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Over the past two decades, despite the tremendous research on chemical sensors and
machine olfaction to develop micro-sensory systems that will accomplish the growing
existent needs in personal health (implantable sensors), environment monitoring (widely
distributed sensor networks), and security/threat detection (chemo/bio warfare agents),
simple, low-cost molecular sensing platforms capable of long-term autonomous operation
remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within
this context is that most of the chemical sensors depend on interactions between the tar-
geted species and the surfaces functionalized with receptors that bind the target species
selectively, and that these binding events are coupled with transduction processes that
begin to change when they are exposed to the messy world of real samples. With the
advent of fundamental breakthroughs at the intersection of materials science, micro- and
nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated
tunable, optimizable operating parameters, through which changes in the response charac-
teristics can be modeled and compensated as the environmental conditions or application
needs change. The objective of this article, in this context, is to bring together the key
advances at the device, data processing, and system levels that enable chemo-sensory
systems to “adapt” in response to their environments. Accordingly, in this review we will
feature the research effort made by selected experts on chemical sensing and information
theory, whose work has been devoted to develop strategies that provide tunability and
adaptability to single sensor devices or sensory array systems. Particularly, we consider
sensor-array selection, modulation of internal sensing parameters, and active sensing.The
article ends with some conclusions drawn from the results presented and a visionary look
toward the future in terms of how the field may evolve.
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INTRODUCTION
The idea to mirror the biological senses, particularly the biologi-
cal sense of olfaction, with artificial electronic systems has been a
human dream for many years (Persaud and Dodd, 1982; Gardner
and Bartlett, 1999). The choice of olfaction is not coincidental.
While for humans, whose vision and hearing senses are their pri-
mary mode of communication with the outside world, olfaction is
a rather little used sense, as demonstrated by the relatively normal
lives led by people with anosmia – people who cannot smell – for
most of the animals, olfaction is the primary means of explo-
ration and communication (Bhandawat et al., 2007). The biggest
challenge in performing such an imitation, though, is how to reli-
ably emulate this system by understandable artificial mechanisms,
commonly referred to as electronic noses (e-nose). e-Nose, or their
odorant chemo-receptors to be more precise, play an important
role in this challenge not only because they serve as oversimpli-
fied, yet accurate, reproductions, and simulations of the biological
sense of olfaction, but also because these artifacts are able to
non-invasively detect, acquire, interpret, select, and organize the

sensory information of certain situations that humans can not per-
ceive or understand (Persaud and Dodd, 1982; Freund and Lewis,
1995; Dickinson et al., 1996; Gardner and Bartlett, 1999). The
capabilities of odor chemo-sensors are broad and include many
challenging tasks such as discriminating organic compounds with
chain lengths that differ by a single carbon atom (White et al., 1996;
Persaud and Travers, 1997). However, their limitations in charac-
terizing odor-stimuli, including the poor sensitivity to analytes and
the lack of reproducibility in their responses in repeated trials, are
still very serious (Moseley and Tofield, 1987). With the advent of
the latest technological breakthroughs, recent progress in chemical
micro-sensory systems has been stimulated by inter-disciplinary
perspectives at the intersection of materials science, micro- and
nano-technology, microelectronics, and signal processing/pattern
recognition in an attempt to ameliorate these apparent limitations.
For example, the effect of microstructure, size feature of the mate-
rial, the advantages of nano-structured materials (e.g., nanowires,
nanorods, nanoribbons), and the efforts to functionalize sensing
materials by adding catalysts have been widely studied from the
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material perspective to improve the sensors’ sensitivity and selec-
tivity as well as to reduce their power consumption and time of
response (Yamazoe, 2005; Franke et al., 2006; Comini et al., 2009;
Gurlo, 2010; Stoycheva et al., 2011). On the other hand, differ-
ent feature selection, feature extraction, and pattern-recognition
techniques, from the signal processing and machine learning view-
point, have also been implemented with remarkable results in
many critical applications (Di Natale et al., 1995; Eklöv et al., 1997;
Nakamoto et al., 1997; Gutierrez-Osuna et al., 1999; Muezzinoglu
et al., 2009; Vergara et al., 2011). However, while maintaining and
expanding this fruitful interaction is essential for solving these
problems ahead, this collaborative platform will be lacking a key
player until the material and hardware development component
improves, since the current sensory modalities available do not
meet the power consumption and dimension restrictions required
for particular real-time applications. Therefore, among the many
different strategies implemented in the literature, interacting with
the conditioning parameters at the sensor level (e.g., working tem-
perature for metal-oxide gas sensors) is the only viable solution to
overcome these annotated problems (Moseley and Tofield, 1987).

In principle, almost every odorant-sensing technology offers
the advantage of being tunable through the selection of parameter
values. Interacting with such parameters influences many criti-
cal qualities of the measurement, including sensitivity to analytes
and reproducibility. For example, the temperature-modulation
technique for metal-oxide gas sensors, takes advantage of such
a relationship to enrich the information content of the sensor,
since it directly alters the reaction kinetics at the sensor sur-
face in the presence of an odorant (Sears et al., 1989a,b, 1990;
Nakata et al., 1992, 1996, 1998; Semancik and Cavicchi, 1999). A
thorough understanding of how such interactions take place in
the chemo-sensory system requires quantitative characterizations
of the response of individual sensors, both within and among
chemical stimuli. This approach will enable us to generalize the
relationship between the control variable and the target quality.

Once the odorant-sensing/parameter interaction is known (or
can be inferred from previous observations), a natural venue to fol-
low is the optimization of the chemo-sensory system with respect
to a solid criterion that properly expresses the observed goal. A
number of approaches under the notion of optimization have been
implemented in the literature, but only a handful of authors have
approached the problem in a systematic fashion. In this context,
the purpose of this paper is to provide the reader with a critical
review of the different efforts that have been made in the context
of sensor selection and sensor optimization in the chemo-sensing
community for the last years. We will be visiting these criteria
individually as we proceed further in this review.

Before embarking upon the subject of optimization, we would
like to make a final point in the context of terminology. The label
“optimization” has been very popular for many years to describe
the terms of “sensor optimization” and “sensor-array optimiza-
tion” interchangeably. We believe, however, that this terminology
can be very misleading, since the former mostly refers to finding
the “optimal operational condition” of the sensor device, whereas
the latter usually means selecting an “optimal” combination of
sensors between a potentially large pool of different sensors that
are best suited to the identification task – pretty much as feature

selection. Therefore, although these two groups of procedures are
fully complementary and valuable tools to analyze our chemical
sensors, they deserve to be treated as separate topics. For this rea-
son, we organize the structure of this review according to which of
these two aspects of “adaptation” (or sensor optimization among
many other names considered) is taking place at the sensor level. It
is not say that this adaptation can occur only at one or another side
of the coin; sensor optimization may also involve coordination of
other aspects, such as the adaptability of the chemical sensors at
multiple levels and time scales through their operating parameters
targeted when the environmental conditions change. Accordingly,
we have decided to give three more specific threads to run this
review. The first is gain control in those methods that have been
implemented to optimize the chemical sensors when used as a sen-
sor array. The second, which is the other side of the same coin, is a
functional analysis of the coding schemes used in the optimization
of each chemical sensor individually. And the third is a systematic
analysis of the advantages derived from the coding scheme used
by the early optimization stages implemented on chemical sensors
in an active fashion, or the so-called adaptive sensing optimiza-
tion. Finally, in order to gain a better understanding of how the
optimization processes are occurring at the sensor level, or even
to discuss whether the processes are or are not working, we have
included an overview of the operating temperature dependence
for the response of semiconductor gas sensors at the beginning of
the Section “Metal-oxide Gas Sensors and Their Operation: Ini-
tial Optimization Methods.” We strongly recommend people who
may not be familiarized with the functioning process of chemical
sensors, specifically metal-oxide gas sensors, to review this section.

METAL-OXIDE GAS SENSORS AND THEIR OPERATION:
INITIAL OPTIMIZATION METHODS
METAL-OXIDE GAS SENSORS AND TEMPERATURE DEPENDENCE
Undoubtedly, metal-oxide gas sensors have become one of the
most widely used sensing technologies in machine olfaction for
a diversity of applications. Because of the strict and highly deter-
ministic dependence of the sensor response on its operating tem-
perature, governing the basic operating principle of this sensing
technology, we believe that it is worthwhile to provide a good
insight into the dynamic behavior and operating principle of metal
oxide sensors so we can get a better understanding of how the opti-
mization processes described here take place at the sensor level.
Accordingly, the followings lines of this section feature the basic
operating principle of the said chemo-sensing technology. The
sensitive layer, in this case the metal-oxide film that is made of
particles that range from nanometers up to microns, possesses
two operating mechanisms. The former is associated with an ide-
ally specific interaction of the surface with the target analyte, whilst
the latter refers to an effective transduction of the bulk conduc-
tance. If the interaction takes place exclusively at the surface of the
sensitive layer, then the bulk conductivity does not contribute and
represents only a shunt which decreases the signal-to-noise ratio.
On the other hand, for materials in which interaction originates
in the bulk of the sensitive layer, the response of the sensor, and
in particular its time of response, is affected by the thickness and
porosity of the material, giving faster response times for thin films
than for thick films (Yamazoe, 2005; Franke et al., 2006; Stoycheva
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et al., 2011). Accordingly, for a given type of base material, the
sensor property sensitively depends on the structural features, the
presence and state of catalytically active surface dopants, and the
working temperature.

The central reaction mechanism responsible for most of the
chemical compound responses/interactions involves changes in
the concentration of surface oxygen species, such as O2− (Göpel,
1985, 1988; Göpel et al., 1991). The formation of such ions means
that the oxygen adsorbed at the gas/solid interface abstracts elec-
trons from the conduction band of the sensing material, which
results in the development of Schottky potential barriers at the
grain boundaries. In the case of an n-type semiconductor such as
SnO2, on the one hand, the electrons come from ionized donors
via the conduction band, the charge-carrier density at the inter-
face is reduced, and a potential barrier to charge transport, Δφ,
develops. At the junctions between the grains of the solid (see
Figure 1), the depletion layer and the associated potential barrier
are responsible for high resistance contacts which dominate the
resistance of the sensor. Thus, depending on the temperature, oxy-
gen is ionosorbed on the surface predominantly as O2− ions below
150˚C, or as O− ions between 150 and 400˚C, which is the general
operating temperature range. Above 400˚C, the parallel formation
of O2− occurs, which is then directly incorporated into the lattice
above 600˚C (Barsan et al., 1999). In the case of a p-type oxide, on
the other hand, adsorbed oxygen acts as a surface acceptor state,
abstracting electrons from the valence band, and hence giving rise
to an increase in the charge-carrier (holes) concentration.

In response to an analyte and under stationary conditions (i.e.,
without humidity, constant flow, and fixed operating tempera-
ture), the sensor involves an exponential change in the conduc-
tance/resistance across its sensing layer. This resulting change can
be interpreted as a shift of the state of equilibrium of the surface

FIGURE 1 | Structural and band model showing the role of

intergranular contact regions in determining the conductance over a

polycrystalline metal-oxide semiconductor. Three grains with adsorbed
oxygen providing surface depletion layers. The depleted layers are
responsible for a high contact resistance. For conduction, electrons must
cross over the surface barriers.

oxygen reaction due to the presence of the target analyte, which
can be either a reducing or oxidizing specie. The response of semi-
conductor gas sensors to reducing species implies a change in the
concentration of adsorbed oxygen species. On the other hand, oxi-
dizing species can interact with the sensor surface in a variety of
ways; for example, interacting directly with the surface and form-
ing negatively charged ionosorbed species or in competition with
ionosorbed oxygen or oxygen ions for the adsorption sites available
(Ruhland et al., 1998). These changes modulate the height of the
potential barriers and thus the conductance of the sensing layer.
The reason these characteristic conductance–temperature profiles
arise is summarized as follows:

• There are different adsorbed oxygen species such as O−, O2−,
and O2− over the temperature range (Sears et al., 1989a; Barsan
et al., 1999).

• Different gases have different optimum oxidation temperatures
(Moseley and Tofield, 1987).

• Adsorption, desorption, and diffusion rates (of oxygen species,
reducing and oxidizing gases, and oxidation by-products) are
temperature-dependent (Clifford and Tuma, 1983; Nakata et al.,
1991; Wlodek et al., 1991).

Accordingly, when the operating temperature of the sensor varies,
the kinetics of adsorption, desorption, and reaction occurring at
the sensor surface in the presence of atmospheric oxygen and other
reducing or oxidizing species is altered. This approach leads to
sensor responses (e.g., transient conductance patterns) that are
characteristic of the species present in the gas mixture. Having
such an easy way of interacting with the sensor and its charac-
teristics justifies the use of temperature as a control variable in
a deterministic setting and, thus, the optimization of the sensor
device with respect to this parameter (i.e., the sensor’s operating
temperature).

INITIAL METHODS
More than two decades have passed since Parsaud’s pioneer-
ing publication on machine olfaction and e-nose appeared in
literature (1982). Researchers have since devoted their work to
developing signal processing procedures and optimization strate-
gies to ameliorate the performance of metal-oxide gas sensors.
This section presents an introduction to such first deployed opti-
mization methods. One of the pioneering works was presented
by Corcoran et al. (1998), who applied a triangular waveform
(4.16 mHz) to modulate the operating temperature of eight com-
mercially available gas sensors (from Figaro Engineering Inc.,
Japan, http://www.figaro.co.jp) between 250 and 500˚C. They
extracted features from the sensor transients using two differ-
ent approaches. The first approach consisted of sub-sampling the
response transients obtaining a 26-point vector (equivalent to 10˚C
steps) per transient. The second one, on the other hand, con-
sisted of calculating eight secondary features from each response
transient, such as the time to maximum value, time to minimum
value, maximum positive slope, etc. They implemented then an
optimization procedure to determine which sensors and features
should be used to better classify the aromas from three loose leaf
teas using a neural network classifier. The optimization process
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consisted of applying genetic algorithms (GAs) for variable selec-
tion (Davis, 1991). By applying this technique, the authors showed
that it was possible to reach a high success rate in tea classi-
fication (93%) using only 21 dynamic features out of the 208
available features. However, the optimization of the temperature-
modulating signal (frequency, temperature range, and waveform
type) was not considered at the time by the authors. Had this opti-
mization been envisaged, further improvements in classification
performance would have been obtained.

More recently, Fort et al. (2002) and Fort et al. (2003) used
temperature-modulated metal-oxide gas sensors (sensors modu-
lated with a pure sinusoidal signal) to show that the selection of
the signal frequency was of paramount importance for gas identi-
fication. The authors demonstrated that if the temperature of the
sensors is varied relatively quickly in comparison with the chem-
ical response time, the sensor resistance varies as a function of
the temperature with an exponential law characteristic to metal
oxides. AS a result, the response shape would have only a slight
dependence on the chemical environment. On the other hand,
when the operating temperature varies slowly enough in compar-
ison to the chemical response time, the response profile gives a
series of quasi-stationary chemical responses. The best discrim-
ination among the species studied (vapors from water solutions
containing ethanol and other volatile organic compounds) can be
obtained then by selecting a temperature profile with a period close
to that for the chemical response time of the sensor. Accordingly,
these results suggested that the effectiveness of the temperature-
modulation analysis depends on the period of the sine wave, which
must be chosen in agreement to the chemical reaction rate of
each sensor. Around the same time, Choi et al. (2002) and Huang
et al. (2003) got similar results that the ones presented above. The
authors evaluated the effect of utilizing different kind of temper-
ature modulation signals, such as pulse, trapezoid, triangular, and
saw-tooth, as well as modulating frequency values in the sensor
response performance. In particular, utilizing different modulat-
ing frequencies values (50, 30, 40, and 20 mHz), Huang et al. (2003)
experimentally demonstrated that different and more odor spe-
cific response patterns were developing in the sensor response as
the modulating frequency was taken nearer to low values (e.g.,
20 mHz), suggesting that low-frequency temperature modulation
signals are more relevant to alter the kinetics of adsorption, dif-
fusion, and reaction phenomena (i.e., the interaction of odorous
compounds and the gas-sensitive surface) occurring at the sensor
surface.

SENSOR-ARRAY OPTIMIZATION
A wide variety of sensors, feature extraction, and feature selection
methods that are available to the experimenter when consider-
ing a new sensing problem have been described elsewhere in
the literature (Guyon and Elisseeff, 2003; Rodriguez-Lujan et al.,
2010; Vergara and Llobet, 2011). However, when one is work-
ing with an array of non-specific sensors, the biggest concern
to the experimenter is the number of sensors needed to form
a chemo-sensory array. One manner to approach this dilemma
might be to augment an existing array by adding sensors appro-
priate to the new task. However, this is actually a computation-
ally expensive and potentially wasteful solution because using

more sensors does not necessarily guarantee improvement in
the overall performance. As a consequence, the most conceiv-
able way to address this issue is to design an optimal array of
sensors (even comprising completely different sensing technolo-
gies) that would promote the maximum accuracy with which
the sensory system can estimate the stimulus or optimally dis-
criminate between neighboring stimuli. A number of theoretical
studies have been performed with the notion of “array opti-
mization” and are now available in the literature, where can
be explored when the experimenter is approaching to a new
odor identification scenario. One of the pioneering investiga-
tions in this context is the one presented by Zaromb and Stetter
(1984), who proposed, over 20 years ago, a theoretical model
to estimate the minimum number of parameter P = (S sen-
sors × M operating modes) that would be required to discrim-
inate a mixture of up to A analytes from a pool of n different
odorants. By assuming that the response of each sensor is noise-
less and binary related to each odor stimulus (i.e., response/no
response), they argued for a combinatorial measure of the num-
ber of sensors required to detect a given number of chemical
species as

2p − 1 �
A∑

i=1

n!
(n − i)!i! (1)

The authors, whose work was subsequently corroborated by Alka-
sab et al. (2002), proposed a “rule of thumb” in their work accord-
ing to which sensors and operating modes should be selected so
that each of the P parameters does not respond to more than
P/A individual compounds. Later, in a seminal paper presented
by Niebling and Müller (1995), the authors proposed the use of
an inverse feature space to design sensor arrays. In this inverse
feature space, each of the n analytes was represented as a separate
dimension, and each of the s sensors was then represented as a
point in this n-dimensional space. They showed that this visual
representation should enable the experimenter to detect potential
discrimination problems and to design new sensors to adequately
address these problems. Gardner and Bartlett (1996) proposed a
computational model for cross-selective sensors that also consid-
ers the effects of noise and errors. By using the ratio between the
total volume of the sensor space and the volume made up by the
sensor errors, the authors estimated an upper limit of the num-
ber of analytes that can be discriminated by the given array. As a
final result, they proposed a measure of performance, which was
essentially equivalent to the classical Fisher’s linear discriminant
analysis (LDA) ratio (i.e., the ratio of between-class distance to
within-class variance).

It was not until the early 2000s when Pearce and Sanchez-
Montañes (2003) implemented for the first time an information-
theoretic approach for the optimization of chemo-sensory array
systems. In particular, they demonstrated how the “tunings” of
individual sensors may affect the overall performance of the array.
In order to demonstrate the effects of noise and tuning on array
performance, they incorporated the concept of “hyper-volume of
accessible sensor space” (VS), a volume in the sensor space that
contains the sensor-array response to a specific set of analytes.
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As Figure 2A suggests, for a three-odor by two-sensor problem,
the collinearity limits the number of possible sensor responses.
Therefore, the maximum number of analyte mixtures that can be
discriminated by the array is limited by the ratio between VS and
VN (the hyper-volume defined by the accuracy of the sensor array;
see Figure 2B).

Assuming that the errors/noise ratio does not exhibit any corre-
lation with the analyte stimulus, the authors showed then that the

geometric interpretation in Figure 2 can be expressed by means of
the Fisher information (FI) matrix defined as

Ji,j (c) =
∫

p (x|c)
(

∂

∂ci
ln p (x|c)

) (
∂

∂cj
ln p (x|c)

)
dx , (2)

where c is a vector containing the concentration of the analytes,
x is the response of the sensor array to the stimulus c, and p(x |c)

FIGURE 2 | (A) Visualization of a three-odor-to-two-sensor transformation.
(B) The maximum number of feature vectors that can be discriminated is the
ratio between the hyper-volume of the accessible sensor space (VS) and the

accuracy of the sensor-array response. Figure reproduced with permission
from Pearce and Sanchez-Montañes (2003) Copyright 2003 Wiley-VCH,
Weinheim.
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is the conditional probability of observing the sensor response x
upon a given stimulus c. FI is important in this context because it
provides a lower bound (i.e., best-case case) on the accuracy with
which the stimulus, c, can be predicted from the sensor response
x. This lower limit is determined as

var
(
ĉ |c) =

S∑
i=1

(
J −1 (c)

)
ii (3)

where“var” means the variance, and ĉ is the estimation/prediction
of the component i of c, i = 1, . . ., N. This result was called the
“Cramér–Rao Bound” and limits the performance of the best
unbiased estimator that can be built.

In order to use these theoretical constructs in practice, the first
stage one should perform is the formal description of the sensory
context C and a clear specification of the task. The context C, on
one hand, quantitatively describes the likelihood of occurrence of
each odor stimulus, whereas the chemo-sensory task, on the other
hand, is an interpretation of the sensory response (i.e., a quantifi-
cation or identification task). Once the sensory context and task
are properly defined, one then would assume a parametric density
p(x |c) for each individual sensor, estimate the parameters from
experimental data (i.e., by measuring the sensor-array responses
to a number of analyte mixtures), compute the FI using Eq. 2, and
finally compute the expected accuracy of the array using Eq. 3.
This resulted accuracy estimate would then be used as a “figure
of merit” to select an optimal array configuration from a pool
of cross-selective sensors. Once the “optimal” array condition is
found, a catalog of parameters for each sensor used within prac-
tical systems today may then be envisaged, which would make the
optimization of sensory array systems to particular detection tasks
a simple routine operation.

More recently, in the same domain of information theory,
Muezzinoglu et al. (2010) introduced a sensor-array optimiza-
tion scheme for odor identification. The authors demonstrated
the effects of tuning the sensor’s operating parameter in a chemo-
sensory array by incorporating a measure-index widely used in
signal theory, namely the Mahalanobis distance (MD), which
gives a quantitative measure of the separability among probabil-
ity distributions – odor classes for this specific machine olfaction
application case. Since the chemo-sensory records associated to a
given odor class have a certain variability regardless of the features
selected, they can be assumed to be probability distributions that
log the history of each sensor in response to a specific odor class
over a feature space. Therefore, optimizing this index over a con-
trollable operating parameter (e.g., the operating temperature in
metal-oxide gas sensors) of the sensory device, would result then
in improving the classificatory capabilities of the sensor itself, i.e.,
maximizing the spread of the class prototypes (the class centers)
in the feature space while the response variability within each class
is minimized.

To demonstrate their scheme, the authors first assumed a two-
odor class formulation, where all the possible measurements may
belong to one of the two disjoint classes C1 and C2 in a specific
feature space. Then, given a sample xs, their goal was to accu-
rately determine which of the two-class-conditional distributions

f(x |C1), f(x |C2) was more likely to have produced xs. The squared
MD between two-class-conditional distributions is given by

D2 (C1, C2) = (μ1 − μ2)
T S−1

1,2 (μ1 − μ2) , (4)

where μi = 〈x |C i〉, i = 1, 2, . . ., are the class centers and S1,2 is
the weighted average of the two covariance matrices S1 and S2

associated to the two-class-conditional distributions. For nor-
mally distributed classes, the MD index, which is proportional to
the distance between-class centers (the between-class scatter) and
inversely proportional to the individual co-variances (the within-
class scatters), constitutes the best-possible quantification of the
overlap. In this particular odor-discrimination case, this index also
becomes the most accurate indicator of the classification perfor-
mance for any unbiased classifier in the sense that the probability
of misclassification is in inverse proportion with the MD value.

In a more generic case, i.e., when the number of classes is greater
than two, the between-class scatter component of MD that pro-
motes the dispersion of class centers can be generalized by the sum
of their pair-wise distances, thus,

MD2 =
|C |∑

i,j=1

D2 (
Ci , Cj

)
(5)

where |C | denotes the number of classes in the problem.
Since the class-conditional distributions are originally

unknown to the designer, it is important to be able to estimate
the MD index value from previous observations, i.e., previous
measurements. Being dependent on the mean and variance, the
sample MD is obtained by substituting these two moments by
their sample estimates:

MD2 =
|C |∑

i,j=1

(
μ̂i − μ̂j

)T
Ŝ−1

i,j

(
μ̂i − μ̂j

)
(6)

where C = {1, . . ., |C |} denotes the class labels, from which each
i∈C class is represented by ni pre-recorded samples. Each class
center μ̂i is approximated by the sample average of all samples in
class i. The joint covariance Si,j is given by

Ŝi,j = ni Ŝi + nj Ŝj

ni + nj − 2
(7)

being Ŝi the sample covariance matrix, i.e., the average of the outer
products of the observations in class i.

Intuitively, the resulting MD index quantifies the difficulty of
the classification problem. When this quantity is large, an arbi-
trary classifier is expected to perform with higher accuracy, since,
relatively to a small MD, the distribution within each class is
shrunk (the within-class scatter becomes small) and the two classes
are located away from each other in the feature space (i.e., the
between-class scatter is large).

Being θ a parameter of a sensor array that alters the sen-
sor response characteristics, the problem configuration is then
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expected to be sensitive to the said operating parameter, making
thereby the MD index dependent on θ. Hence, the value

θ∗ = arg max
θ

MD2 (θ) (8)

defines an optimum operating condition for the classification
problem at hand.

Although this optimization criterion is applicable to any num-
ber and complexity of probability distributions, hence, to any type
and number of odorants as well as any sensor technology with a
conditioning parameter, the authors have shown the applicability
of their approach to a particular three-class classification prob-
lem, i.e., ethanol, acetaldehyde, and ammonia. Figure 3A shows
the maps of 30 samples, grouped with respect to their class labels,
to the selected feature space for heater voltage values applied to
the sensor array. As this example illustrates, the three classes move
and change their relative positions with the temperature, making
the classes easier or more difficult to separate along the sweep.
Note also that the two-sensor responses can be highly correlated
at certain temperatures and uncorrelated at others. As a measure
of separability, the evaluation of the MD estimate, given in Eq. 8
for the triple of classes at each operating temperature labeled as
the parameter θ, yields the profile shown in Figure 3B. Based on
this evaluation, the best operating condition to distinguish among
the triple of classes is determined by the maximum of this curve,

which occurs at θ = 5.4 V, i.e., the best voltage applied to the sensor
heater that yields the optimal sensor’s operating temperature.

Utilizing a similar statistical argument, Raman et al. (2009)
pioneered the development of an optimization method to design
micro-sensing arrays for complex chemical sensing tasks. The
method consisted of utilizing statistical methods to systematically
assess the analytical information obtained from the conductomet-
ric responses of chemo-resistive elements at different operating
temperatures, i.e., the similarity/orthogonality of responses; test
their reproducibility; and determine an optimal set of material
compositions to be incorporated within an array of sensors for
the recognition of individual species. They presented qualitative
and quantitative approaches to determine both the sufficiency of
the chosen materials for sensing targets in the test matrix and an
optimal array configuration for the desired application.

In order to optimize the array configuration, the authors pre-
sented a modular approach, a sophisticated temperature pattern
(see Figure 4A) and micro-hotplate platforms with different
metal-oxide chemo-resistors (see Figure 4B) that examines the
target matrix with five high-priority chemical hazards (i.e., ammo-
nia, hydrogen cyanide, chlorine, ethylene oxide, and cyanogen
chloride). The temperature program used to operate the sens-
ing elements toggles the temperature between (a) 32 ramp values
that sample most of the temperature range of the device and
(b) four different baseline temperature values to allow relaxation

FIGURE 3 | (A) Feature maps obtained for three operating temperatures as
indicated by θ on each figure. The two features (i.e., axes) used in this
representation are the transient features extracted from the response x 1 of
TGS2600 and x 2 of TGS2610. Each of the analyte classes contain 10 samples,

which are labeled with a different color/shape on the maps. (B) MD2(θ)
evaluations estimated from the dataset for 11 heater voltages. Figure
reprinted from Muezzinoglu et al. (2010), Copyright 2010, with permission
from Elsevier Science.
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FIGURE 4 | (A) Temperature program used for the detection of high-priority
chemical hazards. A conductance measurement was made at each base and
ramp temperature, but only the ramp values were used for further analysis in
this study. (B) Micro-sensor array platform. A layered schematic showing the

three primary components of the micro-sensor elements: polycrystalline
silicon heater, interdigitated platinum electrodes, and metal-oxide sensing
film. Figure reprinted from Raman et al. (2009), Copyright 2009, with
permission from Elsevier Science.

toward some initial state prior to each ramp temperature.
These different baselines allow thus different film–analyte inter-
actions (i.e., adsorption/desorption, decomposition, and reac-
tion) at the sensing surface prior to the ramp measurements.
Then, they defined the following objective function with three
components:

O = γ1J − γ2N1 − γ3N2 (9)

where J is the maximization term that takes into account
the sufficiency of solution (i.e., separability of the five chem-
ical analyte clusters from different background conditions and
from each other); N 1 and N 2 are two penalty terms that
symbolize the number of different materials used and the
array size respectively; and γ1, γ2, and γ3, are component
weights. The two penalty terms allow comparison between
solutions with different numbers of materials and array sizes.
In order to be able to increase the objective function, each
new material or array element must increase the analyte’s
cluster separability sufficiently to compensate for its “cost.”

This cluster separability is derived from Fisher’s LDA as
follows:

J = trace(SB)

trace(SB) + trace(SW)
(10)

where SW and SB are the within-cluster and between-cluster scat-
ter matrices, respectively. Being the ratio of the spread between
classes relative to the spread within each class, the measure
J increases monotonically as classes become increasingly more
separable.

With this approach, the authors were able to demonstrate that
cycling each sensing film through the 32 temperatures shown in
Figure 4A did not necessarily create information that spanned 32
different dimensions. The responses were highly correlated and
information seemed to be grouped based on temperature ranges;
all lower temperature responses of a film type provided similar
information that differs from that available from high temper-
ature signals. On the other hand, cross-correlations computed
across materials were comparatively lower than self-correlations.
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Therefore, taken together with the results from the dimen-
sionality reduction analysis, these results suggested that differ-
ent materials provide orthogonal information about the target
analytes.

There is a last important remark to emphasize here. The form
of dependence of the objective function of the methods presented
here on their respective optimizable control parameters is ini-
tially unknown, yet to be inferred from a provided training set
containing labeled measurements from the same sensor array at
representative values of the parameter itself. As a consequence,
any change in the problem setup, e.g., addition or removal of
an analyte class, necessitates a re-calculation of the control para-
meter with the updated dataset, meaning that the sensor array
must be re-conditioned for each class configuration. This outcome,
nonetheless, is normal for any optimization solution considered,
meaning that the found solution is to be customized to the set of
analytes being analyzed. In any case, the statistical methods pre-
sented in this section provided a generalizable methodology for
designing and evaluating array-based solutions for a wide variety
of specific detection problems. Ultimately, it is envisage that the
advances generated by these methods are critical to the produc-
tion of pre-programmed micro-sensors for non-invasive, real time,
multi-species recognition relevant to homeland security, and other
applications involving trace analyte detection in complex chemical
cocktails.

ON THE OPTIMIZATION OF SINGLE CHEMICAL SENSORS
Much less attention has been paid to the optimization of metal-
oxide sensors as a single device. As stated at the beginning of this
review, and more specifically in Section “Metal-oxide Gas Sen-
sors and Temperature Dependence,” there are an extensive number
of articles reporting empirical studies dealing with dynamic fea-
tures obtained from transient responses, e.g.,different temperature
waveforms patterns and stimulus frequencies implemented as a
countermeasure to the effects of selectivity and reproducibility
encountered in gas sensors. There is no doubt that a high variance
in response is detrimental in most chemo-transduction applica-
tions that must be tackled. This general treatment, though, consti-
tutes only one facet of the sensor optimization problem that does
not necessarily yield better performance in the odor identification
task. The reason for this is that a reduction in the response vari-
ance does not ensure a non-overlapping class configuration in the
feature space. Therefore, to maximize classification performance,
one needs a more comprehensive formulation that quantifies the
separation of specific odor classes in the sensor response. Both of
these aspects have been covered in literature under the notion of
“optimization.” The thematic issues relevant to these works will be
reviewed here.

OPTIMIZATION OF EXCITATION PROFILES
Chemical sensing can benefit from a variable-temperature sig-
nal generation. In most of the cases, the temperature variation
(a.k.a. temperature modulation) has been approached empirically
by implementing various temperatures waveforms and stimulus
frequencies (Sears et al., 1989a,b, 1990; Nakata et al., 1992, 1996,
1998; Semancik and Cavicchi, 1999). Although the results achieved
by such a technique are very promising, in most of the reported

works the selection of waveforms and the frequencies used to mod-
ulate sensor temperature has been conducted in a non-systematic
way (Davis, 1991; Corcoran et al., 1998; Choi et al., 2002; Fort
et al., 2002, 2003; Huang et al., 2003). Even the selection of fea-
tures from the sensor transients is a somewhat obscure process.
Therefore, since these selections are based on a trial and error
procedure, there is no way to ensure that the modulation fre-
quencies, modulation depth, or features chosen are the optimal
for a given application. Very few authors, though, have systemati-
cally addressed this problem by suggesting different optimization
strategies.

The first approach to review, in this context, is the one
implemented by Kunt et al. (1998) and Cavicchi et al. (1996),
who pioneered the development of an optimization method for
temperature-modulated micro-hotplate gas-sensor devices. They
implemented a two-step optimization process for determining the
optimal temperature trajectory (or trajectories) that would exploit
the information characteristics contained in the sensor dynam-
ics when operated in temperature-pulsed mode. In particular, the
authors sought to optimize the said sequence by adapting the pulse
amplitude, pulse duration, delay between two consecutive pulses,
and number of pulses in a cycle to better discriminate between
two different gaseous analytes: ethanol and methanol. In the first
stage, the authors introduced a black-box dynamical model of the
sensor from input–output experimental data; they input a tem-
perature programmed excitatory signal to the heating element
of a single micro-hotplate sensor device and collected the sen-
sor conductance in presence to vapors of methanol and ethanol.
The authors then sought to predict the next conductance value of
the sensor response (y i+1) from the previous values of the con-

ductance
{

yk
}i−ny +1

k=i , as well as the next and previous values of

the temperature set points {uk}i−nu+2
k=i+1 , thus,

yi+1 = F
(
yi , yi−1, . . . , yi−ny +1, ui+1, ui , . . . , ui−nu+2

)
, (11)

where ny and nu represent the model order in the input and output,
respectively.

Utilizing different dynamic modeling methods, a suitable
model F(·) was then built from the experimental data collected,
being the wavelet network (WNET) method, for this particular
case, the most accurate of all the tested methods. This initial
model was further trained to set the final parameter values of
the model F(·) and then used to simulate the sensor response to
different temperature programs. In the second stage, the authors
then implemented an off-line optimization routine to find the
“optimal” temperature profile {ui}T

i=1 that maximizes the distance
between the (simulated) temperature-modulated sensor responses
to the targeted gases, thus

{ui}T
i=1 = arg max

u1,u2,...,uT

d
(
yMeOH, yEtOH)

, (12)

where yMeOH and yEtOH are the conductance responses predicted
by the WNET models for methanol and ethanol, respectively.

Above, the search space for this optimal temperature profile is
over a limited subset of realizable temperature pulses (e.g., lower
and upper limits are chosen based on the sensor structure) and
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under the constraint that two consecutive pulses cannot differ in
more than 40˚C in order to avoid drastic changes in the surface.
Finally, the metric used to quantify the said distance is the normal-
ized sum of squared differences (NSSD) between the two response
curves

NSSD =
n∑

i=1

(
yMeOH

i − yEtOH
i

)
n

2

, (13)

where n is the number of temperature pulses in a cycle.
Figure 5 shows the optimal temperature profile to discrim-

inate ethanol and methanol that was computed and validated
through experimental measurements. This temperature profile
(see the temperature profile shown in Figures 5C,D) produces
methanol and ethanol responses that are out of phase (i.e., easy
to discriminate). On the other hand, when applying a simple lin-
ear ramp (see Figures 5A,B), the sensor responses to ethanol and
methanol were highly overlapped (i.e., becoming a non-trivial case
of discrimination).

Although this methodology is systematic and should be applic-
able to other analytes, its application to the qualitative and quan-
titative analysis of multi-component mixtures is not straightfor-
ward. The fact that the method relies on the construction of good
predictive response models, complicates the optimization process
for multi-gas, concentration variant environments.

With this motivation, more recently Vergara et al.
(2005a,b, 2007a, 2008) introduced, in a series of works, a
system-identification method for optimizing the temperature-
modulation frequencies in order to solve a given gas analysis prob-
lem. The optimization method consisted of utilizing one of the
most useful types of periodic signal for process identification, the
pseudo-random sequences of maximum length (PRS-ML), either
binary or multi-level, to determine the most suitable temperature-
modulation frequencies for discriminating and/or quantifying a
number of specific target compounds at different concentrations.

Pseudo-random sequence signals are the most popular choice
for the persistently exciting perturbation signals required in system
identification. The most common application of these sequences
is the identification of linear systems. In particular, the pseudo-
random signal sequences considered by the authors in their opti-
mization scheme are based on maximum-length q-sequences,
either binary or multi-level1, the generation and properties of
which were described by Zierler (1959). The relevant theory
behind these signals is based on the algebra of finite fields. When
q (the number of levels) is a prime, the digits of the sequence are
the integers 0, 1, . . ., (q − 1) and the sequence can be generated
by a q-level, n-stage shift register with feedback to the first stage
consisting of the modulo q sum of the outputs of the other stages
multiplied by coefficients a1, . . ., an, which are also the integers
0, 1, . . ., (q − 1). The length (or period) of a maximum-length
sequence is qn − 1, which signifies that the sequence repeats itself

1One of the main reasons for considering signals with more than 2 levels is that
multi-level signals provide the possibility of identifying a better estimate of the lin-
ear dynamics of a process with non-linearity than the binary sequences and that they
can also be of use in the identification of the non-linear characteristics themselves
(Vergara et al., 2005b, 2007a).

after qn − 1 logic values. The pseudo-random sequences are peri-
odic, deterministic signals that have a flat power spectrum over
a large frequency range. These properties imply that a PRS-ML
shares some properties with white noise, but with the advantage
of being repeatable, which makes these signals even more attractive
and suitable for the system-identification task ahead. The gener-
ator of such a sequence and an example of a 5-level sequence
(fragment) are shown in Figures 6A,B, respectively. Notice how
the initial state of the shift register can be any combination of
length n of the values 0, 1, . . ., (q − 1), with an exception made of
n = zeros, and that each combination of these values appears as the
state of the register exactly once during a period of the PRS-ML
(Godfrey, 1993).

The impulse response, h(t ), is the main descriptor of a linear
invariant system. Among the different strategies to estimate the
impulse response, noise based methods allow to excite the system
under study for enough time to supply it with the necessary energy
to obtain a good estimate of h(t ). By using white noise as excita-
tion signals, one ensures that there is a homogeneous distribution
of the energy over a large frequency range. Since PRS-ML sig-
nals have a low crest factor (i.e., low peak-to-average factor), they
minimize the risk of saturating the system under study, which, in
practice, means that these signals contain energy enough to obtain
a good signal-to-noise ratio in a wide frequency range (i.e., mea-
surement with high dynamic range) and that they avoid possible
sensor non-linearities caused by signals with high crest factors
(e.g., impulsive signals). Therefore, since these excitatory noise
signals are deterministic, reproducible results are expected to be
obtained, provided that the conditions of the system under analysis
remain unchanged.

The power spectrum envelope of a PRS-ML is almost flat up
to a frequency equal to 0.45 × fc, where fc is the frequency of the
clock signal applied to the shift register used to generate the sig-
nal. The power spectrum is discrete and the separation between
spectral lines (i.e., the spectral resolution) is fc/L, where L is the
length of the PRS-ML. Figure 6C shows the power spectrum of a
PRS-ML signal, where, as observed, the power spectrum envelope
is similar to the power spectrum of white noise up to the −3 dB
cut-off frequency, which in this particular case is equal to 0.45 × fc.

When the pseudo-random sequence is a maximum-length

signal, the impulse response estimate, ĥ(n), can be obtained
by computing the circular cross-correlation between the exci-
tatory signal, x(n), and the response signal, y(n). The circu-
lar cross-correlation of two sequences x and y in �L may be
defined as,

ĥ(n) = 1

L

L−1∑
l=0

y(l + n)x(l), n = 0, 1, 2, . . . , L − 1. (14)

Above, the cross-correlation is circular since l + n is interpreted as
modulo of L, where L is the length of the sequence and that can be
optionally utilized as a normalization factor. The circular cross-
correlation between the input and output sequences can readily

be interpreted in terms of ĥ(n), since the autocorrelation function
of the PRS-ML signal is of approximately impulsive form.
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FIGURE 5 | (A) Normalized conductance response to methanol (solid) and
ethanol (dashed) upon applying a linear temperature ramp as shown in (B).
(C) Actual experiments with methanol (solid line) and ethanol (dashed line)
gases, model predictions are shown by circles for methanol and plus for

ethanol models; (D) the optimum temperature profile derived from the off-line
optimization process. Note the dramatic improvement in discrimination
between (A) and (C). Figure reprinted from Kunt et al. (1998), Copyright 1998,
with permission Elsevier Science.

The whole optimization method proposed is illustrated in
Figure 7. In a practical instance, it works as follows. First, a
voltage PRS-ML signal is applied to the heating element of a

micro-hotplate gas sensor while the sensors are exposed to vari-
ous target compounds (e.g., nitrogen dioxide, ammonia, ethylene,
ethanol, acetaldehyde, and their binary mixtures), hence ensuring
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FIGURE 6 | (A) A q-level pseudo-random maximum-length sequence
generator. (B) Fragment of a 5-level pseudo-random sequence. (C) Discrete
power spectrum of a PRS-ML signal. Spectral resolution is f c/L, where f c is

the frequency of the clock signal applied to the shift register and L is the
length of the sequence. Figure reprinted from Vergara et al. (2007a),
Copyright 2007, with permission Elsevier Science.

that the sensor’s working temperature is modulated over the whole
wide frequency range considered. Then, for each individual target
compound the impulse response h(t ) is computed as the circu-
lar cross-correlation between the excitation signal (PRS-ML) and
the sensor response. Afterward, the absolute values of the FFT
of the impulse response estimate are calculated, determining, in
essence, which spectral components contain important informa-
tion for the identification and quantification of gases. Finally, each
individual frequency is ranked on the basis of its information

content (between-class to within-class scatter ratio), and a sub-
set of the most informative frequencies is selected. As the authors
have shown in their results, this procedure succeeded in maxi-
mizing the discrimination and quantification of various gases and
their mixtures using even a single sensor with its optimized set of
modulating frequencies.

In addition, the authors extended their optimization study
on a completely two-stage validation procedure, demonstrat-
ing thus the consistency and robustness of the method itself
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FIGURE 7 | Study of the sensor/gas system using MLPRS signals. The
MLPRS voltage signal, x (n), is input to the heating element of a
micro-hotplate gas sensor. The transient of the sensor conductance (i.e.,
the response in the presence of gases), y (n), is recorded. An estimate of
the impulse response, ĥ(n), can be computed via the circular
cross-correlation of x (n) and y (n). Finally, by performing the FFT of ĥ(n), the
spectral components of the impulse response estimate are found. Figure
reprinted from Vergara et al. (2007a,c), Copyright 2007, with permission
Elsevier Science.

(Vergara et al., 2007c, 2008). The two-stage method consisted of,
first, running the whole optimization process presented above uti-
lizing a set of measurements pre-recorded with one micro-sensor
array, and then, validate the resulting outcome employing a new
set of measurements collected with a different sensor array with
the same characteristics of the one used in the first stage. This new
set of measurements, though, was based on the multi-sinusoidal
temperature-modulating signal showed in Figure 8A, the frequen-
cies of which were the reduced set of the optimal ones estimated
in the first stage. The Figures 8B,C show the FFT spectra of the
transient response of a sensor in the presence of two different ana-
lytes [acetaldehyde (50 ppm) and ethylene (50 ppm)]. Notice how
the peaks in these plots correspond to the “optimal” temperature-
modulating frequencies selected. As the variation of peaks’ height
(i.e., the pattern) between Figures 8B and 8C shows, significant
improvements in the classification and quantification capability of
a single gas-sensor operated under the temperature-modulation
scheme is attained. Particularly, their results revealed a classifi-
cation performance of up to 98.2% even when a single sensor
was used, and a shift of the odor concentration prediction of
down to 0.92 ppm for single species and 2.81 ppm for binary mix-
tures. These illustrated performance improvements were expected,
though, in the sense that, as the Figures 8B,C shows,a different pat-
tern develops when different odorant species are measured, whilst
the resulting pattern is preserved, to a large extent, when the vapor
concentrations change, meaning that the illustrated evaluation is a
reliable indicator of the improvement of the classification capabil-
ity of the sensors when their operating temperature is modulated
at the frequencies selected.

As a final remark to emphasize here, it was demonstrated that
for each gas-sensor pair, the modulating frequencies selected are
related to the characterization of the interaction between the
metal-oxide layer and the gas, e.g., film microstructure; surface
diffusion; and reaction kinetics. Even though the method was
implemented for the analysis of the specific qualitative and quanti-
tative task earlier described, this optimization procedure is generic
and could be applied to many qualitative and quantitative gas
analysis applications.

OPTIMIZATION OF THE OPERATING TEMPERATURE: INTERNALLY
TUNING THE CHEMICAL SENSORS
It has long been known that varying or setting different values of
the sensor’s operating temperature affects all the aspects of the
sensor response, including its selectivity and sensitivity to differ-
ent volatile compounds (i.e., the sensor’s ability to encode the odor
information), as well as its reproducibility. For example, carbon
monoxide (CO) is usually best detected at lower operation temper-
atures (e.g., 250˚C) when using a tin dioxide based sensitive layer,
whereas higher temperatures (e.g., 350˚C) are used for monitor-
ing hydrocarbons such as methane among others. In view of this,
different strategies, such as the idea of periodically changing the
sensor working temperature, have been implemented to maximize
the performance of the sensors. However, despite the promising
results obtained in all these previously cited attempts, one question
remains unanswered: given a metal-oxide based chemical sensor,
how does one select the best (i.e., the optimal) operating tem-
perature (or temperatures) for fast and reliable discrimination or
quantification of chemical species? One conceivable manner to
address this issue is to empirically vary the operating temperature
through all the possible values available in the sensor so that its
response to each gas is maximized (Cavicchi et al., 1996; Maziarz
and Pisarkiewicz, 2008). However, this may be an expensive and
inefficient solution because it does not guarantee the improvement
of the performance of the sensors.

Undoubtedly, heightened sensitivity to a spectrum of chemi-
cal hazards is necessary for the detection of analytes at relevant
concentrations. However, this general treatment constitutes only
one facet of the problem, a substantial selectivity is also necessary
to rapidly and accurately perform the odor identity representation
task. The reason for this is that an increase in the response does not
ensure a non-overlapping class configuration in the feature space.
Therefore, to maximize the classification performance, one needs
a more comprehensive formulation that quantifies the separation
of specific odor classes in the sensor response.

Following this scheme, Vergara et al. (2009b, 2010) formu-
lated an optimization method to select, for a single sensor, the
best operating temperature to discriminate a given set of odor-
ants. The authors presented a rigorous way of selecting the best
operating temperature for a chemical sensor. The method hinges
on an information measure widely used in information theory,
namely the relative entropy or Kullback–Leibler divergence (KL-
divergence; Kullback and Leibler, 1951), a measure index that
rates the difference between two probability distributions. Since
these probability distributions may belong to one of the disjoint
classes of interest in a particular odor universe, this annotated
quantitative measure shows how odors are encoded in every odor-
ant chemo-receptor and how distinguishable they are from each
other at different parameter values. Tuning a control parameter,
such as the sensor’s operating temperature, will maximize such a
difference, yielding thereby a substantial improvement in the clas-
sification performance (separation of classes) and reproducibility
of the process. In particular, using a metal-oxide gas sensor in
an odor-discrimination instance, the authors demonstrated the
proposed criterion by studying the impact of adjusting the sens-
ing parameter on the odor-sensor pair interaction and on the
confidence of the information yielded by the sensor individually.
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FIGURE 8 | (A) Setup used to generate a multi-sinusoidal signal, which
consists of the sum of six sinusoids of identical amplitudes and different
frequencies. The signal is applied to the heating element of the micro-sensors
studied. FFT (absolute value) of the transient response of a

temperature-modulated WO3 micro-hotplate sensor in the presence of (B)

50 ppm acetaldehyde and (C) 50 ppm ethylene. Figure reprinted from Vergara
et al. (2007a, 2008), Copyright 2007 and 87, Copyright 2008, with permission
Elsevier Science.
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The KL-divergence is a very well-known index for class separa-
tion that is a non-commutative measure (a“distance” in a heuristic
sense) of the difference between two distributions: a conceptual
reality [probability distribution g (·)] and an approximate model
[probability distribution h(·)]. For two continuous functions qual-
ifying as probability distributions, the KL-divergence is defined by
the integral:

KL(g ||h) =
∞∫

−∞
g (x) log

g (x)

h(x)
dx , (15)

where KL is the measure of “information” lost when a model h(·) is
used to approximate reality [i.e., model g (·); Kullback and Leibler,
1951].

The utility of the KL-divergence is based on a certain number
of properties that make it unique for measuring the difference
between two probability distributions. For example, this approach
can account for a number of key characteristics of a response,
including, for example, higher order moments (e.g., skewness) or
multi-modality, which in turn may be involved in the response
distribution (at least in odor representation), causing thus loss
of information. However, the measure is still not commutative,
i.e., KL(g (x) || h(x)) is in general different from KL(h(x) || g (x));
therefore, the KL-divergence is not a legitimate metric by itself. As a
consequence, a symmetrized version, namely the KL-distance, can
be readily composed after a straightforward manipulation given
by:

KL(g , h) = 1

2
KL(g ||h) + 1

2
KL(h||g ), (16)

which the authors adopted as a measure of the class-conditional
distributions’ separation for the specific purpose.

In a context C (i.e., the likelihood of occurrence of each odor
stimulus from a finite list of analytes whose classes are known) in
which one is trying to discriminate two compounds that is com-
plicated by the similarities/overlaps among the class-conditional
distributions, the KL-distance index, given in Eq. 16, constitutes
an accurate measure of discrimination, hence a good indicator of
the classification performance for any unbiased classifier. There-
fore, given the simplest two-dimension discrimination problem
(i.e., a two-class discrimination task), when the class-conditional
distributions depend on a measurement parameter (e.g., oper-
ating temperature in metal-oxide gas sensors), maximizing the
KL-distance is a valid objective function for tuning that parameter
(see Figure 9).

Using a binary classification instance as a case of study may
be very convenient from many perspectives; in odor representa-
tion, however, this assumption may be very unrealistic. When the
number of classes (i.e., the possible outcomes of the identification
problem) is more than two, the KL-distance should be generalized
to promote the dispersion of the whole classes. The authors have
addressed this issue by replacing (16) with the sum of pair-wise
distances, thus:

CKL =
|C |∑

i,j=1

KL(gi , hj), (17)

FIGURE 9 | Class-conditional probability distributions in a two-class

discrimination instance. Each class response models the histograms by a
normalized fifth-order polynomial (plain and dashed lines). These models
accurately approximate the sensor’s response to an odor class while
accounting for the asymmetry (i.e., skewness) in the distribution. The
KL-distance index then captures the influence of the operating parameter
on the separability of such distributions. Maximizing this index for a pair of
distributions results in a better discrimination between the corresponding
two classes (top versus bottom figures). Figure reprinted from Vergara et al.
(2010), Copyright 2010, with permission Elsevier Science.

where |C | denotes the number of classes in the problem and gi(·)
and h(·), i ∈ C, j ∈ C, are the class-conditional distributions, each
potentially depending on the operating parameter (e.g., the sen-
sor’s operating temperature). The CKL quantifies the difficulty of
the classification problem. When this quantity is large, an arbi-
trary classifier is expected to perform with higher accuracy, since,
relative to a small CKL, the distribution within each class shrinks
whilst the distance among the considered classes increases in the
feature space.

Assuming that β denotes an intrinsic parameter of a sensor
device that alters the response characteristics (see Figure 9), then
the problem configuration CKL is expected to be sensitive toβ

itself. Hence, the value

β∗ = arg max
β

CKL(β), (18)

defines an optimum operating condition for the classification
problem at hand.

In demonstrating their optimization scheme, the authors
applied the criterion (18) to optimize the operating conditions
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of commercialized metal-oxide gas sensors (sensors provided by
Figaro Engineering Inc., Japan, http://www.figaro.co.jp). In par-
ticular, they have examined the performance of each gas sensor in
a six-class classification problem, comprised by six different ana-
lytes dosed at different concentrations (i.e., ethylene, ethanol, and
toluene dosed at 10 ppm; acetone and acetaldehyde at 100 ppm;
and ammonia at 120 ppm). They thus studied the impact of adjust-
ing its sensing parameter β on the odor-sensor pair interaction
and on the confidence of the information yielded by the sensor
individually.

In principle almost any controllable variable that alter or mod-
ify the operating characteristics of the sensor, such as the environ-
ment temperature, flow rate, or even construction methodologies,
can be used as a parameter of the response profile that can
be tuned to improve the processing performance. However, in
this popular odor sensing technology, it is very well-known, and
proved in many empirical works (see, e.g., works from Sears and
Nakata), that there is a strict dependence of the sensor response
on its operating temperature (temperature normally ranging in
high orders of magnitude, e.g., 400˚C, responsible of the adsorp-
tion/desorption reaction occurring at the micro-porous surface
of the sensor in response to an analyte). Accordingly, having
such an easy way of interacting with the sensor, the most nat-
ural way to optimize the sensor device is with respect to this
parameter (i.e., the sensor’s operating temperature), assuming
that all the other parameters remain constant. Since the sensor
packaging does not permit direct access to this temperature, its
tuning can be achieved via a resistive heater element with con-
trollable voltage, which has a deterministic one-to-one mapping
with the actual active layer temperature2. Accordingly, the authors

2A look-up table with a deterministic one-to-one mapping of the actual active layer
temperature and the controllable heater voltage was provided in Figaro Engineering
Inc., Japan, http://www.figaro.co.jp

have considered this heater voltage and the operating tempera-
ture interchangeably as the sensing conditioning parameter β to
be optimized.

To demonstrate the optimization scheme in a practical instance,
the authors established the following procedure: Initially, the form
of the dependence of CKL on β is initially unknown, yet to be
inferred from a provided training set (containing labeled mea-
surements) from the same sensor at representative β values. For
each sensor the authors then compiled a comprehensive dataset
containing the analytes described above. Each set of time series
contained 30 independent measurements taken from each class at
each of the 13 sensor operating temperatures corresponding to the
heater voltages β ∈ {3.8, 4.0, . . ., 6.2 V}3. Thus, the authors repre-
sented each of the chemo-sensory records, associated with each
odor class and operating temperature, as independent and identi-
cally distributed (i.i.d.) samples, from which the class-conditional
distribution is derived. Then, they modeled each odorant class by
a polynomial fit to the histogram of previously collected samples
from that odorant type. In particular, they consider a fifth-order
polynomial to represent odorant class/histogram relation. Finally,
by plugging these functions into Eq. 17, the CKL criterion (18)
was implemented, and the maximum β value obtained, yielding
thus the optimal operating temperature values for the particular
discrimination task. As a measure of separability, the evaluation of
the CKL for the six classes at each temperature β yielded the profile
shown in Figure 10 (dashed lines). Based on this evaluation, the
best operating condition for each sensor to distinguish between
the set of classes is determined by the maximum value of their
respective curves.

3The operating temperature values selected perform a dataset with a tempera-
ture resolution (i.e., separation value among the temperatures evaluated) of 20˚C,
under the assumption that this temperature resolution suffices in making a reliable
inference of the dependence of the CKL on the parameter value β.

FIGURE 10 | Observed discrimination performance of a linear-SVM

classifier of each sensor on the six-class identification problem (dotted

lines). Profiles for each sensor as estimated by the CKL index (dashed lines)
with respect to β. Based on the proposed criterion, the optimal operating

condition that best discriminates between the set of classes can be
determined for each sensor individually by obtaining the maximum value of
the curve shown. Figure reprinted from Vergara et al. (2010), Copyright 2010,
with permission Elsevier Science.
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To demonstrate the consistency and robustness of the opti-
mization method, the authors conducted a validation process that
consisted of measuring the correlation between the information
given by the optimization criterion (18) and the performance given
by an arbitrary linear support-vector classifier based classifier. As
observed in Figure 10, the results yielded by the SVM classifier
(see Figure 10, dotted lines) follow a similar pattern to the esti-
mated measure CKL index (Figure 10, dashed lines) in the sense
that their extreme points occur at the same β values. The ordering
of these points in magnitude was also preserved to a large extent,
meaning that the proposed measurement is a reliable indicator of
the classification performance at almost all temperatures within
the range.

In addition, the authors validated the whole optimization
process with the second dataset 4 months later. To validate the
results, they re-calculated the proposed cost function CKL of the
second dataset by applying the same procedure described above.
Based on this re-evaluation, the best operating condition to dis-
tinguish between the new set of classes was determined, and
compared to the performance yielded by the linear-SVM classifier.
As can be seen in Table 1, the results obtained in the validation
stage perfectly matches with the information given by the classi-
fier, showing the consistency of the method. These results indicate
that the proposed CKL measure-index is optimum for any com-
plexity of probability distribution models; hence, for any type and
number of odorants as well as any type of sensor technology with
a conditioning parameter, provided that these models are accurate
in identifying the response distribution. Nevertheless, the method
could be extended to an arbitrary classification instance as needed,
including complex odors at different concentrations or mixtures
of gases, provided that a sufficiently representative database of rel-
evant measurements is available. It is also important to emphasize
that the solution β∗ does not impose a particular classification
method. Therefore, the parameter value resulting from the max-
imization of Eq. 18 simplifies the task of an arbitrary unbiased
classifier.

It is important to comment on one last issue here. An oper-
ating condition is optimal for a well-defined task. If this task
changes then the best condition should be re-calculated. This
applies, nonetheless, to any optimization method, not just this one.
For example, considering a generic classifier training instance, if
the training data changes (e.g., some data turns out to be invalid
or relabeled), then the device needs to be re-trained in order to
determine the optimal performance. In this optimization case, a
re-calculation of β∗ with the updated dataset is therefore needed,
too.

ACTIVE-SENSING OPTIMIZATION
The idea of applying sophisticated signal processing procedures
and optimization strategies to ameliorate the performance of
metal-oxide gas sensors has been around for more than two
decades. Researchers have since used a wide array of dynamic fea-
tures obtained from transient responses, but most of these studies
have been empirical. To the best of our knowledge, very few stud-
ies have proposed systematic approaches to optimizing the sensor
performance as a single device (Cavicchi et al., 1996; Kunt et al.,
1998; Vergara et al., 2005a,b, 2007a,c, 2008, 2009a,b, 2010). These
methods, though, require that the optimization be performed off-
line; therefore, they cannot adapt to changes in the environment. In
view of this, a novel active-sensing approach that can optimize the
temperature profile online (i.e., as the sensor collects data from
its environment), has recently emerged in literature. The most
relevant works on this thematic issue are reviewed in this section.

Active-sensing strategies are inspired by the fact that per-
ception is not a passive process (Gibson, 1979), but an active
one, in which an organism controls its sensory organs in order
to extract behaviorally relevant information from the environ-
ment (see Figure 11A). Active sensing has been traditionally used
in robotics and computer vision, in which the localization and
navigation tasks, on the one hand, and the recognition of three-
dimensional (3-D) objects from 2-D image, on the other hand,
respectively, is a recurrent theme (Paletta and Pinz, 2000; Denzler
and Brown, 2002; Floreano et al., 2004). In chemical sensing, how-
ever, it has received only minimal attention. In one of the earliest
studies, Nakamoto et al. (1995) developed a method for active
odor blending, where the goal was to reproduce an odor blend by
creating a mixture from its individual components. The authors
developed a control algorithm that adjusted the mixture ratio, so
the response of a gas-sensor array to the mixture could matched
the response to the odor blend.

It was not until 2010, when Gosangi and Gutierrez-Osuna
(2009, 2010) proposed an active-sensing approach to optimize
the temperature profile of metal oxide sensors in real time, as
the sensor reacts to its environment. To see how their approach
works let us consider the problem of classifying an unknown gas
sample into one of M known categories {ω(1), ω(2), . . ., ω(M)}
using a MOX sensor with D different operating temperatures {ρ(1),
ρ(2), . . ., ρ(D)}. To solve this sensing problem, one typically mea-
sures the sensor’s response at each of the D temperatures and then
analyzes the complete feature vector x = [χ1, χ2, . . ., χD]T with
a pattern-recognition algorithm. Although straightforward, this
passive sensing approach is unlikely to be cost effective because
only a fraction of the measurements are generally necessary to

Table 1 | Optimal operating parameter values β selected versus the observed classification performances for each metal-oxide gas sensor given

by the linear-SVM classifier during the validation stage.

Sensor type → TGS2602 TGS2600 TGS2610 TGS2620

Optimal parameter value β using the CKL-distance (V) 5.4 4.4 4.4 4.4

Validation discrimination performance rate in percent (CKL-distance) 90.50 84.55 87.68 94.23

The performance of the linear-SVM classifier was quantified for each sensor on each optimized parameter value. Table adapted from Vergara et al. (2010), with

permission from Elsevier Science.
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FIGURE 11 | (A) In active sensing, the system adapts its sensing
parameters based on its belief about the world (e.g., class
membership of a stimulus). (B) Illustration of active-classification
with an array of four metal-oxide gas sensors, 10 temperatures
per sensor, and a discrimination problem with six chemicals. At
time zero, no information is available except that classes are a priori
equiprobable: p(ω(i ) = 1/6). Based on this information, the active
classifier decides to measure the response of sensor S2 at temperature T4,

which leads to observation o1 and an updated posterior p(ω(i ) |o1,a1). After four
sensing actions, evidence accumulated in the posterior p(ω(i ) |o1. . . o1, a1. . . a1)
and the cost of additional measurements are sufficient for the algorithm to
assign the unknown sample to class ω (3). In this toy example, accurate
classification is reached using only 10% of all sensor configurations.
(C) Classification performance and average sequence length as a function of
feature acquisition costs. Figure adapted from Gosangi and Gutierrez-Osuna
(2009) ©IEEE.
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classify the chemical sample. Instead, the authors seek to deter-
mine an optimal sequence of actions a = [a1, a2, . . ., aT], where
each action corresponds to setting the sensor to one of the D
possible temperatures or terminating the process by assigning the
sample to one of the M chemical classes. More importantly, they
seek to select this sequence of actions dynamically on the basis of
accumulating evidence. This process is illustrated in Figure 11B.

In demonstrating their approach, the authors first model the
sensor’s steady-state response at temperature ρi to chemical ω(c)

with a Gaussian mixture:

p
(

xiω
(c)

)
=

Mi∑
mi=1

α
(c)
i,mi

N

⎛
⎝xi |μ(c)

i,mi
,

(c)∑
i,mi

⎞
⎠ (19)

where Mi is the number of Gaussians, and α
(c)
i,mi

, μ(c)
i,mi

,
∑(c)

i,mi
are

the mixing coefficient, mean vector, and covariance matrix of each
Gaussian for class ω(c), respectively. Given a sequence of actions
[a1, a2, . . ., aT], the authors assumed that the sensor progresses
through a series of states s = [s1, s2, . . ., sT] to produce an obser-
vation sequence o = [o1, o2, . . ., oT]. Each state si represents a
Gaussian in (19) and is therefore hidden. Following this step, they
modeled the dynamic response of a sensor to a sequence of temper-
ature pulses by means of an input–output hidden Markov model.
This is a machine learning technique that can be used to learn a
dynamic mapping between two data streams: (a) an input (temper-
ature in this case) and (b) an output (sensor conductance). Once
a dynamic sensor model has been learned, they then approach the
temperature-optimization process as one of sequential decision-
making steps under uncertainty, where the goal is to balance the
cost of applying additional temperature pulses against the risk
of classifying the chemical analyte on the basis of the available
information. As a result, the problem is solved through a partially
observable Markov decision process (Papadimitriou and Tsitsiklis,
1987).

Simulation results from this study are shown in Figure 11C;
these results indicate that the method can balance sensing costs and
classification accuracy: higher classification rates can be achieved
by decreasing sensing costs, which in turns increases the length of
the temperature sequence and the amount of information avail-
able to the classifier. One last think to comment on here is that
the active-sensing approach proposed here has great potential
in pioneering new strategies to be implemented in energy-aware
chemical sensing networks using low-cost commercial sensors.

CONCLUSION AND OUTLOOK
Most of the work reviewed in this article has focused on optimiza-
tion schemes for single sensors or sensor arrays within a single
chemo-sensing system. Advances at the intersection of materi-
als science, micro- and nano-technology, microelectronics, and
chemical micro-sensory systems together with the explosion of
mobile computing and the wireless communications capabili-
ties will soon dramatically influence the deployment of mas-
sively distributed sensory micro-systems networks with capabil-
ities that, only years ago, were confined to the lab bench of
research laboratories. It can be concluded from the contents of
this review that the integration of chemical micro-systems and

wireless networks may, indeed, have a profound impact not only
in different applications ranging from environmental monitor-
ing to personal health care, but also in the formidable chal-
lenges present at the current practices of sensor management
and data analysis. However, we believe that the sensor-based
detection of chemical analytes in a dynamic real-world environ-
ment is a complex task, in which the interest of the final-user
is to have reliable, user-friendly, and affordable sensory sys-
tems, irrespective of the internal system complexity. Therefore,
the concept of an adaptive optimal sensory system can be most
successful.

Adaptive sensory systems may be devices that include various
chemical transducer types and sensor operation modes, the use
of auxiliary sensors, and separation and pre-concentration units,
which can respond or adapt their optimal operation to the occur-
ring analysis situations or events. Then, in the instance where
a certain odorant compound or a major interfering chemical is
present, the sensor/feature selection, sensor operation mode, fea-
ture extraction, and data treatment should be able to adapt to this
event so that their protocols execute in such a way that the best-
possible target-analyte detection is achieved or that the influence
of the interfering analyte can be recognized and minimized if not
suppressed at all. In dealing with the just described issues, it may
be very effective to purposefully select or deselect sensors, to find
the optimal sensor’s operation mode, or to use signal ratios or dif-
ferential values instead of merely increasing the array size or the
transducer diversity.

Another important observation to make from the optimization
schemes reviewed here is that the chances for these optimization
schemes to succeed, or in other words maximizing the perfor-
mance in a gas-sensor identification system to be more precise,
truly depends on multiple factors that all together determine the
problem setup. These factors include the hierarchical level of
the classification problem pursued (e.g., gas discrimination ver-
sus quantification and prediction of the gas concentration), the
environmental parameter conditions, the features selected for eval-
uation, and the classifiers utilized to map the extracted features to
class labels (Vergara et al., 2009a). A more comprehensive for-
mulation addressing all of these options would almost certainly
yield a better performance than the generic solutions presented in
these works (Di Natale et al., 1995; Wilson and De Weerth, 1995;
Martinelli et al., 2003; Vergara et al., 2007b,d). We held this issue,
though, as an arguable position that we would address in future
works.

Finally, when facing a general problem of sensor-array opti-
mization, sensor selection, or sensor optimization, it would be
worth considering the following steps:

1. In case there is domain knowledge (e.g., underlying physic-
ochemical phenomena is known or a sensor response model
is available), then consider building a better set of “ad hoc”
features.

2. Are features commensurate? If a hybrid multi-sensor system is
employed, which combines different odor sensing technologies
it is likely that feature normalization will be of help.

3. If there is a need to prune the number of sensors or input
features (e.g., for simplicity, data understanding, etc.) then
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start by assessing features individually. This will help in
understanding their relative influence on the system. Addition-
ally, if their number is too large use a variable ranking method
to implement a first step of filtering.

4. In case some response patterns within the optimization data-
base are suspected to be meaningless or have the wrong class
labels, outliers should be detected by employing the top ranking
features/sensors obtained in step 3.

5. In case there is not an evident option for the classifier model
to be used, start by trying first a linear model. Following the
ranking of step 3, construct a sequence of classifiers of similar
nature using increasing (or decreasing) subsets of features (e.g.,
by implementing a forward or backward selection strategy). In
case performance is matched or improved with a smaller sub-
set, then try a non-linear classifier model with this subset. As a
rule of thumb, it is better to try simple strategies first.

6. If the database available has a large number of samples and there
is time enough and computational resources, then it is worth
comparing several sensor/feature selection methods coupled
to linear or non-linear classifier models. Consider combining

filters either with wrapper or embedded approaches. Do not
refrain from trying your own ideas.

7. Finally, in order to achieve a stable solution to the optimization
problem and effectively improve performance, employ data re-
sampling methods (e.g., by constructing bootstrap sets) and
redo the sensor selection analysis for different sets.
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