a devel-
opmental time course. The preliminary data examined in this
study were consistent with a maturational shortening of the

“M50” latency from 180 ms at 14 months through 156 ms at
18 months to 147 ms at 48 months (500 Hz tone stimulation)
as described by Paetau et al. (1995) and Roberts et al. (2013). Of
note, data from the youngest participant was acquired during
sleep. Sleep may additionally modulate (prolong) evoked response
latency.

DISCUSSION
Present findings show that the Artemis 123 provides high-quality
recordings from individuals aged 14 to 48 months. In particular,
examination of Artemis 123 auditory data showed generalizabil-
ity, with auditory responses observed in all three participants.
The auditory MEG measures were also found to be manipulable
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FIGURE 9 | Stimulus attribute (frequency) encoding is reflected at both

the sensor and source levels. (A) PCA on MEG auditory evoked sensor
waveforms comparing a 1000 Hz (red) and 500 Hz (blue) auditory response
in an 18-month-old-subject. Waveforms are shown from −200 to 400 ms.
(B) Right superior temporal gyrus source waveforms in the same subject.
Time courses are shown from −200 to 400 ms. At sensor and source level
a slight latency shift is resolvable (with the higher frequency stimulus
eliciting a shorter latency response).

(Figure 9), exhibiting sensitivity to tone frequency. Furthermore,
there appeared to be a predictable sensitivity of evoked response
components to development, with latencies decreasing with age.
Given the atypical developmental trajectory of M50 latency in dis-
orders such as ASD (e.g., Roberts et al., 2013), this offers exciting
potential for assessment of auditory system development as well
as early detection of atypical auditory processing. Examination
of resting-state rhythms also showed characteristic resting-state
oscillatory activity (posterior resting-state alpha, heartbeat activ-
ity), indicating that the Artemis 123 provides quality recordings of
resting-state rhythms in young children, with potential for analyses
of resting-state functional networks and connectivity. Future work
will involve examining the feasibility of obtaining somatosen-
sory and visual recordings in similar-age children as well as
obtaining recordings from infants. Finally, phantom data showed
that dipole sources could be localized with an error less than
0.5 cm.

Given that in many studies it will not be possible to obtain
magnetic resonance imaging (MRI) data from infants and young
children, for some studies it will be necessary to apply tech-
niques (some already developed) to align MEG data to template
MRIs. As an example, this could accomplished via affine point
based registration techniques to align individualized headshape
models (derived from head-surface points) to the scalp of age-
matched MRI templates. The transformed age-matched MRI
template could then be used for visualization and additional

head modeling required for source localization. Once developed,
in future studies it will also be possible to use the HPI data
to determine the location of the child’s head with respect to
the MEG sensors and then co-register the MEG and MRI data
for source localization. Unlike EEG electrical fields, as MEG
magnetic fields are insensitive to changes in conductivity pro-
files (e.g., between tissue, CSF, skull, skin) a single-shell head
model can be used for source localization (Lewine and Orrison,
1995).

There are several unresolved technical challenges. First, given
that it is difficult to obtain recordings in young children and
infants over an extended period of time, developing paradigms
that quickly provide multiple measures is of interest. For exam-
ple, a paradigm that simultaneously presents auditory, visual, and
somatosensory stimuli would allow assessment of the integrity of
multiple primary sensory areas in less than five minutes. Second,
for longer paradigms and tasks, it will be important to develop
procedures to correct for head movement. With the ability to col-
lect MEG data with the HPI coils active throughout the recording,
at a minimum this could involve using the HPI information to
remove MEG data where the participant’s head moves beyond a
threshold. Given the acquisition of continuous HPI data, how-
ever, procedures can be developed to compensate for head motion
(Stolk et al., 2013). Finally, in some infants (as exemplified in the
youngest participant described in this manuscript) it might be
necessary to obtain data during sleep (i.e., recordings during nap-
time or in the evening). For such studies it will be important to
determine the effect of sleep on primary sensory (as well as non-
task “resting”) activity, motivating detailed comparative studies in
awake and sleeping states.

As previously noted, examination of the continuous record-
ings showed that the Artemis 123 provided quality recordings
of resting brain activity as well as common non-brain artifacts
(Figure 6). Using adult MEG systems, clinical MEG recordings
are obtained in individuals with epilepsy to localize the genera-
tor(s) of epileptiform activity and also in individuals with lesions
to localize eloquent cortex (Roberts et al., 1995, 2000; Roberts and
Rowley, 1997; Gaetz et al., 2009). Although clinical MEG studies
are performed in infants, a limitation of these studies is that in very
young children the MEG sensors are far from the infant’s brain.
Clinical MEG infant and young child studies using the Artemis 123
would provide measures of epileptiform activity with significantly
higher sensitivity than adult MEG system, thus potentially pro-
viding more accurate estimates of the location of brain pathology
in clinical infant groups. It remains to be established whether this
sensitivity translates straightforwardly to increased signal to noise
ratio, given the expected increase in sensitivity to other coincident
brain activity.

Although present findings show that quality recordings can be
obtained in infants and young children, there are several limi-
tations to consider. First, although the helmet was sized so that
sensors can be placed as close as possible to a typical three-
year-old’s head, examination of normative head circumference
charts shows that two-year-olds with head circumferences above
the 90th percentile and three-year-olds with head circumferences
above the 95th percentile will not fit into the helmet (see nor-
mative charts in Roche et al., 1987; given slightly smaller head
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circumferences in females than males, more two- and three-year-
old girls than boys will fit into the helmet). As such, although
the Artemis 123 will accommodate the majority of children three
and under, many children four years and older will not fit into
the Artemis123 helmet, thus placing limits on the age-range that
can be examined in Artemis 123 studies. Although a limita-
tion, reducing helmet size was a major consideration in achieving
improved sensitivity to infant and young child brain activity, and
with our ongoing interest in early signs of ASD as well as lan-
guage acquisition during the 12–30 month period, the Artemis
123 helmet size was selected to be optimal for this period of
development.

For MEG studies examining brain function in children across a
broad age-range, it would be possible to obtain data in the youngest
children using the Artemis 123 and in older children using an
adult MEG system. Although such studies are clearly of interest, in
these studies it will be necessary to determine equivalence in the
dependent variables of interest between the infant/young child and
adult MEG systems. For example, although latency measures are
likely similar between infant and adult MEG systems it remains to
be determined if the infant MEG system amplitude measures need
to be scaled to be comparable to an adult MEG system. Studies
examining children (e.g., a four-year-old) in the Artemis 123 and
an adult system are needed. In our laboratory, the Artemis 123
is sited next to an adult CTF 275 system (VSM), making such
comparisons possible.

Another limitation worth noting is that, at present it is not
possible to correct for head motion and thus it is necessary for
the participant to remain still throughout the recording. This
is, however, a temporary limitation - the Artemis 123 provides
the ability to continuously record head movement via the head
coils and, as such, algorithms to correct for head motion can be
developed. Finally, although the Artemis 123 has reference chan-
nels, these reference channels were not used to remove external
noise in the present human data recordings [in the Methods it
was shown that a spatial filter can be used to remove external
noise from empty room data (e.g., train and 60 Hz power-
line noise)]. Although noise-cancellation procedures using the
reference channels will be developed, it is of note that quality
human recordings were obtained without the use of the reference
channels.

To conclude, this manuscript describes the design and imple-
mentation of a whole-head biomagnetometer optimized for
infants and small children. Phantom studies confirm signal detec-
tion and source localization ability. Preliminary infant studies
demonstrate recordings at rest and during stimulus presenta-
tion and illustrate the generalizability of recordings. Furthermore,
auditory evoked response component latencies illustrate sensitiv-
ity to stimulus features and potentially representing the neural
processes underlying feature encoding and representation in the
brain. Finally, latencies appear to mature (shorten) with increasing
age, potentially indexing development of primary and secondary
auditory areas. These latter two attributes (representation and
development) have been observed as atypical in certain disease
populations (including ASD). The Artemis 123 offers promise
as a means of detecting earlier diagnostic signatures in such
neurodevelopmental disorders.
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