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ABSTRACT The genome of budding yeast (Saccharomyces cerevisiae) contains approximately 5800 pro-
tein-encoding genes, the majority of which are associated with some known biological function. Yet the
extent of amino acid sequence conservation of these genes over all phyla has only been partially examined.
Here we provide a more comprehensive overview and visualization of the conservation of yeast genes and
a means for browsing and exploring the data in detail, down to the individual yeast gene, at http://yeast-
phylogroups.princeton.edu. We used data from the OrthoMCL database, which has defined orthologs from
approximately 150 completely sequenced genomes, including diverse representatives of the archeal, bac-
terial, and eukaryotic domains. By clustering genes based on similar patterns of conservation, we organized
and visualized all the protein-encoding genes in yeast as a single heat map. Most genes fall into one of
eight major clusters, called “phylogroups.” Gene ontology analysis of the phylogroups revealed that they
were associated with specific, distinct trends in gene function, generalizations likely to be of interest to
a wide range of biologists.
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The genome of the model eukaryote Saccharomyces cerevisiae was first
sequenced in 1996, providing the first glimpse of what turned out to
be a highly conserved eukaryotic gene set (Goffeau et al. 1996). To
compare evolutionary and functional relationships between genes of
different species, it is useful to compare orthologs. Orthologs are genes
whose sequences most closely resemble that of a common ancestor
but have since diverged through speciation. Orthologs often retain the
same function in the two diverged species. For example, the catalytic
subunit of the replicative DNA polymerase is encoded by orthologs:
POL2 in S. cerevisiae and POLE in human (D’Urso and Nurse 1997).
Knowing all of the orthologs of a gene is useful in many ways. First, if

the function of a gene is known in one species, the gene function(s) of
orthologs in other species can be inferred with some confidence,
although not with certainty. Second, ortholog analysis can illustrate
the contexts in which the gene is important. An ortholog that is
conserved in all organisms might well be critical for basic cell biology,
whereas a gene conserved in only fungi may encode a protein that is
required for a fungal-specific process, like spore formation. Third,
knowing the species in which a gene is conserved has medical appli-
cations. For example, if a gene is specific to fungi, the encoded protein
could represent an attractive target for antifungal drugs.

An early attempt to compare the protein-encoding gene sets of
four species, namely Escherichia coli, S. cerevisiae, Caenorhabditis ele-
gans, and Homo sapiens revealed a striking number of similar proteins
among these species (C. elegans Sequencing Consortium 1998). Be-
cause the genome sequences were then still not completely known,
these authors could not determine the orthology of full-length pro-
teins but instead relied on proteins having similar domains (Sonn-
hammer and Durbin 1997). Another early study compared the
complete gene sets of S. cerevisiae and C. elegans (Chervitz et al.
1998). This study inferred orthology by the method of reciprocal
BLAST, whereby the two genes were assumed to be orthologs if each
was the best hit when the other was used as a query in a BLAST search
of the other genome, with a set minimum significance score (Altschul
and Gish 1996). Using this reciprocal BLAST approximation, the
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authors were able to determine that 40% of S. cerevisiae genes and
20% of C. elegans genes are orthologous and that these proteins carry
out a set of core biological processes (intermediary metabolism,
DNA/RNA metabolism, protein folding, trafficking, and degrada-
tion; Chervitz et al. 1998). The major limitation of this study was
that yeast and worm were the only complete eukaryotic genome
sequences available at the time.

Today, hundreds of diverse genomes have been sequenced.
However, not all these genomes have been completely annotated,
and each “orthogroup” (i.e., the group of genes from different species
that are all orthologs of each other) has yet to be fully defined. How-
ever, one major effort, OrthoMCL, has undertaken to identify all of
the orthogroups in about 150 fully sequenced and annotated genomes
(Chen et al. 2006; Li et al. 2003). OrthoMCL also begins with re-
ciprocal BLAST, as described previously, but uses additional steps to
prevent closely related paralogs (genes duplicated within a species that
remain highly similar) from forming separate orthogroups. The result
is a collection with thousands of orthogroups, each containing a group
of orthologs and paralogs from ~150 different species.

In this study, we used the data from OrthoMCL to globally
examine and visualize the conservation of S. cerevisiae genes across the
same 150 species, which represent a wide range of species spanning
the archaea, bacteria, and eukaryota. A clustered global heat map was
constructed that makes it easy to assess the pattern of conservation for
each S. cerevisiae gene over all the species. These patterns defined eight
major clusters of genes, which we call “phylogroups.” The phy-
logroups were queried for enrichment of gene ontology (GO) terms
to reveal any functional logic underlying the patterns of conservation.
This analysis produced a phylogenetic portrait of the S. cerevisiae
genome, showing gene conservation and functional cohesiveness
across the domains of life. Accompanying this study is an interactive
website that allows users to explore the data in greater detail, including
the ability to search yeast phylogroups for individual genes of interest
(http://yeast-phylogroups.princeton.edu).

MATERIALS AND METHODS

Acquisition and processing of ortholog and yeast
genome data
Data defining orthologs to yeast genes were downloaded from
OrthoMCL (www.orthomcl.org). Data regarding yeast gene annota-
tion were downloaded from Saccharomyces Genome Database
(www.yeastgenome.org). Processing and combining these data are
described in more detail in Supporting Information, File S1 and File
S2. Data were organized and processed using a combination of
Microsoft Excel, and R (www.r-project.org). Data were visualized
using R or MultiExperiment Viewer (MeV_4_7, version 10.2;
www.tm4.org/mev/).

Arranging yeast genes into phylogroups
Yeast genes were ordered into phylogroups on the basis of shared
patterns of conservation among six taxonomic groups (archaea,
bacteria, plants, nonchordate animals, chordate animals, and fungi)
(Figure 1). A threshold of 20% was chosen to ensure that at least two
organisms of a given taxonomic category contained yeast orthologs for
including a gene into a phylogroup. Phylogroups containing less than
50 yeast genes were placed together in a group called “Minor phy-
logroups” (the range of yeast genes in each minor cluster phy-
logroup varies from 1 to 32). Genes within each phylogroup were
sorted according to the total number of species in which the gene is
conserved. For the purposes of defining and ordering genes within

phylogroups, eukaryotic parasites were not considered due to the
phenomenon of parasitic organisms losing various genes depend-
ing upon their type of host parasitism. The data for eukaryotic
parasites subsequently were added to the data set after all group
definition and ordering was completed. Different sets of genes (es-
sential, uncharacterized, etc.) were assessed for distribution among
phylogroups (Figure S4). A number of other methods were tested for
defining phylogroups, including hierarchical clustering methods
(for example, Euclidian distance-based clustering of data binarized
around the 0.2 threshold). These methods lead to similarly defined
phylogroups (Figure S5).

GO-Slim analysis
GO analysis was performed using the GO-Slim Mapper tool imple-
mented in the Saccharomyces Genome Database (http://yeastgenome.
org/cgi-bin/GO/goSlimMapper.pl). GO-Slim Mapper was used rather
than standard GO Term finder because of the smaller, less redundant
number of ontology terms used. P-values were calculated using
the cumulative hypergeometric distribution and then corrected for
multiple-hypothesis testing via use of the Benjamini-Yekutieli method
(Benjamini and Yekutieli 2001). For display of GO term enrichment
in Figure 2 and Figure S3, GO terms were only included if at least one
phylogroup had a significant enrichment (P-value of at least 1 · 1027).
The full set of GO Slim results is available for download from http://
yeast-phylogroups.princeton.edu. Each table of GO terms was hierar-
chically clustered using Kendall’s tau (a rank-order based statistic) as
the clustering metric and average linkage as the linkage method.

RESULTS
By combining publicly available data for yeast gene annotation (www.
yeastgenome.org) and for ortholog prediction (www.orthomcl.org),
we created a clustered map of the yeast genome based on gene con-
servation. After organizing the data so that yeast genes with similar
patterns of gene conservation were clustered together, it became clear
that we could simplify the display by amalgamating the 126 individual
species into seven taxonomic groups (archaea, bacteria, nonchordate
animals, chordates, eukaryotic parasites, fungi, and plants) and indi-
cating the presence of an ortholog to a yeast gene by the intensity of
color (Figure S1 and Figure 1).

The yeast genes in Figure 1 fall into distinct phylogenetic catego-
ries, hereafter called “phylogroups.” Among these are eight major
phylogroups: “All” (genes well-conserved in all taxonomic categories),
“All (except archaea)” (genes well conserved in all taxonomic catego-
ries except archaea), “All (except bacteria)” (genes well conserved in
all taxonomic categories except bacteria), “All (except animals)” (genes
well conserved in all taxonomic categories except animals), “Eukar-
yotes” (genes well conserved in all eukaryotic taxonomic categories),
“Animals and Fungi” (genes well conserved in animals and fungi, but
not the other taxonomic categories), “Plants and Fungi” (genes well
conserved in plants and fungi, but not the other taxonomic categories),
and “Fungi” (genes well conserved in fungi). The remaining two
groups are marked in Figure 1 as “Minor Phylogroups” (containing
19 phylogroups with ,50 yeast genes each; see Figure S2), or “No
Ortholog Data” (yeast genes that were not curated into the OrthoMCL
database).

Genes in phylogroups exhibit functional cohesiveness
To assess biological roles enriched within phylogroups, the yeast gene
complement from each group were examined using GO-Slim Mapper
(Ashburner et al. 2000). The results of the “Process,” “Component,”
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and “Function” GO-term analyses are presented as color maps with
color intensity representing the degree of statistical significance for the
enrichment (Figure 2 and Figure S3).

Phylogroup: All
This phylogroup consists of 305 yeast genes that are well-conserved in
all taxonomic categories. This set of genes is significantly enriched for
core metabolic GO processes (e.g., carbohydrate, cofactor, amino acid,
and nucleic acid metabolism), generation of precursor metabolites,
tRNA aminoacylation, and response to oxidative stress. GO functional
enrichments include hydrolase, ligase, oxidoreductase, and lyase ac-
tivities. Included in this phylogroup are the genes responsible for
pyrimidine biosynthesis (URA1, URA2, URA3, URA5, URA7, URA8,
and URA10), purine biosynthesis (ADE4, ADE6, ADE5,7, ADE16,
and ADE17), central carbon metabolism (PGI1, PGK1, ENO1,
ENO2, PYK2/CDC19, PYC1, PYC2, ACO1, ACO2, IDH2, LPD1,
LSC1, LSC2, FUM1, SDH1, SDH2), and some amino acid biosynthesis
(aspartate, asparagine, cysteine, serine, glycine, glutamate: ASN1,
ASN2, ASP1, CYS3, CYS4, SER2, SER3, SER33, AGX1, GDH1, and

GDH3). These results suggest that this subset of yeast genes represents
core metabolic processes common to all organisms on earth.

Phylogroup: all (except archaea)
This phylogroup consists of 282 yeast genes that are well-conserved in
all taxonomic categories except the archaea. This set of genes is
significantly enriched for metabolic and mitochondrial processes,
ATPase activity, oxidoreductase activity, and cytoplasmic/mitochon-
drial cellular components. These results suggest that this set of yeast
genes also represents core metabolic processes, although likely with
a stronger focus on functions performed in mitochondria. These
include genes responsible for the production of the mitochondrial
ribosome (MRPL and MRPS genes), and for some steps of carbon
metabolism (PFK1, PFK2, TPI1, TDH1, TDH2, TDH3, GPM1, KGD1,
KGD2). Notably, although the biological process and component
terms are similar to the previous phylogroup (which includes the
archaea), some of the enzymatic activities are different, indicating that
somewhat-different patterns of metabolic reactions are represented in
this group (Figure S3). Indeed, phosphofructokinase from some ar-
chaea is known to be biochemically divergent, relying on ADP as
a cofactor instead of ATP, and many archaea appear to lack GAPDH
(i.e., TDH1, TDH2, TDH3) entirely, substituting an archaeal-specific
enzyme that reduces glyceraldehyde using ferredoxin instead of
NADH (Verhees et al. 2003).

Phylogroup: all (except bacteria)
This phylogroup consists of 242 yeast genes that are well-conserved in
all taxonomic categories except the bacteria. This set of genes is
significantly enriched for processes, functions, and components
involved in translation and, to a lesser degree, transcription. The
main feature distinguishing this set of yeast genes reflects the well-
documented differences between ribosomes and other translation
machinery in bacteria, and the cytoplasmic translation machinery in
eukaryotes and archaea (Allen and Frank 2007). This phylogroup
includes genes that produce cytoplasmic ribosomes and regulate
translation (RPL and RPS genes, eIF and eEF genes) and RNA poly-
merase II (RPB2, RPB3, RPB5, RPB7, RPB10, RPB11).

Phylogroup: all (except animals)
This phylogroup consists of 51 yeast genes that are well-conserved
in all taxonomic categories except animals. This set of genes is
significantly enriched for only two processes: vitamin and amino acid
metabolism. The main features of this group reflect the fact that animals
generally show nutritional requirements for a subset of essential amino
acids and vitamins because they have lost, over evolutionary time, the
ability to synthesize them de novo. This phylogroup includes genes that
are responsible for the production of vitamins (BIO3, RIB1, RIB3, RIB4,
RIB7, THI7, THI20, THI21, THI22) and some of the “essential” amino
acids, namely methionine, threonine, and tryptophan (MET1, MET3,
MET6, MET16, MET17, HOM2, HOM3, HOM6, THR1, TRP2, TRP3,
TRP4, and TRP5).

Phylogroup: eukaryotes
This large phylogroups consist of 1671 yeast genes that are well-
conserved in eukaryotes but not bacteria or archaea. Among this set of
genes, many biological processes are significantly enriched. These
include organelle organization, chromatin localization, trafficking, cell
cycle, protein phosphorylation, and posttranslational protein modifi-
cation/degradation, among others. Cellular components enriched in
this set include cytoplasm, nucleus, endoplasmic reticulum, Golgi

Figure 1 The S. cerevisiae genome grouped into distinct phyloge-
netic categories based on genetic conservation. Green intensity indi-
cates percent of species in a specified taxonomic category (listed
along the top with number of species analyzed in each category shown
in parentheses) with orthologs to the S. cerevisiae genes (along the y-
axis) (see legend below for color-to-percent conversion). Genes were
ordered as described in the section Materials and Methods. Distinct
phylogenetic categories, which we call phylogroups, are listed de-
scriptively to the right of the color-map. The “minor phylogroups”
are examined in finer detail in Figure S2. The “No Ortholog Data”
phylogroup refers to a set of yeast genes that were not curated by the
OrthoMCL database and so were not analyzed in this manuscript.
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apparatus, and vesicles. These results suggest that this phylogroup
includes genes involved in a large number of cellular processes that
might be thought of as defining the core eukaryotic-specific genome,
including all the genes encoding eukaryote-specific functions. These
include those that govern the characteristic eukaryotic cell cycle and
biogenesis of the organelles (e.g., nucleus, endoplasmic reticulum,
Golgi apparatus, etc.). Some genes found in this phylogroup include
those that encode histone subunits (HHT1, HHT2, HTB1, HTB2,
HHF1, HHF2, HTA1, HTA2), tubulin subunits (TUB1, TUB2,
TUB3), and cyclins (CLB1, CLB2, CLB3, CLB4, CLB6). Despite the
bacterial origin of mitochondria, many aspects of mitochondrial func-
tion, such as the traffic of large and small molecules between mito-
chondria and cytoplasm, are also encoded by the yeast genes in this
phylogroup. Finally, the genes that control the characteristic mode of
response to stress and maintenance of protein homeostasis (e.g., trans-
lation, folding, trafficking, modification and degradation) fall into this
group, including some major chaperones and co-chaperones (SSA1,
SSA2, SSA3, SSA4, SSB1, SSB2, KAR2, SSE1, SSE2, FES1). Some of
these proteins, especially the chaperones, are conserved throughout

all domains of life. That they fall into the eukaryotic-specific phy-
logroup suggests that the eukaryotic versions have diverged enough
to prevent ortholog identification based on amino acid sequence
alone.

Phylogroup: animals and fungi
This phylogroup consists of 205 genes well-conserved in animals and
fungi but not the other taxonomic categories. Among this set of genes,
the following biological processes are significantly enriched: signaling,
exocytosis, endosomal transport, cytoskeletal organization, vacuole
organization, protein phosphorylation, and Golgi vesicle transport.
Enriched functions include kinase activity and cytoskeletal protein
binding. Enriched components include cell cortex, site of polarized
growth, cytoskeleton, and membrane. Among the genes found in this
phylogroup are genes involved in many signaling pathways (CLA4,
SKM1, KIN3, RHO1, PKC1, FKH1, FKH2, SSK2, SSK22) and in in-
tracellular transport and sorting (MYO3,MYO5, SHE4, TPM1, TPM2,
ERV29, ERV41, VPS74, YCK1, YCK2, SEC16, AVL9, HSE1). It is
notable that in addition to determinants of cell polarity and cell shape

Figure 2 GO term enrichment of phylogroups. GO-
Slim Mapper was used to identify GO terms that are
enriched in each phylogroup. The most significant
results are presented in a color-map with yellow
intensity corresponding to significance of enrich-
ment (see legend; the color intensity scale was
defined using our significance threshold of P ,
1027). Phylogroups analyzed are listed across the
top of the color-map. GO-Slim Categories are
shown in the indicated order: process (top), compo-
nent (bottom). The data for GO-Slim Category: func-
tion is presented in Figure S3.
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in animals (RHO1, CDC42, MYO3, MYO5, etc.), this phylogroup also
includes growth and metabolic regulators, notably those involving
cyclic AMP (CYR1, RAS1, RAS2, CDC25, YPK3, etc.), which may be
an indicator of important cell biology differences between this group
of species and plants.

Phylogroup: plants and fungi
This phylogroup consists of 227 genes well-conserved in plants and
fungi but not the other taxonomic categories. Among this set of genes,
carbohydrate transport is the only significantly enriched biological
process. This set of genes includes the vast majority of the hexose
transporters (HXT1, HXT2, HXT3, HXT4, HXT5, HXT6, HXT7,
HXT8, HXT9, HXT10, HXT11, HXT13, HXT15, HXT16, HXT17).
Among enriched functions are glycosyl-transferase, transmembrane
transporter, and hydrolase activities mostly involved in sugar trans-
port/metabolism and cell wall biogenesis. Membrane and plasma
membrane components are the most highly enriched cellular compo-
nents. These results suggest that this phylogroup reflects the functions
required for making rigid carbohydrate cell walls, the major cellular
feature shared by fungi and plants.

Phylogroup: fungi
This phylogroup consists of 2,219 genes well-conserved only in fungi.
The most significantly enriched processes include biological process
unknown, cell wall organization/biogenesis, and transcription from
RNA Polymerase II promoters. Enriched functions include molecular
function unknown and a number of transcription factor functions
(DNA binding, nucleic acid binding transcription factor, and protein
binding transcription factor). Enriched cellular components included
cellular component unknown, plasma membrane, cell wall, site of
polarized growth, and cellular bud. It remains notable that surpris-
ingly many of these genes are uncharacterized with respect to
function.

Minor phylogroups
The minor phylogroups consist of all remaining small (less than 50
genes each) phylogroups (Figure S2). In sum, the minor phylogroups
contain 220 genes. Surprisingly, GO-Slim mapper identified signifi-
cant GO term enrichment for the combined set of these disparate
phylogroups, including ion transport and vitamin/cofactor/amino acid
metabolism. Significant enrichment of metabolic processes among
a phylogenetically disparate set of genes suggests that the genes within
the small phylogroups may represent secondary metabolic processes
that are highly specific for different phylogroups. Further analysis of
genes in the minor phylogroups could reveal unexpected patterns of
secondary metabolic reactions, potentially suggesting gene evolution,
loss, or horizontal transfer.

Eukaryotic parasites
The subset of yeast genes well-conserved in all phyla except for the
eukaryotic parasites deserves specific mention. Orthologs of yeast
genes responsible for the biosynthesis of purines (ADE4, ADE6,
ADE5,7, ADE16, ADE17), and amino acids (ARG1, ARG3, ARG4,
ILV2, LYS12, ASN1, ASN2) are missing from most of the eukaryotic
parasite species even though they fall, otherwise, into the phylogroup
“All.” This finding suggests that unlike other eukaryotes, these para-
sites depend absolutely on the host as a purine and amino acid source.
This dependence for host biosynthetic molecules has been well docu-
mented in the case of the malarial parasite, Plasmodium falciparum
(Gardner et al. 2002).

DISCUSSION
We performed this analysis to provide a phylogenetic-based view
of the yeast genome in the expectation that this might shed light on
the functional connections between yeast and a diverse set of other
organisms. The analysis depends on the availability of many sequenced
genomes but also on databases that provide curated information about
evolutionary relationships among these sequences (OrthoMCL; Li et al.
2003), annotated functions of yeast genes (Saccharomyces Genome
Database; Cherry et al. 1998), and the conservation of gene function
and gene-associated processes (GO; Ashburner et al. 2000). This
analysis revealed some familiar themes, illuminated some unexplored
phenomena, and opens the door for future research possibilities, not
least because it required the construction of a database in which any
yeast gene can be queried for its relationship to the genes in all other
major taxa. With this publication, we provide a useful tool for yeast
biologists: an interactive website for examining the intersection of
these data (http://yeast-phylogroups.princeton.edu). We also pro-
vide a useful approach for genome visualization and exploration
based on gene conservation that can be easily applied to many differ-
ent organisms.

Phylogenetic characterization of the
S. cerevisiae genome
Our phylogenetic analysis of the yeast genome resulted in sets of genes
with distinct conservation patterns, phylogroups (Figure 1). Because
the genes that constitute each group result in enrichment of coherent
cellular processes, it seems likely that each phylogroup represents the
genetic basis for the suite of traits that have evolved or been main-
tained in represented organisms (Figure 2).

Previous analysis of the yeast genome has indicated that approx-
imately 40–50% of yeast genes are conserved in “higher” eukaryotes
(Chervitz et al. 1998). This result is also found in the current work
(Figure 1). Another observation in line with our expectations is en-
richment for organellar GO terms in the eukaryote phylogroup be-
cause organelles are a defining feature of the eukaryotic lineage. It is
also well-known that animals lack the ability to produce a number of
essential vitamins and amino acids that must be acquired nutritionally
(Berg et al. 2012). In the phylogroup that spans all organisms except
animals, there is a significant enrichment for genes involved in vita-
min and amino acid metabolism (Figure 2). In addition, the investi-
gation of archaeal cell biology indicates that the archaeal translational
machinery is more similar to that of eukaryotic cells than bacteria
(Allen and Frank 2007). This also is borne out by our analysis of the
“all (except bacteria)” phylogroup (Figure 2). These coarse-grained
results, and some of the more specific examples given in the Results
section, illustrate how this kind of data resource and visualization
might be used.

A tool for hypothesis generation
One application of this analysis is the generation of testable
hypotheses for gene functions. The use of shared patterns of gene
conservation across multiple species to perform high-throughput
computational predictions of gene function has been in practice at
least since 1998 and is called phylogenetic profiling (Eisen 1998; Lee
et al. 2004; Pellegrini et al. 1999; Thomas et al. 2003). This technique
has been successful in multiple instances, demonstrating the relevance
of gene conservation patterns (Kensche et al. 2008). Approximately
1200 yeast genes (ca. 21%) remain completely unannotated in the
literature or the databases and represent an interesting target for
future study (Botstein and Fink 2011; Pena-Castillo and Hughes
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2007). Most of the phylogroups identified here are highly enriched for
a few biological processes, suggesting that the genes of unknown
function within that group may be involved with one of those pro-
cesses. For example, the “all (except animals)” phylogroup is highly
enriched for vitamin and amino acid metabolism. This group also
contains two genes of unknown function, suggesting the hypothesis
that these genes are involved in vitamin or amino acid metabolism.

Application of this approach to other organisms
The phylogenetic “portrait” of the yeast genome presented here can
potentially reveal the evolutionary pressures that shaped different
functional categories of the genome. It is reasonable to imagine that
performing this analysis with another genome would yield a different
picture. For example, if the phylogenetic “portrait” of the human
genome were created, it could reveal different sets of phylogroups,
perhaps representing the genetic underpinnings of phenomena such
as multicellularity, development of tissue/organ systems, or even more
complex cognitive phenotypes. Even now, evolutionary biologists and
comparative psychologists are looking toward phylogenetic compar-
isons to examine cognitive traits (MacLean et al. 2012). Alternatively,
using a different fungal organism might reveal a set of genes that have
been lost in the Saccharomyces sensu stricto lineage, like the pirin
genes (Cliften et al. 2006). In addition to examining eukaryotic
genomes, unique and informative phylogroups could be found by
using bacterial or archaeal species. It will be interesting to observe
biological insights emerging from phylogenetic analyses as more
whole genomes are sequenced, curated, and compared.
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