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Abstract. We have previously shown that cell surface 
galactosyltransferase (GalTase) mediates cell spreading 
and migration on basal lamina matrices by binding 
N-linked oligosaccharide substrates within laminin. In 
this study we have examined the distribution and ex- 
pression of cell surface GalTase during mesenchymal 
cell migration on various extracellular matrices. An- 
tisera raised against affinity-purified ill,4 GalTase, as 
well as anti-GalTase Fab fragments, inhibited cell 
migration on laminin-containing matrices, whereas un- 
der identical conditions, anti-GalTase IgG had no 
effect on the rate of cell migration on fibronectin sub- 
strates. Cells migrating on laminin had three times the 
level of surface GalTase, assayed by ~2SI-antibody bind- 
ing and by direct enzyme assay, than similar cells 
migrating on fibronectin. On the other hand, total cel- 
lular GalTase, assayed either enzymatically or by 
Northern blot analysis, was similar when cells were 

grown on laminin or fibronectin. The laminin-depen- 
dent increase in surface GalTase was due to its expres- 
sion onto the leading and trailing edges of migrating 
cells in association with actin-containing microfila- 
ments assayed by double-label indirect immunofluores- 
cence. On stationary cells, surface GalTase levels were 
low, but as cells began to migrate on laminin GalTase 
became polarized to the growing lamellipodia. GalTase 
was not detectable on lamellipodia or filopodia when 
cells migrated on fibronectin substrates. These results 
show that laminin-containing matrices induce the sta- 
ble expression of GalTase onto cell lamellipodia and 
filopodia where it mediates subsequent cell spreading 
and migration. Since fibronectin was unable to induce 
GalTase expression onto lamellipodia, these studies 
also suggest that the extracellular matrix can selec- 
tively influence which intraceliular components are 
maintained on the cell surface. 

T E MPORA LLY and spatially specific cell migrations are 
of obvious importance during embryonic morphogen- 
esis and metastasis (14). Cells are thought to migrate 

in response to signals within the basal lamina and extracellu- 
lar matrix (20). A variety of extracellular components have 
been identified along the paths of cell migration in situ that 
support cell migration in vitro, including fibronectin, lami- 
nin, proteoglycans, as well as others (19, 21, 27, 28). 

Several cell surface receptors have been identified that par- 
ticipate during specific cellular interactions by binding com- 
ponents of the extracellular matrix. The best studied class of 
receptors, the "integrins" mediate cell attachment to fibro- 
nectin and to a lesser extent laminin, as well as to a number 
of other cell surface and matrix glycoproteins that possess 
the appropriate peptide-binding domain (7, 26). The inte- 
grins, however, are just one of many cell surface receptors 
that recognize specific extracellular components, and it is not 
yet clear how different surface receptors function collec- 
tively to mediate diverse aspects of cell-matrix interactions 
(1, 4, 7-10, 13, 22, 26, 29, 39, 41). 

One recently identified laminin receptor is the cell surface 
enzyme/31,4 galactosyltransferase (GalTase)J which partici- 

1. Abbreviations used in this paper: GalTase, galactosyltransferase; a-LA,  
ct-lactalburnin; PYS, parietal yolk sac. 

pates during cell migration on basal lamina matrices by bind- 
ing to specific N-linked oligosaccharide substrates within 
laminin (28, 29). Like the integrins, GalTase is found on sev- 
eral cell types and has been shown to function during a vari- 
ety of cellular interactions (2, 12, 16, 24, 25, 28, 30, 32, 33, 35, 
40). The level of surface GalTase activity is regulated by mu- 
tations of the murine T/t complex which influence, directly 
or indirectly, a variety of cellular interactions during fertil- 
ization and development (34, 36). For example, T/Tembryos 
are characterized by defective mesenchymal cell migration 
and a coincident four- to sixfold increase in mesenchymal 
cell surface GalTase activity, suggesting that surface GalTase 
may participate during cell migration (34). In this regard, re- 
agents that inhibit surface GalTase activity inhibit avian 
neural crest cell migration on laminin-containing matrices, 
whereas reagents that stimulate the catalytic turnover of Gal- 
Tase increase the rate of cell migration (28). However, these 
studies were limited because of the lack of an appropriate an- 
tibody that could be used to probe GalTase function and ex- 
pression in cell migration more directly. 

In this study, we used an anti-GalTase IgG that recognizes 
murine GalTase (2, 16, 29, 30, 37) to examine the function, 
distribution, and expression of surface GalTase during cell 
migration. Anti-GalTase IgG as well as its Fab fragments in- 
hibited cell migration on laminin matrices, but under similar 
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conditions had no effect on migration on fibronectin sub- 
strates. The GalTase substrate modifier protein, ot-lactalbu- 
min (ct-LA), similarly inhibited cell migration. The level of 
surface GalTase was elevated threefold on laminin matrices, 
which was due to the specific expression and/or stabilization 
of GalTase on cell lamellipodia and filopodia in association 
with actin-containing microfilaments. On the other hand, 
GalTase was not detectable on lamellipodia or filopodia when 
cells were migrating on fibronectin, even though total cellu- 
lar GalTase (i.e., surface and intracellular) was equal in cells 
migrating on laminin and fibronectin. These results show 
that laminin, but not fibronectin, induces the stable expres- 
sion of GalTase from intracellular pools into developing 
lamellipodia where it mediates subsequent migration. Fur- 
thermore, the differential expression of surface GalTase im- 
plies that the matrix influences which preexisting intracellular 
components are recruited to or retained on the cell surface. 

Materials and Methods 

Reagents 
Anti-GalTase IgG was prepared as described previously (2, 16). Briefly, 
/31,4 GaITase from bovine milk was purified to apparent homogeneity using 
a-LA affinity chromatography and preparative SDS-PAGE. Protein bands 
containing GalTase activity were excised from the gel and used to immunize 
rabbits, lgG was isolated by protein A-Sepharose (Sigma Chemical Co., St. 
Louis, MO) affinity chromatography, dialyzed against DME (Gibco Labo- 
ratories, Grand Island, NY), lyophilized, and stored at -70°C. The result- 
ing anti-GalTase IgG recognizes GalTase on mouse cells as defined (a) by 
immunoprecipitation of enzyme activity (2, 29, 30, 37); (b) by immunopre- 
cipitation of a single aSS-metabolically labeled membrane protein (2); (c) 
by inhibition of enzyme activity (2, 16); and (d) by indirect immunofluores- 
cence (2, 16, 30, 31). Fab fragments were prepared from anti-GalTase IgG 
using immobilized papain as described by the manufacturer (Pierce Chemi- 
cal Co., Rockford, IL) and isolated by protein A-Sepharose affinity chroma- 
tography. The resulting Fab fragments were free of contaminating Fc frag- 
ments and intact IgG as shown by SDS-PAGE. Preimmune and normal 
rabbit IgG (Sigma Chemical Co.) were reconstituted directly in DME at the 
indicated concentrations, u-LA and lysozyme (Sigma Chemical Co.) were 
dialyzed against water, lyophilized, and reconstituted in DME. 

Cells 
Mesenehymal Cell Explants. Embryos were obtained from matings be- 
tween inbred C3H mice. The presence of a vaginal plug was considered day 
l of gestation. On day l0 post-plug (9.5 d gestation), the females were killed 
by cervical dislocation, the uteri removed, and the embryos separated from 
the decidua in DME supplemented with penicillin and streptomycin (Gibco 
Laboratories). The head region was severed from the rest of the body at the 
level of the first branchial arch using tungsten wires and bisected to expose 
the large population of head mesenchyme. The resulting head halves were 
placed medial side down in 15-mm tissue culture wells coated with the ap- 
propriate extracellular matrix. The wells were filled with 0.5 ml defined 
medium (DME supplemented with penicillin, streptomycin, 5/zg/ml insu- 
lin, 5/~g/ml transferrin, and 5 ng/ml selenium; Collaborative Research Inc., 
Lexington, MA) and placed in a 37°C, 5% CO2 incubator for 2-3 d to al- 
low a sufficient number of cells to migrate away from the explant. 

Mouse Embryo Fibroblast Cultures. BALB/c 3T3 cells (American Type 
Culture Collection, Rockville, MD) were cultured on the indicat~l extracel- 
lular matrix in either complete medium (DME supplemented wit h 15% 
heat-inactivated calf serum [HyClone Laboratories; Logan, t iT],  penic~!lin, 
streptomycin, and kanamycin) for GalTase enzyme assays and No~er~b lo t  
analysis, or in GalTase-free, defined medium (see above)~.fOr i n d i ~ ! ~ m u -  
nofluorescence and '25I-antibody binding assays. Despite t h ( ~  ~t~'serum- 
derived GalTase was heat inactivated in complete mediUm~.~ve wanted to 
eliminate any potential cross-reactivity when using anti-GalTase IgG. Cells 
were harvested with 2 mM EDTA in Ca++/Mg++-free Eagle's balanced salt 
solution from sparse (<20% confluency) or confluent (>90% confluency) 
cultures and washed before use. 

Matrices. Mesenchymal cell explants and BALB/c 3T3 cells were cultured 

on either purified laminin isolated from Englebreth Holm Swarm matrix as 
described (28), bovine plasma fibronectin (Bethesda Research Laborato- 
ries, Gaithersburg, MD), or on uncoated tissue culture plastic. Studies in 
which the cell migration rate was quantitated by time-lapse microphotogra- 
phy were conducted using native basement membrane that had been previ- 
ously deposited by parietal yolk sac (PYS) endoderm cells, and then been 
subsequently removed as described (28). However, similar results were also 
obtained using purified laminin rather than PYS basal lamina, consistent 
with previous results that have shown that the principal GalTase substrate 
in native and reconstituted basal lamina matrices is laminin (28, 29). 

Migration Assay 
The rate of cell migration was quantitated by time-lapse microphotography 
as previously described (28). Briefly, culture dishes containing 2-d-old 
mesenchymal cell explants were transferred to the incubator stage of a mi- 
croscope (IM; Olympus Corporation of America, New Hyde Park, NY) 
equipped with a camera (OM-2; Olympus Corporation of America) and a 
control box (M.AC; Olympus Corporation of America) autocontrolled to 
take photographs every 4.3 min. The temperature was maintained at 37°C 
by an air curtain (Sage Instruments Div., Cambridge, MA) and the at- 
mosphere was supplemented with CO2 at a rate sufficient to keep the 
medium at pH 7.2. A representative population of cells was photographed 
(Kodak Tech Pan, ASA 50; Eastman Kodak Co., Rochester, NY) for 2 h 
to generate the basal migration rate for the population (denoted as time 0). 
The medium was then replaced with fresh medium that had been sup- 
plemented with either anti-GalTase IgG, anti-GalTase IgG Fab fragments, 
orLA, or control reagents (preimmune IgG or lysozyme, respectively) at the 
indicated concentration. The same population of cells was then pho- 
tographed for the desired time. The film was developed and the negatives 
were projected so that the paths of the cell centers could be traced between 
frames, thus generating the path of cell migration. Populations of cells with 
little, if any, cell-cell contact were chosen for analysis. The tracings were 
digitized on an X-Y digitizing board (Kurta Corp., Phoenix, AZ) and path 
lengths calculated using VIAS software (Ted Pella Inc., Tustin, CA). The 
mean migration rate for the population was calculated using VSTAT (Ted Pella 
Inc.) and the experimental rate of migration compared with the basal rate. 

The data are presented as a percentage of the basal rate. Each time point 
represents the migration rate of the population of cells traced, from the 
previous time point to the current time point, usually over a 2-h period; 
however, some rates were analyzed at hourly intervals. The number of cells 
analyzed in each population is given in the text. 

lmmunoprecipitation of GalTase Activity 
Embryonic mouse heads, obtained as outlined above, were placed in solu- 
bilization buffer (30 mM n-octylgtucoside, 120 mM NaCI, 25 mM Na 
cacodylate, 0.02% NAN3, 30 mM N-acetylglucosamine, 1% BSA, 10 mM 
MnCI2, protease inhibitor cocktail IPIC; 2 ttg/ml antipain, 0.1% aprotinin, 
10 #g/ml benzamidine, 1/~g/ml chymostatin, 1/~g/ml leupeptin, and 1 ttg/ml 
pepstatin], pH 7.5) on ice for 1 h with trituration every 15 rain. Insoluble 
material was pelleted by centrifugation (8,800 g; 5 min), and 100-/~1 aliquots 
were incubated with 50 #1 (1.5 mg/ml) of either anti-GalTase IgG or normal 
rabbit lgG under constant rotation for 1 h at 4°C. Protein A-Sepharose was 
added as a i:1 slurry in 100 #1 of solubilization buffer, and the mixture 
was rotated for 0.5 h at 4°C. The Protein A-Sepharose IgG/GalTase complex 
was pelleted (8,800 g; 5 min), and 50 p,l was assayed for GalTase activity 
towards N-acetylglucosamine using high voltage borate electrophoresis as 
described (34). 

Surface GalTase Activity 
U~l-Antibody Binding. Cultures of BALB/c 3T3 cells were (a) washed 
twice with medium B (127 mM NaCl, 5.3 mM KCI, 18.2 mM Na Hepes, 
pH 7.2) and incubated with 5 % BSA, 0,02 % NaN3 at room temperature for 
45 min; then (b) washed twice with medium B and incubated with 0.33 
mg/ml of either anti-GalTase IgG or normal rabbit IgG in medium B, 0.5 % 
BSA, 0.02% NaN3 at room temperature for 45 rain; and (c) washed twice 
in medium B, 2% BSA, 0.1% NaN3 and incubated with 4.11 #Ci 125I-goat 
anti-rabbit IgG (DuPont Co., Wilmington, DE) in medium B, 0.5% BSA, 
0.02% NaN3 at room temperature for 45 min. Cells were washed twice 
with medium B, 2% BSA, 0.1% NaN3 and solubilized with 1 N NaOH. 
The amount of solubilized radioactivity was determined in a minigamma 
counter (model 1275; LKB Instruments, Gaithersburg, MD). The concen- 
trations of both the primary (i.e., rabbit IgG) and secondary (i.e., 1251-goat 
IgG) antibodies were shown to be in excess. 
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Enzymatic Activity. BALB/c 3T3 cells were cultured and harvested as in- 
dicated above, washed once with complete media, and twice with medium 
B. For surface GalTase assays, cells were resuspended at 2.5 × 106 cells/ml 
medium B, PICs, 1% BSA. For total cellular GalTase activity, cells were 
resuspended at 0.8 x 106 cells/ml medium B, PICs containing 30 mM 
n-octylglucoside and solubilized on ice for 1 h. 40-#1 aliquots were assayed 
for GalTase activity towards N-acetylglucosamine using high voltage borate 
electrophoresis. Background radioactivity (i.e., nonincubated controls) was 
subtracted from all assays incubated at 37°C. 

Northern Blot A nalysis 

Sparse cultures of BALB/c 3T3 cells were cultured and harvested as de- 
scribed above. Total RNA was extracted as described (17) and denatured by 
heating at 60°C for 15 rain in 50% (vol/vol) formamide, 6% (vol/vol) form- 
aldehyde, 20 mM MOPS, 5 mM Na acetate, 1 mM EDTA. 10/zg RNA was 
electrophoresed on 1% agarose, 6% formaldehyde gels, transferred to 
nitrocellulose, and hybridized with the 32p-labeled 5' end 2.0-kb Eco RI 
fragment ofa  3.l-kb murine GalTase eDNA isolated from an F9 embryonal 
carcinoma cell lambda gtl0 library (17). Hybridization occurred overnight 
at 42°C in 5% dextran sulfate (wt/vol), 4 x  SSC (Ix SSC = 0.15 M NaCI, 
0.015 M Na citrate), 50% (vol/vol) formamide, 20 #g/ml salmon sperm 
DNA, lx  Denhart's solution, 50 mM Na phosphate (pH 7.0). After hybrid- 
ization, the filters were washed once in 2 x  SSC, 1% SDS at room tempera- 
ture, and twice in 0.5 x SSC, 0.1% SDS at 45°C. The bands were visualized 
by autoradiography. 

Indirect Immunofluorescence 

Embryo mesenchymal cell explants were cultured in defined medium on ei- 
ther untreated or matrix-coated (laminin or fibronectin) glass chamber 
slides (Miles Scientific Div., Naperville, IL) and incubated for 2 d in 5% 
CO2 at 37°C to allow cells to migrate from the explant. BALB/c 3T3 cells 
were cultured on matrix-coated coverslips. Cultures were washed three 
times with DME and incubated with DME, 2-5% BSA for 30 min at room 
temperature to block nonspecific adsorption. In some instances, cultures 
were prefixed in 10% formalin in medium B for 20 rain before blocking with 
BSA. Cultures were washed twice with DME and subsequently incubated 
for 45-60 min in 100 #1 of either 0.6 mg/ml anti-GalTase IgG or 0.6 mg/ml 
normal rabbit IgG in DME, 2% BSA. The cultures were washed twice with 
DME and incubated for 45-60 min at room temperature in 200 ~1 bio- 
tinylated goat anti-rabbit IgG (7.5 #g/ml in DME) (Vector Laboratories, 
Inc., Burlingame, CA). Cultures were again washed twice with DME and 
incubated for 45-60 min at room temperature in the dark with 200 ~1 Avidin 
DCS (20 #g/ml in DME) (Vector Laboratories, Inc.). After two additional 
washes in DME, cultures were either mounted as described below or per- 
meabilized with 100 /~1 of - 2 0 ° C  acetone. 20 /~1 (1 U) of rhodamine- 
conjugated phalloidin (Molecular Probes Inc., Junction City, OR) was 
evaporated and resuspended in 150 ~1 of PBS, which was added to each well 
and incubated for 20 min at room temperature in the dark. Control incuba- 
tions contained PBS rather than phalloidin. Slides were washed twice with 
PBS, mounted with medium (90% [vol/vol] glycerol, 10% [vol/vol] PBS, 
and 4% [wt/vol] n-propylgalate) and viewed with a microscope equipped 
for epifluorescence (Dialux EB 22; Leitz, Rockleigh, NJ). 

Results 

Experimental Rationale 

Past studies suggest that GalTase is present on the surface of 
mesenchymal cells where it functions during cell migration 
by binding to its complementary substrate in the extracellular 
matrix (32, 34). Furthermore, perturbation of surface Gal- 
Tase activity with competitive substrates and modifier pro- 
teins coincidentally perturbs the rate of avian neural crest 
cell migration on basal lamina (28). In the present study, we 
have taken advantage of an appropriate anti-GalTase IgG to 
(a) examine GalTase function during mouse mesenchymal 
cell migration; (b) quantitate the level of surface GalTase on 
migrating cells; and (c) define the plasma membrane distri- 
bution of GalTase by indirect immunofluorescence on cells 
migrating on various extracellular matrices. To approximate 

the in vivo situation as closely as possible, primary explants 
of embryonic mouse mesenchyme were used, but when 
quantitation was necessary BALB/c 3T3 mouse fibroblasts 
were used as an in vitro substitute. Appropriate controls 
showed that surface GalTase has a similar distribution on 
both cell types (see below). 

Perturbing Surface GalTase Inhibits Cell Migration 
on Laminin-containing Matrices 

The rate of mesenchymal cell migration was quantitated 
using a previously established in vitro assay (28). To control 
for variation in migration rates between individual cells 
within a population, as well as between cell populations from 
different explants, the basal migration rate for each popula- 
tion of ceils was determined and compared to the migration 
rate for the same cell population in the presence of ex- 
perimental reagents. 

Two reagents were used that block GalTase binding to its 
glycoconjugate substrate: the substrate modifier protein, 
t~-LA; and antisera raised against affinity-purified GalTase. 
~ L A  binds to GalTase and modifies its substrate specificity 
away from its conventional substrate, N-acetylglucosamine, 
and towards glucose, a substrate of normally low affinity 
(18). The interaction between c~-LA and GalTase is fairly 
specific, since GalTase can be purified to apparent homoge- 
neity by c~-LA affinity chromatography (16). Previous studies 
have shown that c~-LA inhibits the migration rate of avian 
neural crest cells on laminin and laminin-containing ma- 
trices in a dose-dependent manner (28). As expected, a-LA 
(1.5 mg/ml) inhibited embryonic mouse mesenchymal cell 
migration ~50% as compared to basal rate. Lysozyme (1.5 
mg/ml), a protein structurally similar to a-LA but without 
GalTase-modifying activity, did not affect cell migration 
(Table I). 

Polyclonal rabbit anti-bovine milk GalTase IgG has been 
shown to specifically recognize GalTase in mouse cells by a 
variety of criteria (2, 16, 29, 30, 37). Similarly, anti-GalTase 
IgG can be shown to recognize embryonic mouse mesenchy- 
mal cell GalTase, since in this study it immunoprecipitated 
90% of GalTase enzyme activity from detergent-solubilized 
mesenchymal cells as compared with control incubations 
containing normal rabbit IgG (normal rabbit IgG [1,517 + 
30 cpm product/50 #l/h] vs. anti-GalTase IgG [152 + 3 cpm 
product/50/zl/h] remaining in the supernatant). 

The rate of mesenchymal cell migration in the presence of 
anti-GalTase IgG is shown in Fig. 1. Cell migration during 

Table L ol-LA Inhibits Mouse Mesenchyme Migration on 
Basal Lamina Substrates 

Additions Cell migration Control 

am/h % 

None (basal rate) 15.1 + 2.5 100 
~ -LA 7.2 + 1.2 48 
None (basal rate) 13.5 ± 1.4 100 
Lysozyme 15.1 + 1.4 112 

Mesenchymal cell migration on PYS basal lamina was quantitated by time-lapse 
microphotography as described in Materials and Methods. ct-LA or lysozyme 
were added at 1.5 mg/ml. This experiment was repeated three times with simi- 
lar results. ~-LA inhibited cell migration similarly on purified laminin ma- 
trices. Data shown are ±SEM. 
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Figure 1. Anti-GalTase IgG in- 
hibits cell migration on lami- 
nin-containing matrices. Each 
data point (+SEM) represents 
the average of two identical as- 
says containing 0.23 mg/ml 
IgG. (Left) Cell migration on 
PYS-derived basal lamina. 
(Right) Cell migration on fi- 
bronectin. Similar results were 
found using purified laminin 
rather than PYS basal lamina. 
(o) Anti-GalTase IgG; (A) 
anti-GalTase Fab fragments; 
(o) normal rabbit IgG. 

the frst hour of incubation was inhibited by '~25 % and after 
2 h reached 64 % inhibition. The cumulative data from six 
experiments are shown in Table II. In all instances, anti- 
GalTase IgG inhibited cell migration compared with the 
basal rate, ranging from 48 to 80% inhibition (Table II). 
Anti-GalTase IgG produced variable effects on cell morphol- 
ogy, ranging from no noticeable morphological effects in 
some cultures to partly reducing cell spreading in others. 
These effects are analogous to the ability of anti-GalTase IgG 
to inhibit initial lamellipodial formation on laminin when 
added at the time of cell plating (29). Identical concentra- 
tions of preimmune or normal rabbit IgG had no significant 
effect on morphology or migration rate (Fig. 1; Table II). 

To insure that anti-GalTase IgG was inhibiting cell migra- 
tion by blocking GalTase sites rather than by nonspecific 
cross-linking effects, Fab fragments of anti-GalTase IgG 
were prepared and purified free of contaminating Fc frag- 
ments and intact IgG. The purified Fabs inhibited cell migra- 
tion on laminin-containing matrices as shown in Fig. 1. 

The specificity of anti-GalTase IgG inhibition was deter- 
mined by assaying its effect on cells migrating on fibronectin. 

Table H. Anti-GalTase IgG Inhibits Cell Migration on 
Basal Lamina Substrates 

Cells/ Range 
Additions explants Migration Basal rate (of basal rate) 

n/n /~rn/h % % 

None (basal rate) 45/3 14.7 -I- 1.8 (100) 
Normal rabbit IgG 45/3 14.9 + 1.5 101 89-113 
None (basal rate) 145/6 27.2 + 2.1 (100) 
Anti-GalTase IgG 170/6 9.3 + 1.4 34 20-52 

The rate of cell migration on PYS basal lamina was quantitated as described 
in Materials and Methods. Migration rate after addition of 0.23 mg/ml normal 
rabbit IgG or 0.1-0.25 mg/ml anti-GalTase IgG was compared with basal rate. 
Rates shown represent the average migration rate during a 2-h period (2--4 h 
after lgG addition). Anti-GalTase IgG inhibited migration similarly on purified 
laminin matrices. Data shown are +SEM. 

Previous studies have shownthat reagents that perturb sur- 
face GalTase inhibited migration on laminin matrices but did 
not affect migration on fibronectin substrates (28). As shown 
in Fig. 1, concentrations of anti-GalTase IgG that markedly 
inhibited cell migration on laminin matrices had no effect on 
migration rate on fibronectin. These results clearly eliminate 
nonspecific metabolic effects of anti-GalTase IgG and dem- 
onstrate strict substrate specificity for the involvement of 
GalTase during cell migration on laminin. 

Surface GalTase Levels Are Elevated on Cells 
Migrating on Laminin 

The expression of surface GalTase on cells cultured on vari- 
ous extracellular matrices was quantitated by t25I-antibody 
binding and by direct enzyme assay. Since it was necessary 
to normalize GalTase levels to cell number, these studies re- 
lied upon cultured embryonic mouse fibroblasts (i.e., BALB/c 
3T3 cells) rather than primary explants of embryonic mesen- 
chyme in which cell number was highly variable. Further- 
more, the use of 3T3 fibroblasts enabled comparisons of sta- 
tionary cells in contact-inhibited, confluent cultures with 
migratory cells in sparse cultures. 

Surface GalTase levels were similar on both stationary and 
migratory cells when cultured on either fibronectin-coated 
or plastic surfaces, as well as on stationary cells cultured on 
laminin (Table III). However, when cells migrated on lami- 
nin, surface GalTase was elevated threefold relative to all 
other culture conditions. Similar results were obtained using 
two independent assays for quantitating surface GalTase ex- 
pression (i.e., ~25I-antibody binding and direct enzyme as- 
say of intact cells). 

In contrast to the levels of surface GalTase, total cellular 
GalTase activity was similar, per microgram of protein, in 
cells migrating on laminin or fibronectin (Fig. 2). The levels 
of GalTase mRNA were also relatively similar, per micro- 
gram of total RNA, in cells grown on laminin and fibronectin 
(Fig. 2). GalTase mRNA levels were slightly higher when 
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Table IlL Laminin Increases Surface GalTase Expression on Sparse Cells 

Substrate 
Fold increase 

Assay Cell phenotype Laminin Fibronectin Plastic (laminin/fibronectin) 

Enzyme activity* Stationary 295 + 25 281 + 15 310 + 22 1.1 
Migratory 692 + 13 288 + 20 294 + 17 2.4§ 

'25I-IgG binding* Migratory 19,962 + 2,045 5,560 + 520 ND 3.6§ 

BALB/c 3T3 fibroblasts were cultured on the indicated matrix as described in the Materials and Methods. Cells in >90% confluent cultures were considered to 
be stationary, while cells in sparse (<20% confluent) cultures were considered to be migratory. 
* Enzyme activity toward N-acetylglucosamine substrates is expressed as pmol 3H-galactose transferred per 106 cells/h 5:SEM. Background radioactivity (nonin- 
cubated controls) was subtracted from all assays and averaged 236 cpm (equivalent to ,x,5 pmol). 
* '2~I-IgG binding is expressed as specific cpm 'Z~l bound/t04 cells +SEM (i.e., normal rabbit IgG binding subtracted from anti-GaiTase IgG binding). Normal 
rabbit lgG binding averaged 7,501 cpm/104 cells. There was no anti-OalTase lgG binding to matrices devoid of cells. 
§ Values for laminin and fibronectin are significantly different from one another, p < 0.005. 

cells were grown on uncoated plastic surfaces, suggesting 
that the cells were compensating for the lack of any extracel- 
lular matrix. In any event, laminin appears to increase the 
level of GalTase on the cell surface by recruiting enzyme 
from intracellular pools and not by increasing the level of to- 
tal cell GalTase. 

Laminin Induces GalTase Expression on Lamellipodia 
and Filopodia 

The cell surface distribution of GalTase, as well as possible 
cytoskeletal associations, was determined on various extracel- 
lular matrices by double-label indirect immunofluorescence. 
When primary mesenchymal cell explants were grown on 
laminin matrices, GalTase was localized to the edge of cellu- 
lar processes, such as lamellipodia and filopodia, as well as 
to areas of cell-cell contact (Fig. 3). There was no apparent 
uniform distribution of GalTase over the cell body; all im- 
munoreactivity appeared to be localized to the leading and 
trailing edges of migrating cells. GalTase distribution was 
unaffected by including NaN3 in all reagents or by prefixing 
in 10% formalin. We attempted to apply anti-GalTase IgG to 
the basal surface of the migratory cells by culturing cells on 
porous filters (12-mm Millicell CM; Millipore Continental 
Water Systems, Bedford, MA) and applying IgG from be- 
neath the filter surface. However, very few cells adhered to 
and migrated on these filter surfaces, and those cells that 
were labeled showed a similar GalTase distribution to those 
that received antibody apically. 

Fluorescently labeled cell "ghosts" were occasionally seen 
on laminin matrices, even though no cells were apparent 
using phase-contrast optics (Fig. 3, e and f ) .  These fluores- 
cent spikes appeared to radiate from the entire circumference 
of where a cell body had apparently been. We suspect that 
these reflect the membrane remnants of cells that had been 
dissociated from their laminin adhesion by anti-GalTase IgG, 
and are reminiscent of mesenchymal cell "retraction fibers" 
seen ultrastructurally (25). No such immunoreactivity was 
observed on laminin matrices that had not supported cell 
growth or when preimmune IgG was used. 

Since we used cultured embryonic fibroblasts (i.e., BALB/c 
3T3 cells) to quantitate surface GalTase expression on vari- 
ous extracellular matrices, we confirmed that the immuno- 
fluorescence distribution of surface GalTase was similar on 
cultured fibroblasts and on primary mesenchymal cells. Sur- 
face GalTase was localized to the leading and trailing edges 
of migrating 3T3 fibroblasts, similar to that seen on primary 

Figure 2. Total cellular GalTase is equal in cells cultured on laminin 
and on fibronectin. (Top) GalTase enzyme activity was assayed in 
total cell lysates as a function of incubation time as described in 
Materials and Methods. (o) Cells cultured on laminin; (e) cells 
cultured on fibronectin. (Bottom) GalTase mRNA levels were deter- 
mined by Northern blot analysis as described in Materials and 
Methods. The GalTase cDNA hybridizes with a 4.4-kb mRNA spe- 
cies. PYS cells, which have high levels of GalTase mRNA, were 
used as a positive control (17). LN, cells cultured on laminin; FN, 
ceils cultured on fibronectin; PL, cells cultured on tissue culture 
plastic. 
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Figure 3. Surface GalTase is localized by indirect immunofluorescence to the leading and trailing edges of embryonic mesenchymal cells 
migrating on laminin. Examples of GalTase localization to lamellipodia (large arrow) and filopodia (small arrows) are shown on lightly 
formalin-fixed cells. Some areas have no cell structures as shown by phase-contrast optics (f)  but showed cell outlines or"ghosts" by indirect 
immunofluorescence (e). There was no cytoskeletal staining seen in association with the cell "ghosts" (data not shown). (a, c, and e) Anti- 
GalTase IgG immunofluorescence; (b, d, and f )  phase-contrast image. Bar, 10 #m. 

mesenchymal cell explants, although the label appeared 
more punctate on cultured 3T3 fibroblasts (Fig. 4). Sparse 
cultures of 3T3 fibroblasts contain cells in various stages of 
migration, ranging from stationary fibroblastic cells to po- 
larized migrating cells with broad lamellipodia; therefore, it 

is possible to reconstruct the polarization of GalTase from 
a uniform distribution on stationary, fibroblastic cells (Fig. 4 
a) to broad lamellipodia characteristic of migratory cells 
(Fig. 4 e). The microspike distribution of surface GalTase 
was particularly evident on stationary cells (Fig. 4 a), which 

Figure 4. Surface GalTase becomes polarized to lamellipodia on migrating mouse fibroblasts cultured on iaminin. Examples of GalTase 
immunofluorescence distribution on unfixed BALB/c 3T3 fibroblasts showing progressive stages of polarization from stationary to migratory 
cells. Bar, 10/~m. 
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Figure 5. The distribution of 
surface GalTase colocalizes 
with some actin microfila- 
ments in embryonic mesen- 
chymal cells cultured on lami- 
nin. Acetone permeabilization 
removed most of the lamel- 
lipodial staining seen in Fig. 
3, but some filopodia still stain 
with both anti-GalTase IgG 
and phalloidin. Some GalTase 
is localized on fine filopodia 
between cells devoid of micro- 
filaments. (a) Phase-contrast 
image; (b) anti-GalTase IgG 
immunofluorescence; (c) rho- 
damine-labeled phalloidin in- 
dicates the distribution of fila- 
mentous actin. Bar, 10 #m. 
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appeared to retract as cells assumed a more migratory ap- 
pearance. Since virtually all cells in primary mesenchymal 
cell explants were actively migrating, they all displayed sur- 
face GalTase similar to that seen on migrating 3T3 fibroblasts 
(compare Fig. 3, a and c, with Fig. 4 e). None of the cells 
in primary explants displayed surface GalTase indicative of 
stationary cells as seen in Fig. 4 a. 

The distribution of microfilaments was visualized using 
rhodamine-labeled phalloidin in acetone-permeabilized cells 
in primary mesenchymal cell explants (Fig. 5). Acetone per- 
meabilization removed all broad lamellipodial staining pro- 
duced by anti-GalTase IgG. However, filopodial staining was 
resistant to acetone treatment, and in these areas there was 
an apparent colocalization of surface GalTase with filamen- 
tous actin, although some GalTase was localized on fine 
filopodia devoid of microfilaments. 

When cells were grown on fibronectin substrates, surface 
GalTase was not detectable on cell lamellipodia or filopodia 
(Fig. 6). Similar results were obtained using either primary 
mesenchymal cell explants (Fig. 6) or sparse cultures of 
BALB/c 3T3 fibroblasts (not shown). These results suggest 
that the threefold increase in surface GalTase seen on laminin 
matrices was due to a specific expression of GalTase onto 
lamellipodia and filopodia. In all instances, normal rabbit 
IgG produced background levels of fluorescence (Fig. 7). 

Discuss ion  

The function, distribution, and relative expression of surface 
GalTase during cell migration on various extracellular ma- 
trices has been examined. Anti-GalTase IgG specifically 
recognizes murine GalTase by a variety of criteria (2, 16, 29, 

30, 37) and inhibited cell migration on laminin substrates but 
not on fibronectin substrates. The effects of the GalTase 
modifier protein, o~-LA, are consistent with these findings. 
Furthermore, the level of surface GalTase was elevated three- 
fold when cells migrated on laminin, relative to cells migrat- 
ing on either fibronectin or plastic surfaces, or relative to sta- 
tionary, contact-inhibited cells on any surface. The laminin- 
dependent increase in surface GalTase was due to the stable 
expression of GalTase selectively on lamellipodia and filopo- 
dia at the leading and trailing edges of migrating cells. Gal- 
Tase was localized in specific plasma membrane domains by 
recruitment from intracellular pools rather than clustering of 
uniformly distributed surface GalTase, as shown recently for 
the fibronectin receptor (3, 5, 6, 38). GalTase was not detect- 
able on lamellipodia or filopodia when cells migrated on 
fibronectin, consistent with the fact that fibronectin-mediated 
cell migration is independent of surface GalTase. On all sub- 
strates examined, the amount of total cellular GalTase re- 
mained relatively constant as judged by enzyme activity and 
Northern blot analysis. 

These results support the notion that surface GalTase func- 
tions during cell migration on basal lamina matrices (28, 
29). Collectively, results in this and previous studies show 
that three different classes of reagents, including anti-Gal- 
Tase IgG, the modifier protein c~-LA, and competitive 
N-acetylglucosamine substrates, all of which inhibit GalTase 
binding to its complementary glycoconjugate substrate, coin- 
cidently inhibit the rate of cell migration on basal lamina, but 
not on fibronectin. Conversely the addition of UDPgalac- 
tose, which increases the catalytic turnover of the GalTase- 
substrate complex, increases the rate of cell migration on 
basal lamina. In all instances, homologous control reagents 

Figure 6. No surface GalTase is detectable on embryonic mesenchymal cells migrating on fibronectin. (a) Phase-contrast image; (b) anti- 
GaITase IgG immunofluorescence; (c) phalloidin staining of filamentous actin. Bar, 10/~m. 
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have no effect on surface GalTase activity or on cell migra- 
tion rate. 

One of the more surprising findings in this study was the 
selective ability of laminin matrices, relative to fibronectin, 
to induce GalTase expression onto lamellipodia and filopo- 
dia. This was confirmed by quantitating the level of surface 
GalTase by t25I-antibody binding and by direct enzyme as- 
say of intact cells. There is increasing evidence that the ex- 
tracellular matrix, and basal lamina in particular, induces 
cell type-specific protein expression (15); however, in this 
study, GalTase mRNA levels were relatively unaffected by 
laminin within the 24-h culture period. The slight (i.e., 
33%) increase in GalTase mRNA levels in cells cultured on 
laminin may represent the initial stages of laminin induction 
of GalTase mRNA, but this must be analyzed after longer 
culture periods. In any event, the levels of total cellular Gal- 
Tase activity were unaffected by laminin and, therefore, this 
implies that laminin induced the recruitment of GalTase 
from intracellular pools to the growing lamellipodia. These 
results also show that the level of surface GalTase does not 
simply reflect the level of intracellular GalTase and, there- 
fore, the surface and i~tracellular pools of GalTase must be 
differentially regulated. The expression of GalTase on the 
cell surface does not result from passive movement of Golgi 
region-derived vesicles to the plasma membrane, since la- 
mellipodia developing off fibronectin matrices would be ex- 
pected to contain GalTase as well. Since laminin contains 
substrates for surface GalTase, while fibronectin does not, it 
should also be considered that surface GalTase expression is 
stabilized by binding extracellular substrates. 

The function of GalTase can be distinguished from that of 
other previously identified laminin receptors (7, 13, 22) bio- 
logically and biochemically. A number of laminin-binding 
proteins bind to laminin affinity columns, including the 68- 
kD receptor and GalTase, but they are differentially eluted 
(29). Reagents that inhibit GalTase binding to its laminin 
substrate also inhibit cell spreading and migration on lami- 
nin, but do not affect initial cell adhesion to laminin (29). On 
the other hand, consuming potential GalTase binding sites in 
laminin by prior galactosylation does not inhibit cell adhe- 
sion to laminin, but totally inhibits cell spreading and migra- 
tion (29). These results suggest that initial adhesion to lami- 
nin may be mediated by the binding of the 68-kD and/or 
140-kD (i.e., integrin) receptor to their peptide ligands (9), 
while cell spreading and subsequent migration requires sur- 
face GalTase binding to its appropriate N-linked oligosac- 
charide substrate. We are presently characterizing the bind- 
ing sites within laminin for surface GalTase to determine 
their relationship to laminin fragments (e.g., El, E8) that 
have differential effects on cell adhesion and migration (1, 8). 

The potential association of GalTase with cytoskeletal com- 
ponents was assayed by double-labeled indirect immunoflu- 
orescence and phalloidin staining. Actin-containing micro- 
filaments terminating in lamellipodia appeared to coincide 
with GalTase immunoreactivity, though some GalTase was 
localized on cell surface projections devoid of microfila- 

Figure 7. Embryonic mesenchymal cells cultured on laminin and 
incubated with normal rabbit IgG show no detectable fluorescence. 
(a) Phase-contrast image; (b) immunofluorescence; (c) rhodamine- 
phalioidin staining of filamentous actin. Bar, 10/.tin. 
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ments. It has recently been reported that the redistribution 
of surface GalTase that occurs during spermatogenic differ- 
entiation coincides with the appearance of actin-containing 
microfilaments (30), and patches of surface GalTase on 
Madin-Darby bovine kidney cells colocalize with actin mi- 
crofilaments (31). Both results suggest an association be- 
tween surface GalTase and cytoskeletal components. More 
detailed ultrastructural and biochemical studies are required 
to define the relationship between the cytoskeleton and Gal- 
Tase, as has been done extensively for the fibronectin recep- 
tor (11). 

While different cell surface receptors seem to function 
during cell migration on different extracellular matrices, all 
receptor-matrix interactions must provide a mechanism for 
dissociation from the matrix to continue cell migration. How 
cells dissociate from the matrix is presently unknown, but 
it is interesting that GalTase offers a potential catalytic mech- 
anism whereby cell adhesion to the substrate could be 
released if a suitable galactose donor were available to the 
surface enzyme. The galactose donor would then enable the 
enzyme to dissociate from its galactosylated substrate. In this 
regard, Turley and Roth (40) have shown that cells spontane- 
ously glycosylate extracellular matrices coincident with 
migration upon them. Alternatively, it is possible that dis- 
sociation is due to shedding or proteolytic release of the sur- 
face receptor from the membrane. In this study, GalTase was 
detectable on microspikes surrounding cell "ghosts" suggest- 
ing that the enzyme, and possibly associated membrane, 
have been left behind after cell dissociation (23). In either 
case, it is clear that GalTase functions as a receptor during 
cell migration on basal lamina, presumably by interacting 
with specific N-linked oligosaccharide residues in laminin. 
Further studies are needed to define the mechanism of cell 
dissociation from the matrix, the cytoskeletal association 
with GalTase at the ultrastructural level, and how laminin in- 
duces the vectoral insertion of GalTase into growing lamel- 
lipodia. 
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