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A B S T R A C T   

During pandemics, governments take drastic actions to prevent the spreading of the disease, as seen during the 
present COVID-19 crisis. Sanctions of lockdown, social distancing and quarantine urge people to exclusively 
work and teach at home and to restrict social contacts to a minimum; lonely people get into further isolation, 
while families` nerves are strained to the extreme. Overall, this results in a dramatic and chronic increase in the 
level of psychosocial stress over several months mainly caused by i) social isolation and ii) psychosocial stress 
associated with overcrowding, social tension in families, and domestic violence. Moreover, pandemic-associated 
social restrictions are accompanied by loss of an essential stress buffer and important parameter for general 
mental and physical health: social support. Chronic psychosocial stress and, in particular, social isolation and 
lack of social support affect not only mental health, but also the brain oxytocin system and the immune system. 
Hence, pandemic-associated social restrictions are expected to increase the risk of developing psychopathologies, 
such as depression, anxiety-related and posttraumatic stress disorders, on the one hand, but also to induce a 
general inflammatory state and to impair the course of infectious disorders on the other. Due to its pro-social and 
stress-buffering effects, resulting in an anti-inflammatory state in case of disease, the role of the neuropeptide 
oxytocin will be discussed and critically considered as an emerging treatment option in cases of pandemic- 
induced psychosocial stress, viral infection and during recovery. In this review, we aim to critically focus on 
possible short- and long-term consequences of social restrictions on mental health and the immune system, while 
discussion oxytocin as a possible treatment option.   

1. Times of pandemics 

During human history, multiple severe pandemics have been re-
ported including plagues (the “Black Death”), tuberculosis or smallpox. 
After World War I, the 1918 “Spanish” flu was the first of two pandemics 
caused by H1N1 influenza A virus, and in 2009, the swine flu pandemic 
appeared as the second one. In the 21st century coronaviruses (CoVs) 
emerged with the spreading of the “severe acute respiratory syndrome 
coronavirus” (SARS-CoV)-1 from the south of China in November 2002. 
Although a limited number of people was infected (around 8100 people) 
and less than 1000 died worldwide, the World Health Organization 
(WHO) characterized it as a pandemic due to new definitions (Kelly, 
2011). In 2012, the “Middle East respiratory syndrome coronavirus” 
(MERS-CoV) spread from Saudi Arabia and was defined as epidemic. In 
December 2019, a novel CoV termed SARS-CoV-2 started to spread and 
cause coronavirus disease 2019 (COVID-19) which has been character-
ized as a pandemic in March 2020 (WHO, 2020b). Until November 

2021, almost 250 million cases of COVID-19 infections and more than 5 
million deaths (WHO, 2021) have been confirmed worldwide; thus, the 
global death rate was estimated to be about 2% of infected people. 
Factors that promote spreading of viruses like SARS-CoV-1 and -2 are i) 
increased density of the population, ii) domestication of animals or 
closer contact to wild animals (zoonosis), iii) global traveling, iv) long 
incubation times of 1–2 weeks, v) lack of specific treatment options and 
vi) lack of herd immunity (Madhav et al., 2017). However, as seen 
during the COVID-19 crisis, mostly elderly people and people with 
pre-existing conditions are reported with the most severe course of 
disease (CDC COVID-19 Response Team, 2020; Zhonghua et al., 2020), 
whereas many people show only mild symptoms or are even asymp-
tomatic (overall proportion 17%; Byambasuren et al., 2020; CEBM, 
2020). 

The COVID-19 crisis has affected and is still affecting our society at 
multiple levels. In order to avoid overloading of the medical system, 
hospitals and staff combat the spreading of SARS-CoV-2 and the 
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emerging mutations has been the most important challenge of political 
decision makers. Repeated and long-lasting social restrictions have been 
announced since early spring 2020, and included nationwide lockdowns 
and home-confinement strategies with strict quarantine implemented in 
the majority of the COVID-19-hit countries. Although these actions seem 

to be efficient, social restrictions have continuously developed into a 
large burden for the society - economically and psychologically. The 
exposure to home office, home schooling and home teaching, as well as 
the complete closure of, for example, restaurants, concert halls, theaters, 
cinemas, shopping centers and fitness clubs resulted in the loss of daily 

Fig. 1. Schematic illustration of the negative effects of 
pandemic-induced social stress and the importance of so-
cial support. Social stress, either by social isolation or so-
cial tension due to overcrowding, increases inflammation 
and stress susceptibility, and impairs cognitive functions. 
In contrast, social support has protective effects and im-
proves the immune status, stress resilience and brain 
development. Oxytocin, a nonapeptide with pro-social, 
stress-buffering and anti-inflammatory properties is acti-
vated by social interactions. Thus, pandemic-induced social 
stress increases the risk for mental and somatic diseases, 
while social support improves mental and physical fitness 
possibly mediated by oxytocin. CRP: C-reactive protein, 
HPA: hypothalamus-pituitary-adrenal, IFN: interferon, IL: 
interleukin, PTSD: post-traumatic stress disorder. Created 
with BioRender.com.   
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routines, financial restraints, social tension in families, social isolation 
and generally increased levels of psychosocial stress. 

2. Aim of the review 

Here, we will discuss - based on the immunological background of 
COVID-19 infections – the psychosocial consequences of pandemic- 
induced social restrictions, including social isolation on the one side 
and elevated level of psychosocial stress due to overcrowding, social 
tension and domestic violence on the other, on mental well-being and, 
consequently, on the resilience of the immune system. In this context, 
we will also discuss the importance of social support for physical and 
mental health as well as, in the contrary, the consequences of isolation 
and psychosocial stress on the oxytocin (OXT) system as revealed in 
human and animal studies (see Fig. 1). The neuropeptide OXT was 
shown to exert not only pro-social and stress-reducing, but also anti- 
inflammatory effects (Jankowski et al., 2010; Jurek and Neumann, 
2018; Neumann and Landgraf, 2012; Oliveira-Pelegrin et al., 2013; 
Wang et al., 2015). Specifically, OXT mediates the stress-buffering and 
anti-inflammatory effects of social support (Heinrichs et al., 2003; Riem 
et al., 2020; Tsai et al., 2019). We will discuss options to increase OXT 
signaling in the brain and body including either activation of the 
endogenous OXT system or treatment with synthetic OXT to reduce the 
symptoms of pandemic-induced psychosocial stress and, consequently, 
to enhance the defensive power of the immune system. 

3. The corona virus 

CoVs are large RNA viruses that are widely distributed among 
mammals and birds, and cause respiratory and enteric diseases after 
invading the body via droplet infection either by being inhaled or by 
touching contaminated surfaces before touching mucosa membranes 
(WHO, 2020a). Along with new human respiratory pathogens, CoVs 
were taxonomically separated into an own family (Almeida and Tyrrell, 
1967; Masters, 2006). SARS-CoV-1 and -2 are named due to their genetic 
similarity based on a positive-sense single-stranded RNA (reviewed in 
Groß et al., 2020) and contain envelop proteins, membrane proteins and 
spike proteins, with the latter promoting attachment to the host cell and 
membrane fusion during infection (Wu et al., 2020). SARS-CoV spikes 
have a strong binding affinity to the human 
angiotensin-converting-enzyme 2 (ACE2), which increases the likeli-
hood that ACE2 represents the respective receptor during infections in 
humans (Ou et al., 2020; Zhang et al., 2020). ACE2 is highly expressed 
on the cell surface of the renal and pulmonary epithelium as well as of 
cells of the cardiac and gastrointestinal system. Thus, both SARS-CoV-1 
and -2 specifically affect the pulmonary tract and induce symptoms like 
coughing, sneezing, sore throat and shortness of breath, but also fever 
and gastrointestinal disorders (Chen et al., 2020; Groß et al., 2020). 
However, recent studies could show that the expression level of ACE2 is 
even higher in the brain, i.e. in neurons and endothelial cells (Li et al., 
2020b). In line, epileptic seizures and encephalitis have been reported in 
CoV-infected people. Since SARS-CoV-2 has even a higher binding af-
finity to ACE2 than SARS-CoV-1, SARS-CoV-2 might efficiently invade 
the brain and affect central nervous structures more severely than pre-
vious CoVs (Natoli et al., 2020). Consistently, symptoms of confusion 
and headache have been reported following SARS-CoV-2 infection 
(Chen et al., 2020). Interestingly, even though the expression pattern of 
ACE2 is equal in men and women as well as in young and old people, Li 
and colleagues showed that the correlation between ACE2 expression 
and the immune response of the lung following SARS-CoV-2 infection 
was negative in women and young, but positive in men and elderly 
people. Thus, women and young people with a high expression of ACE2 
in the lung show a weaker immune response to SARS-CoV-2 infection 
compared to men and elderly with similarly high expression of ACE2. 
This might explain that pneumonia is more severe in men compared to 
women, and in elderly compared to young people (Li et al., 2020b). 

The mechanisms of SARS-CoV effects on the immune system include 
binding of SARS-CoV spikes to ACE2, uptake into the cell by endocytosis, 
release of viral RNA into the cytosol, and replication and translation of 
viral RNA into novel viral proteins making use of host enzymes (Groß 
et al., 2020). During SARS-CoV infection, the Toll-like-receptor-7 
expressed in the lung and spleen supports the recognition of the viral 
RNA as well as the activation of the immune system by an increasing 
production of pro-inflammatory cytokines including interleukin (IL)-1β 
and IL-6 (reviewed in Ahmadpoor and Rostaing, 2020). As the main 
communicators between immune cells cytokines initially activate the 
innate and subsequently the adaptive immune response. This includes 
the proliferation of CD8+-specific cytotoxic and CD4+ helper T cells, 
antigen-specific B cells producing antibodies as well as regulatory T 
cells, preventing an exaggerated immune response (Delves and Roitt, 
2000; Duffy et al., 2018). In cell culture studies, SARS-CoV-2 has been 
shown to upregulate pro-inflammatory cytokines, including interferon-γ 
(IFN-γ), leading to a so called “cytokine storm” (Groß et al., 2020; Mehta 
et al., 2020). In support, in SARS-CoV-1 patients, several 
pro-inflammatory cytokines and chemokines including IFN-γ are 
elevated, similarly contributing to the “cytokine storm” (Huang et al., 
2005), which is likely to contribute to increased organic cell death, e.g., 
within the lung, and the general pathogenicity of the viruses (Chan-
nappanavar and Perlman, 2017). These mechanisms may explain the 
observation of an exacerbated disease progression in elderly patients 
and patients with pre-existing conditions due to a shrinking population 
of naïve T-cells. In contrast, a significantly lower mortality rate has been 
observed in children, which have a naturally high level of naïve T cells, 
thus, preventing an exaggerated immune response and “cytokine storm” 
(Ahmadpoor and Rostaing, 2020). However, not only the “cytokine 
storm” represents an immunological challenge, also different aspects of 
pandemic-associated psychosocial stress challenge the individual 
mental and physical health. 

4. Consequences of pandemic-induced social restrictions on 
mental health 

To prevent further spreading of SARS-CoV-2, governments were 
globally forced to take drastic sanctions, which included nationwide 
lockdown programs over several weeks and months, forced mass quar-
antine, and overall social distancing (Sohrabi et al., 2020). These actions 
developed into a rising social, psychological and economic burden. 
People lost their daily routines and were urged to work and teach from 
home (home office), school children and university students had to learn 
at home (home schooling), and toddlers were not allowed to go to child 
care centers. Grandparents, especially those living in retirement homes, 
were restricted from their children, grandchildren and friends, thus 
losing an important life motivator. All of them, independent of age, 
experienced the lack of otherwise daily face-to-face interactions with 
colleagues, fellow students, friends or more distant family members. 
Although social restrictions should mainly affect older people as well as 
singles and lonely people, the feeling of loneliness due to physical sep-
aration from friends and others has been reported across age span and 
also in people living in families (Clair et al., 2021; Liu et al., 2020; Shah 
et al., 2020; British Red Cross, 2020). 

Moreover, in young families, the lockdown-associated closure of 
daycare centers and schools over several months in combination with 
home office has challenged parents to simultaneously work at home, do 
the household and supervise, e.g., the children’s school duties. The lack 
of stress-buffering sportive or cultural events, or of manifold other social 
interactions outside the family unit further contributed to a general in-
crease in the level of social tension. The level of psychosocial stress in 
families, but also of singles, has been amplified by socio-economic re-
strictions due to short-time work or missing income in self-employed 
persons working, e.g., in cultural, service or other branches (Neelsen 
and Stratmann, 2012; Patel et al., 2020). Moreover, factors like 
boredom, poor sleep quality as well as lack of proper information or 
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uncertainty regarding the progression of the disease have further 
increased the level of stress and mental illness (Brooks et al., 2020). 

Further manifesting the condition of chronic psychosocial stress, 
several alarming reports have already been published regarding 
increased domestic violence towards women and children in the UK and 
other countries with an early onset after the lockdown in the COVID-19 
crisis (Boserup et al., 2020; Bradbury-Jones and Isham, 2020; Campbell, 
2020; Guerra Lund et al., 2020; Tang et al., 2020a; Taub, 2020; Usher 
et al., 2020), which may even go unnoticed, as children do not regularly 
go to daycare or school. 

Together, the pandemic-associated social restrictions resulted in 
increased levels of psychosocial stress, and the loss of an essential stress 
buffer and important parameter for general mental and physical health - 
social support. This in combination with the fear of the disease, the 
COVID-19 pandemic has substantial impact on the world’s mental 
health (Cusinato et al., 2020; Dubey et al., 2020; Kola et al., 2021; Lima 
et al., 2020; Mednick et al., 1988; O’Callaghan et al., 1991; Shigemura 
et al., 2020; Zandifar and Badrfam, 2020). Indeed, the incidence of acute 
panic, anxiety, obsessive behaviors, hoarding, paranoia, depression and 
post-traumatic stress disorder (PTSD) increased (Dubey et al., 2020; 
Guessoum et al., 2020; Liu et al., 2021; Ravens-Sieberer et al., 2021; 
Vahratian et al., 2021). Many of these psychopathologies are highly 
comorbid, and many of them correlate with suicidal attempts (Angst 
et al., 1999; Ginzburg et al., 2010; Khan et al., 2002; Pfeiffer et al., 
2009). In line, a rise in suicides among elderly, young adults and ado-
lescents has been reported during the COVID-19 pandemic (Caballer-
o-Domínguez et al., 2020; Manzar et al., 2020; Nomura et al., 2021; 
Tanaka and Okamoto, 2021). 

The dramatic consequences of pandemic-associated social re-
strictions on mental health are not surprising, since both social isolation 
or loneliness as well as chronic psychosocial stress have long been 
acknowledged as a risk factor for the majority of these psychopathol-
ogies (Davidson and Baum, 1986; Hwang et al., 2020; Lee et al., 2007; 
Liu et al., 2020; Lopez-Duran et al., 2015; Maes et al., 1998; Steinhardt 
et al., 2011; Vindegaard and Benros, 2020; Wu et al., 2005). Recent 
studies suggested that the COVID-19 pandemic itself and the associated 
social restrictions can be considered as a traumatic event for the popu-
lation due to the significant increase in the number of people suffering 
from PTSD (Forte et al., 2020). 

In summary, two main aspects of social restrictions have to be 
considered: (i) social isolation and loneliness on the one side, and (ii) 
lockdown-associated psychosocial stress due to family tension or do-
mestic violence on the other. 

4.1. Social isolation affects mental health in humans 

Social distancing and lockdowns, and the associated significant loss 
of social support result in emotional responses of “loneliness” and feel-
ings of social exclusion, irritability, hostility, dysphoria and mistrust, 
while lowering the feelings of self-worth (Ernst and Cacioppo, 1999; 
reviewed in Matthews and Tye, 2019; Xia and Li, 2018). Thus, social 
isolation disrupts the individual social homeostasis (Matthews and Tye, 
2019) resulting in increased levels of psychosocial stress associated with 
hyper-activity of the two physiological stress systems - the 
hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic ner-
vous system (Adam et al., 2006; Doane and Adam, 2010; Hawkley et al., 
2006; Kiecolt-Glaser et al., 1984; Xia and Li, 2018). Also, lonely in-
dividuals show enhanced sensitivity to social cues and increased socially 
affiliative motivation (DeWall and Baumeister, 2006; Maner et al., 2007; 
Pickett et al., 2004). Social isolation-induced lack of social support and 
loneliness have been linked with the etiology of schizophrenia (Morgan 
and Fisher, 2007; van Os et al., 2010), major depression (Cacioppo et al., 
2006; Oxman et al., 1992), anxiety, social withdrawal (Cacioppo et al., 
2010; Ernst and Cacioppo, 1999; Meltzer et al., 2013), PTSD (Liu et al., 
2020), and learning deficits (Koike et al., 2009). Also in children, social 
distancing generally affects mental and physical development, increases 

the risk of experiencing two or more psychotic experiences (Bennett 
et al., 2020) and may facilitate the development of cardiovascular dis-
eases, stroke, high body mass index, and high blood pressure and 
cholesterol levels (Caspi et al., 2006). Long-term social isolation has also 
been associated with compromised longevity (Holt-Lunstad et al., 2010) 
and a higher risk of morbidity and mortality (Brummett et al., 2001). 

4.2. Social isolation affects socio-emotional behavior in animals 

In support of human studies, in laboratory animals including rats, 
mice and prairie voles, prolonged periods of social isolation (2–9 weeks 
in rodents) were found to increase emotional reactivity to stress, 
depressive-and anxiety-like behavior (Donovan et al., 2020; Grippo 
et al., 2011) and aggression (Donovan et al., 2020; Haller et al., 2014; 
Matsumoto et al., 2005; Oliveira et al., 2019; Ross et al., 2019), to impair 
social affiliation, and to induce cognitive deficits (Fone and Porkess, 
2008; Ieraci et al., 2016; Pereda-Pérez et al., 2013; Pohl et al., 2019). 
Social isolation for several days or weeks also led to a dysregulation of 
the HPA axis, including an increased sensitivity of the pituitary corti-
cotropic cells to corticotropin-releasing factor (CRF), increased adrenal 
response to acute stressors and impaired negative feedback in a 
sex-dependent manner resulting in a higher circulating corticosterone 
levels and increased susceptibility to subsequent acute stressors (Bosch 
et al., 2009; Donovan et al., 2020; Gądek-Michalska et al., 2019; Mumtaz 
et al., 2018; Ohline and Abraham, 2019; Serra et al., 2005; 
Takatsu-Coleman et al., 2013; Weintraub et al., 2010; Weiss et al., 
2004). 

At brain level, impaired neurogenesis (Dunphy-Doherty et al., 2018) 
and alterations in neuronal activity, microgliosis and BDNF expression 
in distinct regions of the social network, such as the hippocampus, Nu-
cleus accumbens (NAc), amygdala, hypothalamus and prefrontal cortex 
(PFC) were found in rats, mice and prairie voles after social isolation 
(Donovan et al., 2020; Ieraci et al., 2016; O’Keefe et al., 2014). Given 
their substantial role in modulating social and emotional behaviors it is 
not surprising that neuropeptide systems, such as arginine vasopressin 
(AVP), OXT, CRF, angiotensin II and tachykinin 2 systems, were found to 
be profoundly affected by social isolation in a sex-dependent manner 
with respect to peptide or peptide receptor expression (Armando et al., 
2001; Harvey et al., 2019; Ieraci et al., 2016; Oliveira et al., 2019; Pan 
et al., 2009; Pournajafi-Nazarloo et al., 2011; Senst et al., 2016; Zeli-
kowsky et al., 2018; Matthews and Tye, 2019). For example, social 
isolation of adolescent rats or adult voles resulted in elevated OXT 
expression in the PVN, but reduced OXT receptor binding, e.g., in the 
NAc, which has been linked to elevated intermale aggression (Oliveira 
et al., 2019), increased anxiety and impaired social behavior (Grippo 
et al., 2008). Similar effects were found in Syrian hamsters (Ross et al., 
2019). In male prairie voles, 3 days of isolation from the bonded female 
partner increased depression-like behavior accompanied by decreased 
hypothalamic OXT expression and OXT receptor binding in the NAc 
shell (Bosch et al., 2016). A lower density of neuronal branching within 
distinct brain regions following social isolation (Grinevich and Neu-
mann, 2020) together with the lack of socially stimulated intracerebral 
OXT release (Heck et al., 2020; Zoicas et al., 2014) were hypothesized to 
contribute to isolation-induced stress- and anxiety-related behaviors 
(Donovan et al., 2020). 

Social isolation also significantly alters the activity of other brain 
systems within days, including the noradrenergic system, which is 
important for stress-related arousal and vigilance (Berridge and Water-
house, 2003), the midbrain dopamine system essentially for social 
reward and affiliative social behavior (Gunaydin and Deisseroth, 2014; 
Ikemoto, 2007), and the GABA system of the PFC along with reduced 
benzodiazepine binding (Saavedra et al., 2006; Matthews and Tye, 
2019). Although the brain opioid system has been mainly associated 
with regulating pain, analgesia (Basbaum and Fields, 1984) and reward 
processing (Le Merrer et al., 2009), it also plays an important role in 
social bonding (Machin and Dunbar, 2011). Social isolation affects the 
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endogenous opioid system of juvenile rats at multiple levels, and an 
increased number of opioid receptors and affinity was found in the PFC 
(Vanderschuren et al., 1995b). Both μ-opioid and ĸ-opioid receptors 
were revealed to mediate the isolation-induced alterations in social play 
(Vanderschuren et al., 1995a). Isolation-induced alterations in the 
dopaminergic, oxytocinergic and opioid systems were found to interfere 
with reward-related behavior and to increase the preference for addic-
tive drugs such as ethanol and opioid in rats (Heyne, 1996; Wolffgramm, 
1990). Dysregulation of these systems are also likely to underlie reduced 
pain sensitivity found in male mice and juvenile rats after several days of 
social isolation (Konecka and Sroczynska, 1990; Naranjo and Fuentes, 
1985; Matthews and Tye, 2019). 

Social isolation is also likely to affect the communication between 
the brain, immune system and gut microbiome, called gut-immune- 
brain axis. Thus, post-weaning social isolation in rats and adult social 
isolation in prairie voles were found to alter the diversity and abundance 
of gut microbiota (Dunphy-Doherty et al., 2018), and the expression of 
the gut barrier protein claudin controlled by mineralocorticoids re-
ceptors (Karailiev et al., 2021). These effects were accompanied by 
increased anxiety-like behavior (Donovan et al., 2020; Karailiev et al., 
2021), reduced neurogenesis and impaired associative learning and 
memory (Donovan et al., 2020; Dunphy-Doherty et al., 2018). 

In sum, in rodents, social isolation induces substantial alterations in 
the well-balanced activity of brain neuropeptides including CRF and 
OXT, and in dopamine, opioid and other brain neurotransmitter sys-
tems, and the gut-brain axis. These mechanisms are likely to underlie the 
isolation-induced increase in stress perception, emotional dysfunctions, 
altered reward processing especially in a social context, and pain 
sensitivity. 

4.3. Psychosocial stress affects mental and general health in humans 

In addition to - and in the other extreme to social isolation - 
pandemic-associated social restrictions require home schooling and 
home office, and force families to live in close full-day interactions. With 
high probability, this results in increased levels of social tensions due to 
overcrowding especially in families living with socio-economic re-
strictions and in rather small flats. Social tension and overcrowding 
contribute to an increased level of psychosocial stress and, consequently, 
the etiology of psychopathologies (Galea and Abdalla, 2020; Kamal and 
Othman, 2020). Overcrowding in the own home has been directly linked 
to poor mental and physical health, poor social relationship in and 
outside home, poor child care (Gove et al., 1979) as well as increased 
occurrence of aggression and domestic violence (Ireland and Power, 
2004). The latter are known to generally rise in times of pandemics 
(Boserup et al., 2020; Bradbury-Jones and Isham, 2020; Campbell, 2020; 
Taub, 2020; Usher et al., 2020) and are further facilitated by an elevated 
consumption of alcohol (Campbell, 2020; Catalá-Miñana et al., 2017). 
Domestic violence may reach from verbal aggression to bullying among 
siblings or adults (Hollins Martin and Martin, 2010; Wolke et al., 2015), 
domestic abuse to physical violence especially towards children and 
women (Thackeray et al., 2010; Taub, 2020), and even murder of family 
members (reviewed in Bradbury-Jones and Isham, 2020). Domestic 
violence with high rates of repeated victimization (Howard et al., 2010) 
and the chronic threat of being maltreated are not only sources of broken 
bones and trauma, but have been associated with general distress, car-
diovascular and gastrointestinal diseases, self-harm, depression, anxi-
ety, PTSD, and increased suicidal risk (Bergman and Brismar, 1991; 
Campbell, 2002; Golding, 1999; Hollins Martin and Martin, 2010; Kas-
low et al., 2002; Lucas et al., 2016; Sharhabani-Arzy et al., 2003; Wolke 
et al., 2015). The pandemic-induced lockdowns exacerbate the tense 
psychosocial situation for the victims without chances to escape the 
domestic conflict zone for other activities. 

Very little is generally known regarding the biological mechanisms 
involved in social tension and psychosocial stress in humans (Heim 
et al., 2000; Penninx et al., 2007; Heim and Nemeroff, 2001; van Winkel 

et al., 2008). However, multiple consequences of childhood abuse have 
been identified (for review see Heim et al., 2009), which include an 
impaired development of the stress system and the endogenous OXT 
system reflected by reduced OXT levels in saliva and cerebrospinal fluid 
(Seltzer et al., 2014; Suzuki et al., 2020). 

4.4. Psychosocial stress affects socio-emotional behavior in animals 

The effects of psychosocial stress on socio-emotional behavior and 
related brain systems have been studied in detail in clinically relevant 
rodent models of chronic overcrowding, subordination, social defeat, 
social trauma and instability, which confirmed and extended the find-
ings in humans (Berton et al., 2006; Langgartner et al., 2015; Reber 
et al., 2016a, 2007; Slattery et al., 2012; Toth et al., 2012; Nyuyki et al., 
2012). General physiological and behavioral consequences of chronic 
psychosocial stress include reduced body weight gain, adrenal hyper-
trophy, HPA axis dysregulation, elevated levels of anxiety- and/or 
depressive-like behavior and abnormal social behavior, such as lack of 
social preference (Berton et al., 1997; Golden et al., 2011; Gruver and 
Sempowski, 2008; Heinrichs et al., 1992; Huhman et al., 1990; Keeney 
and Hogg, 1999; Reber et al., 2007; Saavedra-Rodríguez and Feig, 2013; 
Slattery et al., 2012; Nyuyki et al., 2012; for review see Masis-Calvo 
et al., 2018). For example, the mouse model of chronic subordinate 
colony housing (CSC; Reber et al., 2016a; Reber et al., 2007; reviewed in 
Langgartner et al., 2015) can be used to mimic the situation found 
during pandemic-induced lockdown, such as social tensions, bullying 
and violence. Three-weeks exposure to CSC, i.e., of 4 experimental mice 
to a slightly larger and dominant male, results in severe behavioral 
mal-adaptations, increased anxiety-like and impaired social preference 
behaviors (Slattery et al., 2012) accompanied by HPA axis dysregula-
tions including diurnal hypocorticism, hyperactivity during subsequent 
heterotypic stressor exposure and reduced adrenal ACTH sensitivity 
(Foertsch et al., 2017; Füchsl et al., 2013; Reber et al., 2007). 

Interestingly, there exist specific age windows with increased sus-
ceptibility to psychosocial stress, with profound consequences on the 
behavioral and endocrine development especially early in life (Bosch 
et al., 2006; Kaiser and Sachser, 2005, 1998; Saavedra-Rodríguez and 
Feig, 2013). For example, the effects of overcrowding on increased 
anxiety-like behavior was only seen in juvenile, but not adults rodents, 
whereas an increased vulnerability towards social tension was found in 
adults (Arakawa, 2005). 

At brain level, alterations in neuronal activation patterns have 
consistently been observed in brain areas implicated in the regulation of 
fear, anxiety, stress and social behaviors including the amygdala, hip-
pocampus, lateral septum, BNST, periaqueductal gray and the hypo-
thalamic PVN following exposure to different modes of chronic 
psychosocial stress (Langgartner et al., 2015; Martinez et al., 1998; 
Singewald et al., 2009). Moreover, maladaptations in relevant brain 
systems including the CRF, AVP, OXT and dopamine systems (Keeney 
et al., 2006; Krishnan et al., 2007; Reber and Neumann, 2008) have been 
described. Again, dysbalance of these fine-tuned systems is likely to 
underlie the observed behavioral and physiological alterations. In line, 
CRH and AVP are known regulators of the HPA axis response, although 
AVP seems to become prominent during chronic or prolonged psycho-
social stress (Keeney et al., 2006; Füchsl et al., 2013; Aguilera, 1994). 
Furthermore, social trauma induced by social fear conditioning results 
in abolished release of OXT within the septum both in male and female 
socially fearful mice (Menon et al., 2018; Zoicas et al., 2014). At receptor 
level, social fear increased septal OXT receptor binding, whereas chronic 
psychosocial stress exposure reduced OXT receptor expression and 
binding in the medial raphe nucleus (Peters et al., 2014), a brain region 
where OXT mediates its anxiolytic effects (Yoshida et al., 2009). 

5. Consequences of social restrictions on the immune system 

In addition to the adverse consequences of pandemic-related social 
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restrictions on mental health, social isolation and chronic psychosocial 
stress also impact the immune system not only in aged, but also younger 
people (Balter et al., 2019; Hackett et al., 2012; Hawkley and Cacioppo, 
2004; Jaremka et al., 2013b). Generally, the immune system is divided 
in the peripheral and the central immune system. Macrophages, natural 
killer cells and dendritic cells as parts of the innate immune response, as 
well as T- and B-cells as parts of the adaptive immune response consti-
tute the peripheral immune system, whereas microglia make up the 
main components of the brain’s immune system. In both systems, second 
messenger molecules, such as cytokines, are responsible for immune cell 
communication, regulation and proliferation (Janeway and Travers, 
2005; Kofler and Wiley, 2011). Clinical and pre-clinical studies revealed 
that both the peripheral and the central immune systems are highly 
affected by (social) stress, and become dysregulated in mental disorders 
including PTSD and depression (Ambrée et al., 2018; Hodes et al., 2014; 
Maes et al., 1998; Marsland et al., 2002; Wang and Young, 2016). 

5.1. Consequences of social isolation and psychosocial stress on the 
immune system in humans 

Both social isolation and chronic psychosocial stress are well 
acknowledged to exert negative effects on the immune system, which 
has particularly dramatic consequences during a pandemic such as 
COVID-19. Thus, loneliness, for example, was found to increase the risk 
to develop pain, depression and fatigue in cancer survivors (Jaremka 
et al., 2013a). Thereby, loneliness has been associated with a higher 
inflammatory response to, e.g., a mild immune challenge, reflected by 
increased IL-6, IL-1R or TNF-α synthesis (Balter et al., 2019; Hackett 
et al., 2012; Jaremka et al., 2013b). Interestingly, vice versa, an in-
flammatory challenge has been shown to even induce feelings of lone-
liness and social disconnection (Eisenberger et al., 2010, 2009; Smith 
and Bilbo, 2021). Moreover, in men, loneliness-induced systemic 
inflammation was correlated with an increased risk to develop diseases 
(Vingeliene et al., 2019), while in women diagnosed with breast cancer, 
social isolation increased the risk of mortality (Kroenke et al., 2006; 
reviewed in Usta, 2012). In College students, loneliness or being part of 
only small compared to medium or large social network groups 
throughout the semester resulted in lower antibody titers after influenza 
vaccination (Pressman et al., 2005). This observation is highly relevant 
for the present Corona pandemic as forced social restrictions prior to 
Corona vaccination potentially lower its effectiveness. Moreover, social 
isolation and socio-economic stress have been shown to lower the ac-
tivity of natural killer cells and the response of T-lymphocytes (Kie-
colt-Glaser et al., 1984), to upregulate pro-inflammatory genes, and to 
downregulate antibody- and antiviral immunity-related genes (Powell 
et al., 2013; Xia and Li, 2018). Isolation-induced dysregulation of the 
immune system is further reflected by reduced expression of 
antigen-presenting cells including dendritic cells and monocytes, as well 
as antibody-producing B cells (Cole et al., 2011). Thus, social distancing 
generally weakens the immune system, which is highly disadvantageous 
during exposure to a pathogen like SARS-CoV-2 with the simultaneous 
lack of treatment options and innate immunity. Especially elderly people 
with a generally weaker immune system (Ahmadpoor and Rostaing, 
2020), and a higher susceptibility to bacterial (e.g. pneumonia) and viral 
(e.g. influenza) infections (reviewed in Castle, 2000; Hawkley et al., 
2007) are at higher risk in social isolation. 

Not only social isolation, but especially chronic psychosocial stress 
induced by social tension and social trauma discussed above represents 
another risk factor for a dysbalanced immune system and increased 
severity of inflammatory diseases. In this context, stress-induced mal- 
adaptations of the HPA axis and the autonomic nervous system seem to 
be central, as cortisol and catecholamines impact on immune cell traf-
ficking, differentiation, proliferation, cytokine secretion and antibody 
production (Padgett and Glaser, 2003). Furthermore, lymphocytes 
including B and T cells can produce the ACTH precursor proopiomela-
nocortin and its derived peptides (Weigent and Blalock, 1995). These 

examples demonstrate the close interplay between the immune system 
and the stress response, which is further supported by the finding of an 
increased production of pro-inflammatory and immune-regulatory cy-
tokines, such as TNF-α, IL-6 and IFN-γ, in students one day prior to a 
major academic exam (Maes et al., 1998). Thereby, psychological stress 
triggered cytokine-induced activation of the HPA axis paralleled by an 
increased risk to develop stress-induced disorders, like anxiety (Maes 
et al., 1998), depression (Quinn et al., 2020), and PTSD (Wang and 
Young, 2016). In line, IL-6 has been found to be a major stimulator of the 
HPA axis (Lyson and McCann, 1991; Mastorakos et al., 1994, 1993) and 
to predict the development of mental disorders like depression (Baune 
et al., 2012; Maes et al., 2011, 1998). As an example, bullied children 
suffer from long-term rise in C-reactive protein (CRP), a marker for 
systemic inflammation, which increased with the number of times being 
bullied (Copeland et al., 2014). Chronic rise in CRP is known to increase 
the risk of cardiovascular disease, ischemic stroke, metabolic disorders 
and mental health problems including depression (Kaptoge et al., 2010; 
Wolke and Lereya, 2015). 

Thus, increasing levels of psychosocial stress in times of pandemics is 
thought to additionally challenge the immune system. Still, a direct 
correlation between the effects of pandemic-induced social restrictions 
and a rather severe course of disease, e.g. during the COVID-19 crisis, is 
missing. Moreover, clinical studies are mainly limited to peripheral 
analysis of immune marker, lacking the access to central levels. 

5.2. Consequences of social isolation and psychosocial stress on the 
immune system in animals 

Social isolation: 
There is a plethora of preclinical studies on the effects of social 

isolation as well as psychosocial stress not only on the peripheral, but 
also the central immune system. For example, socially isolated hamsters 
showed impaired wound healing following an additional stressor 
compared to group housed conspecifics (Detillion et al., 2004). In male 
mice, long-term social isolation affected peripheral and central immu-
nological parameters including increased pro-inflammatory TNF-α and 
decreased anti-inflammatory IL-10 plasma levels as well as microglia 
cell density in the dentate gyrus (Du Preez et al., 2020). In line, early-life 
social isolation induced an increase in microglia activation and expres-
sion of pro-inflammatory cytokines in the rat hippocampus accompa-
nying depressive-like behavior (Wang et al., 2017). Treatment with 
minocycline, an antibiotic with antidepressant properties, was able to 
reduce microglial density in the PFC and hippocampus of adult rats with 
high trait anxiety (Schmidtner et al., 2019) and following early-life so-
cial isolation (Wang et al., 2017). Moreover, in male rats socially iso-
lated for 7 weeks, an increased expression of the microglia marker Iba-1 
in the PFC and NAc (Schiavone et al., 2009), and reduced hippocampal 
levels of IL-6 and IL-10 and of neurogenesis were found; this was linked 
to an altered gut microbiome composition (Dunphy-Doherty et al., 
2018). Regarding the effects of isolation on the peripheral immune 
system, in male and female prairie voles, social isolation disrupted the 
innate immune response indicated by reduced in vitro bacteria killing 
ability and in females additionally increased aggressive behavior (Scotti 
et al., 2015). 

Pair-bond disruption has recently been established as a model of 
social loss with significant effects not only on behavior discussed above, 
but also on the central immune system (Pohl et al., 2021, 2019). Thus, in 
male and female prairie voles sex- and brain region-specific effects of 
partner loss on the priming and morphological activation of microglia 
have been shown. In separated females, microglial activation was spe-
cifically reduced in the prelimbic cortex and the entire PVN, whereas in 
separated males this effect was exclusively found in the parvocellular 
PVN, where the neuroendocrine stress response is triggered (Pohl et al., 
2021). 

It is of special interest to note that physical exercise was able to 
partially reverse the adverse effects of post-weaning social isolation on 
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IL-1β expression in the dorsal hippocampus, cognition and neuronal 
survival in mice (Hueston et al., 2017). These potentially 
stress-buffering effects of physical activity are also limited during 
pandemic-associated social restrictions due to closed fitness centers, 
dusk-to-dawn curfew and, thus, banned outside team and other sportive 
activities. 

Chronic psychosocial stress: 
The discussed rodent models of chronic psychosocial stress (over-

crowding, subordination or social defeat in males, and social instability 
in females) have also extensively been used to study the underlying 
mechanisms of the maladaptive effects of chronic stress on the immune 
system (Bartolomucci et al., 2001; DiSabato et al., 2020; Nie et al., 2018; 
Reber et al., 2016b, 2008, 2007, 2006; Schmidt et al., 2010). Three 
weeks exposure of male mice to CSC housing resulted not only in severe 
alterations in behavior, but also in robust immunological malad-
aptations at multiple levels. These effects included a general activation 
of the immune system, thymus atrophy, splenomegaly, reduction of 
regulatory T cells, decreased glucocorticoid signaling including gluco-
corticoid resistance of splenocytes, activation of stress-induced myeloid 
cells, resulting in chronic low-grade inflammation and even manifested 
colitis after 14 days (Foertsch et al., 2017; Foertsch and Reber, 2020; 
Langgartner et al., 2015; Reber et al., 2016a, 2016b, 2008, 2007; 
Schmidt et al., 2010). Likewise, CSC exposure as well as chronic inter-
mittent psychosocial stress induced by social defeat and overcrowding 
triggered a more severe intestinal inflammation following dextran sul-
fate sodium, and increased IL-6, TNF-α and IFN-γ secretion from the 
mesenteric lymph node cells (Reber et al., 2006, 2008). In female mice, 
chronic social instability reduced the expression of anti-inflammatory 
cytokines, like IL-10, and increased pro-/anti-inflammatory ratios of 
IL-1β/IL-10, IL-6/IL-10 and TNF-α/IL-10 in the hippocampus, which 
were accompanied by an increase in anxiety- and depressive-like 
behavior (Labaka et al., 2017). Moreover, in female adolescent rats so-
cial instability increased hippocampal NFkB1 expression, but attenuated 
its rise induced by an additional immune challenge. However, opposite 
effects were found on hippocampal IL-6 synthesis (McCormick et al., 
2020). Recently, chronic social defeat-induced hippocampal IL-1 has 
been found to directly affect local glutamatergic neurons via actions at 
IL-1 receptors, thus possibly mediating social and cognitive deficits in 
mice (DiSabato et al., 2020). 

In sum, there is substantial evidence that both social isolation as well 
as chronic psychosocial stress have significant adverse consequences on 
the immune system, which becomes less functional in situations of 
infection, inflammation or other diseases. 

6. Importance of social support 

The examples provided on the consequences of pandemic-induced 
social restrictions have one aspect in common: the lack of social sup-
port. Living in social groups is beneficial for many species, for increased 
survival, enhanced fitness of the group, and progression of brain 
development and cognitive abilities (Almberg et al., 2015; Donaldson 
and Young, 2008; Lamblin et al., 2017; Neumann, 2009). According to 
the social brain hypothesis originally conceived for primates, the 
growing complexity of social lives co-evolved with relative brain size, 
cognitive abilities, emotionality and vocal communication skills in pri-
mates, ungulates, carnivores and birds (Dunbar and Shultz, 2007; 
Whiten and Byrne, 1988). The evolution of complex social behaviors has 
been promoted by the activation of the reward system of the brain 
induced by social stimuli, positive reinforcing consequences of close 
social interactions on emotionality as well as improved mental and 
physical fitness, and a general health state. Thus, the display of social 
behaviors and the feeling of social integration result in the activation of 
the reward systems, and reward seeking is, thus, an important driving 
force for complex social behaviors (Caldwell and Albers, 2016). 

There is profound evidence from animal and human studies that 

rewarding social interactions and social support have acute and long- 
term beneficial effects on the individual physical and immunological 
fitness, and the emotional well-being, which finally protect against 
psychopathologies (Alipour et al., 2009; George et al., 1989; Han et al., 
2019; Solomon et al., 1987; Zyrianova et al., 2006). Individuals that are 
engaged in all facets of close social interaction and consider themselves 
accepted in the group feel less stressed. Thus, the intensity of social 
support has been linked to the severity of stress-related somatic diseases, 
such as hypertension, atherosclerosis, cardiovascular diseases, asthma, 
cancer and stroke outcome (Brody, 2006; Castro and Matt, 1997; Cohen 
et al., 2015; Glass et al., 1993; Kamarck et al., 1990; Karelina and 
DeVries, 2011; Uchino et al., 1996; Wang et al., 2005). Moreover, in 
women diagnosed with breast cancer, social support increased quality of 
life and lowered psychiatric morbidity (Filazoglu and Griva, 2008; Lim 
and Zebrack, 2008; Sammarco and Konecny, 2008; Simpson et al., 
2002). Therefore, it is not surprising that social support was found to 
improve the treatment success in COVID-19 patients (Yang et al., 2020). 
Interestingly, the beneficial effects of social support have been found to 
be more substantial in women than in men (Fiori and Denckla, 2012; 
Forster and Stoller, 1992; Manning et al., 2021). 

One potential mechanism underlying the effects of social support is a 
reduction in circulating pro-inflammatory cytokines like CRP and IL-6 
(Karelina and DeVries, 2011). In line, sensitivity to social disconnec-
tion has been correlated with increased pro-inflammatory cytokines 
including IL-6 and TNF-α (Moieni et al., 2015). Another central factor of 
the effects of social support is its ability to attenuate the response of the 
HPA axis, especially to an acute psychosocial stressor, resulting in 
reduced cortisol responses (Eisenberger et al., 2007; Häusser et al., 
2012; DeVries et al., 2003; Heinrichs et al., 2003; Kikusui et al., 2006; 
Kirschbaum et al., 1995). 

In pre-clinical studies, social support has been shown to promote 
stress resilience and to reduce some PTSD-like effects in rat models of 
multigenerational stressor exposure and PTSD, respectively (Faraji 
et al., 2017; Seetharaman et al., 2016). Moreover, social support can 
counteract chronic stress-induced increase in neuronal cell proliferation 
and epigenetic modulations in the rat hippocampus, suggesting an 
important role of social support in neurogenesis, neuroplasticity, 
neurotransmission and neuronal survival (Viana Borges et al., 2019). 

Importantly, the OXT system with its prosocial and anti-stress effects 
has been shown to be an important mediator of the multiple aspects of 
social support. 

7. The role of OXT in socio-emotional responses and social 
support 

Various beneficial health effects of social housing and social support 
have been revealed to be mediated by the neuropeptide OXT (Neumann, 
2009). Primarily synthesized in the paraventricular (PVN) and supra-
optic (SON) nuclei of the hypothalamus OXT is released not only into the 
peripheral circulation, but also within distinct brain regions in response 
to various social stimuli in male and female individuals (Grinevich and 
Neumann, 2020; Jurek and Neumann, 2018; Landgraf and Neumann, 
2004; Neumann, 2009; Neumann and Landgraf, 1989). Local OXT 
receptor-mediated signaling, in turn, is essential for the fine-tuned 
regulation of social behaviors including sexual, maternal, aggressive 
and juvenile play-fight behaviors, pair-bonding, social cognition and 
naturally occurring social preference behavior shown in rats, mice, voles 
and other mammals (Lukas et al., 2011b; Menon et al., 2018; Oettl et al., 
2016; Oliveira et al., 2021; Zoicas et al., 2014; Bosch and Young, 2018; 
Donaldson and Young, 2008; Jong and Neumann, 2018; Jurek and 
Neumann, 2018). Of specific interest in this context is the finding that 
OXT neurons are even responsive to subtle social stimuli such as social 
investigation, auditory social stimuli and social touch in mice and rats, 
resulting in increased central release (Marlin et al., 2015; Menon et al., 
2018; Tang et al., 2020b; Zoicas et al., 2014). In contrast, social isolation 
of rodents was found to reduce neuropeptide synthesis, the density of 
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OXT neuronal branching (Neumann and Grinevich, unpublished), and 
central OXT release (Heck et al., 2020; Ross et al., 2019; Zoicas et al., 
2014). 

Thus, although experimentally not accessible, it is likely that social 
interactions, hugging or talking to each other, and even subtle touch also 
stimulate the brain OXT system in humans. In support, elevated OXT 
concentrations in human blood or saliva as rough indicator of general 
OXT system activation were described not only in response to physical 
exercise such as running (Jong et al., 2015), but also to sexual and 
various social stimuli, such as interacting with the own dog (Carmichael 
et al., 1987; Demirci et al., 2016; Murphy et al., 1990; Nagasawa et al., 
2009). 

Also, increasing the availability of OXT within the brain and, thus, 
central OXT signaling by acute intranasal application of synthetic OXT 
promotes several aspects of social behavior including social cognition, 
empathy, trust and even xenophobia (Andari et al., 2010; Bernaerts 
et al., 2017; Ditzen et al., 2009; Gamer et al., 2010; Guastella et al., 
2008; Lim and Young, 2006; McGraw and Young, 2010; for review see 
Grinevich and Neumann, 2020; Jurek and Neumann, 2018) further 
indicating a fundamental role of OXT in human social interactions. 
Interestingly, intranasal OXT may specifically affect regions of the social 
network comprising the amygdala, striatum, hippocampus, anterior and 
middle cingulate cortex, inferior frontal gyrus, and insular cortex (Pal-
oyelis et al., 2016). 

The activation of the brain OXT system even by subtle social stimuli 
is of particular relevance in the context of OXT as a mediator of the 
positive effects of social support on stress responsiveness, as the OXT 
system is closely linked to stress regulation. On the one hand, acute 
social and non-social stressors stimulate peripheral and/or central OXT 
release (Bernhard et al., 2018; Ebner et al., 2000; Hew-Butler et al., 
2008; Jong et al., 2015; Pierrehumbert et al., 2010; Torner et al., 2017; 
Wigger and Neumann, 2002; Engelmann et al., 2004; Jurek and Neu-
mann, 2018; Landgraf and Neumann, 2004), and such intracerebrally 
released OXT exerts stress-protecting, anxiolytic and pain-reducing ef-
fects (Bale et al., 2001; Blume et al., 2008; Eliava et al., 2016; Jurek 
et al., 2015; Neumann et al., 2000b, 2000a; Waldherr and Neumann, 
2007). For example, brain OXT attenuates the responsiveness of the HPA 
axis (Neumann et al., 2000b) and regulates stress- or social 
trauma-induced social vigilance and social avoidance in a brain 
region-dependent manner (Duque-Wilckens et al., 2020; Zoicas et al., 
2014). Moreover, acute administration of OXT rescued psychosocial 
stress-induced social avoidance (Lukas et al., 2011b), and chronic OXT 
applied in low dose partly prevents chronic stress-induced mal-ad-
aptations (Peters et al., 2014). In line, administering OXT for 14 days via 
subcutaneous injections recued social isolation-induced increase in 
basal heart rate and depressive-like behavior in female prairie voles 
(Grippo et al., 2009). 

On the other hand, chronic psychosocial stress, social trauma in 
adulthood or early in life, as well as pair separation (Bosch et al., 2016; 
Frijling et al., 2015; Heim et al., 2009; Lukas et al., 2011a; Peters et al., 
2014) result in mal-adaptations of the OXT system in animals and 
humans (for review see Jurek and Neumann, 2018; Neumann et al., 
2000b; Olff et al., 2013). 

8. The role of OXT in the regulation of the immune system 

The findings of impaired functioning of the OXT system as a result of 
social isolation and psychosocial stress is of particular relevance during 
pandemics, the more as there is substantial evidence for the involvement 
of the OXT system in immune regulation. Thus, OXT has general positive 
effects on disease progression and exerts potent anti-nociceptive (Eliava 
et al., 2016; Lundeberg et al., 1994), anti-inflammatory and antioxidant 
(Moosmann and Behl, 2002; Wang et al., 2015) properties. It was further 
shown to alleviate tissue damage in models of renal (Tuğtepe et al., 
2007) and hepatic (Düşünceli et al., 2008) ischemia, and of 
sepsis-induced multiple organ damage (Işeri et al., 2005a), skin injury 

(Işeri et al., 2008) and colitis (Işeri et al., 2005b; Peters et al., 2014). In 
the context of COVID-19 it is important to mention that the 
anti-inflammatory effects of OXT involve organ protective effects as seen 
in mice, where it mitigated acute lung injury and multiorgan failure 
(Işeri et al., 2005b). 

OXT receptors are located on macrophages, monocytes and endo-
thelial cells, and OXT signaling reduces the secretion of inflammatory 
cytokines from these immune cells (Szeto et al., 2008). Thus, the pri-
mary anti-inflammatory properties of OXT are reflected by decreased 
levels of TNFα and IL-6 as well as decreased neutrophil infiltration to the 
site of injury (Düşünceli et al., 2008; Işeri et al., 2005b, 2005a; Tuğtepe 
et al., 2007). In line, elevated plasma OXT levels during early infection 
dampen excessive pro-inflammatory cytokine production (Soumier and 
Sirigu, 2020; Wang et al., 2015; Xia and Li, 2018). Interestingly, OXT 
and AVP have been shown to exert opposite regulatory effects on 
cellular homeostasis including mitochondria and reactive oxygen spe-
cies, which are closely related to cellular inflammatory responses. While 
OXT is known to dampen inflammatory pathways like oxidative stress 
and protein translation abilities during cellular stress, AVP rather am-
plifies inflammatory responses (Biyikli et al., 2006; Klein et al., 2016; 
reviewed in Bordt et al., 2019). As OXT promotes, rather than sup-
presses, adaptive immune responses - in contrast to glucocorticoids - the 
interaction of OXT with the immune system has substantial health 
benefits (Buemann et al., 2020; Erdman and Poutahidis, 2016). 

With the described functions of OXT it is not surprising that the 
neuropeptide is considered an essential mediator of the positive conse-
quences of social support on mental and physical health (DeVries et al., 
2007; Kikusui et al., 2006; Knox and Uvnäs-Moberg, 1998; Neumann, 
2009; Ross et al., 2019). Evidence for an involvement of OXT mediating 
the effects of social touch on mental health comes from a study by 
Holt-Lundstad, which showed that in couples with high depressive 
symptomatology scores, peripheral OXT concentrations are elevated due 
to high stress levels, but warm touch abolished these high stress-induced 
levels of OXT linked to subclinical depression (Holt-Lunstad et al., 
2011). In line, higher levels of plasma OXT were related to more positive 
communications between couples which was accompanied by faster 
wound healing (Gouin et al., 2010). Accordingly, central OXT signaling 
was found to mediate the beneficial effects of pair-housing on wound 
healing in hamsters (Detillion et al., 2004), and of social interactions on 
cerebral infarct size and inflammation, as blockade of OXT receptors 
prevented these effects (Karelina et al., 2011; Karelina and DeVries, 
2011). Positive OXT-mediated effects of social support and social in-
teractions have also been reported on the recovery from disease (Kikusui 
et al., 2006; Knox and Uvnäs-Moberg, 1998). 

In several studies, the OXT system has also been found to influence 
the impact of loneliness. For example, variations of the OXT receptor 
gene have been associated with the susceptibility to loneliness (LeClair 
et al., 2016; Lucht et al., 2009). Moreover, in people reporting a high 
level of loneliness the beneficial effect of intranasal OXT on para-
sympathetic cardiac reactivity was diminished independent of stress 
hormone levels (Norman et al., 2011). In patients suffering from major 
depression, low OXT levels impede the buffering effect of social support 
(Tsai et al., 2019). 

Social isolation has also been shown to be correlated with the erosion 
of telomere length - DNA-repetitive nucleotide segments at the ends of 
each chromosome in mammals that protect genetic material from 
degradation during somatic cell division in somatic cells (Aydinonat 
et al., 2014). In this context OXT was found to mediate the positive 
impact of social interactions on telomere length (Faraji et al., 2018). 

In summary, given the multiple pro-social, anti-stress, anti- 
nociceptive and anti-inflammatory effects of OXT, and its substantial 
impact on mental and physical health, including immune resilience, the 
OXT system seems to be one of the major players central to the causes 
and consequences of corona-induced impairments of health. Conse-
quently, social distancing, lack of social interactions and touch, which 
result in reduced activity of the OXT system and lack of the health- 

K. Gryksa and I.D. Neumann                                                                                                                                                                                                                



Psychoneuroendocrinology 135 (2022) 105601

9

protecting consequences of social support have far-reaching health 
consequences and affect recovery from disease. 

9. Activation of the OXT system and OXT application as 
treatment options for pandemic-related social stress 

It has been hypothesized that general lower levels of OXT are asso-
ciated with increased severity of COVID-19 infection: People reported 
with lower OXT level such as men, elderly people and people with pre- 
existing conditions, were also reported with the most severe course of 
COVID-19 disease (Li et al., 2020a; CDC COVID-19 Response Team, 
2020; Zhonghua et al., 2020; Marazziti et al., 2019; Elabd et al., 2014; 
Cochran et al., 2013; reviewed in Diep et al., 2020). Moreover, the 
pandemic-related social distancing results in a substantial inactivation 
of the OXT system in the general population. Accordingly, the question 
arises, how the activity state of OXT signaling can be elevated or at least 
maintained to prevent or reverse social isolation- or social 
stress-induced impairments of mental well-being and general health. 
Here, two options exist, either (i) to activate the endogenous OXT sys-
tem, or (ii) to increase the availability of OXT by application of the 
synthetic nonapeptide. As discussed above, an efficient activation of the 
endogenous OXT can be achieved by, e.g., physical exercise, sexual 
stimulation, social interactions or intake of specific food supplements. 
For example, probiotics such as Lactobacillus bacteria were described to 
increase OXT levels and, thus, to affect the immune system (Andersson 
et al., 2016; Bharwani et al., 2017). However, more detailed studies are 
needed to substantiate these interesting findings. Similarly, whether 
subtle social interactions, for example via rather distant social media 
allowing at least visual and auditory social cues, stimulate the OXT 
system needs to be proven. 

Intranasal application of synthetic OXT is another strategy to stim-
ulate OXT signaling in the brain (and body), to ameliorate the adverse 
effects of pandemic-induced social isolation or psychosocial stress, and 
to increase the resilience of the immune system. In addition to the rather 
indirect health effects of OXT mediating the positive effects of social 
support, its potent anti-inflammatory and other properties described 
above indicate that OXT administration may become a helpful preven-
tive and acute treatment strategy against COVID-19 infection, the more 
as, unfortunately, there is still no specific medication for COVID-19 
patients available. In line, there is increasing evidence that peripheral 
OXT infusion may counteract the “cytokine storm” seen in COVID-19 
patients via stimulation of the vagus nerve, which attenuates inflam-
mation. Especially IL-6 is thought to rise COVID-19 symptoms including 
depression and anxiety and thus reduced inflammation including the IL- 
6/IL-6 receptor pathway might serve as a potential target for treatment 
of COVID-19 symptoms (Everett et al., 2021; Azabou et al., 2021; Bue-
mann et al., 2020; Kappelmann et al., 2021). Moreover, as a natural 
hormone, OXT is safe and has already been routinely used in women in 
obstetric settings worldwide. 

Nevertheless, we have to provide a word of caution for the chronic 
use of OXT: Chronic neuropeptide treatment and activation of OXT re-
ceptors may affect the endogenous OXT system, and result in down-
regulation of OXT receptors (Bale et al., 2001; Peters et al., 2014) and in 
alternative OXT receptor-mediated signaling pathways (Winter et al., 
2021). 

10. Conclusion 

During the COVID-19 pandemic, there is strong evidence for social 
distancing being an essential and useful sanction to reduce the spreading 
of SARS-CoV2 and to limit the national infection rates. Here, we provide 
evidence that pandemic-associated social restrictions, leading to either 
social isolation or home office-related psychosocial stress, impact on 
various aspects of physical and mental health. This together with the 
lack of social support as an important stress-buffering and health- 
promoting factor are likely to weaken the immune system, thus 

worsening the course of disease and increasing its pathogenicity. 
Further, social isolation and lack of social support on the one hand, as 
well as social tension, bullying and domestic violence on the other are 
identified risk factors for the development of mental diseases across all 
ages. This has special impact on the low-risk group of children and ad-
olescents, since their developing brain is highly vulnerable towards 
chronic psychosocial stress. 

We further highlight the importance of the pro-social, anti-inflam-
matory and anti-stress properties of OXT acting as a mediator of the 
positive effects of social support. Thus, we suggest to increase the ac-
tivity of the OXT system, either by application of the synthetic non-
apeptide or by activation of the endogenous system, as a possible 
treatment option in times of pandemics. 
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