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Abstract

Entamoeba histolytica, the highly phagocytic protozoan causative of human amoebiasis

lacks the machinery to synthesize cholesterol. Here, we investigated the presence of NPC1

and NPC2 proteins in this parasite, which are involved in cholesterol trafficking in mammals.

Bioinformatics analysis revealed one Ehnpc1 and two Ehnpc2 genes. EhNPC1 appeared as a

transmembrane protein and both EhNPC2 as peripheral membrane proteins. Molecular dock-

ing predicted that EhNPC1 and EhNPC2 bind cholesterol and interact with each other. Genes

and proteins were identified in trophozoites. Serum pulse-chase and confocal microscopy

assays unveiled that after trophozoites sensed the cholesterol source, EhNPC1 and EhNPC2

were organized around the plasma membrane in a punctuated pattern. Vesicles emerged and

increased in number and size and some appeared full of cholesterol with EhNPC1 or EhNPC2

facing the extracellular space. Both proteins, but mostly EhNPC2, were found out of the cell

associated with cholesterol. EhNPC1 and cholesterol formed networks from the plasma mem-

brane to the nucleus. EhNPC2 appeared in erythrocytes that were being ingested by tropho-

zoites, co-localizing with cholesterol of erythrocytes, whereas EhNPC1 surrounded the

phagocytic cup. EhNPC1 and EhNPC2 co-localized with EhSERCA in the endoplasmic reticu-

lum and with lysobisphosphatidic acid and EhADH (an Alix protein) in phagolysosomes.

Immunoprecipitation assays confirmed the EhNPC1 and EhNPC2 association with choles-

terol, EhRab7A and EhADH. Serum starved and blockage of cholesterol trafficking caused a

low rate of phagocytosis and incapability of trophozoites to produce damage in the mouse

colon. Ehnpc1 and Ehnpc2 knockdown provoked in trophozoites a lower intracellular choles-

terol concentration and a diminished rate of phagocytosis; and Ehnpc1 silencing also pro-

duced a decrease of trophozoites movement. Trafficking of EhNPC1 and EhNPC2 during

cholesterol uptake and phagocytosis as well as their association with molecules involved in

endocytosis strongly suggest that these proteins play a key role in cholesterol uptake.
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Author Summary

NPC1 and NPC2 proteins are involved in cholesterol trafficking in mammals. Using dif-

ferent approaches, we have detected the orthologues EhNPC1 and EhNPC2 proteins in

Entamoeba histolytica. Trophozoites are particularly rich in membranes and vacuoles, but

they do not possess the machinery to synthetize cholesterol. Thus, they are completely

dependent on molecules able to “fish” cholesterol from the medium. The relevance of our

findings lies in the fact that cholesterol is fundamental for endocytosis and motility; and,

phagocytosis is an important nutritional and virulence factor for E. histolytica. In silico
and experimental strategies, using U18666A to arrest cholesterol trafficking, as well as,

knockdown mutants, showed that EhNPC1 and EhNPC2 participate in cholesterol uptake

and trafficking in this parasite. They are secreted by trophozoites and directly involved in

erythrophagocytosis and motility. Our findings revealed E. histolytica as one of the first

protozoa in which these proteins are being characterized. Moreover, E. histolytica provides

an excellent and less complicated model to elucidate the intricate event of cholesterol traf-

ficking in eukaryotic cells. The relevance of cholesterol transport for the parasite virulence

and the involvement of EhNPC1 and EhNPC2 in this process, make these proteins prom-

ising targets for therapy strategies development against the parasite.

Introduction

Entamoeba histolytica is the protozoan responsible for intestinal and hepatic amoebiasis,

considered the third leading cause of death worldwide due to parasites [1]. E. histolytica tro-

phozoites are highly dynamic cells with active movement and voracious phagocytosis. High

cholesterol concentration in the medium enhances their virulence [2–4] and trophozoites

loaded with cholesterol showed an enrichment of the Gal/GalNAc lectin in rafts and an

increase of amoeba adherence to target cells [5]. Cholesterol is fundamental for vesicle forma-

tion and lipid rafts arrangements, and both are crucial events for movement and endocytosis

[4]. However, E. histolytica lacks the machinery to synthesize cholesterol [6]. Cells ingested by

the parasite, including erythrocytes, are a natural cholesterol source, but, trophozoites can also

uptake it from the serum-supplemented culture medium [7, 8].

Mammalian cells synthesize cholesterol through a complex pathway, in which at least 30

enzymes participate [9]. Cholesterol homeostasis is controlled by feedback regulation of its

biosynthesis and uptake through receptor-mediated endocytosis by low density lipoproteins

(LDL) [10]. Failures in cholesterol storage in humans cause the Niemann-Pick type C (NPC)

disease, which is linked to mutations in NPC1 or NPC2 proteins that are directly involved in

cholesterol trafficking [11, 12]. NPC1 (1278 amino acids) is a polytopic endosomal membrane

glycoprotein required for efflux of cholesterol from endosomes [13]. It has 13 transmembrane

domains, four luminal and six cytoplasmic loops, a C-terminal cytoplasmic tail and a sterol

sensing domain (SSD) [14]. NPC2 (151 amino acids) is a soluble lysosomal protein with a

MLD domain (ML [MD-2 (myeloid differentiation factor-2)]-related lipid-recognition) [15,

16] that regulates cholesterol trafficking from lysosomes to the endoplasmic reticulum (ER)

[17, 18]. NPC2 possesses positively charged regions that facilitate its interaction with nega-

tively charged membranes [17]. NPC2 binds to NPC1; and NPC1 binds to cholesterol by the

SSD domain in an acidic milieu [18]. Moreover, cholesterol is transferred from the N terminus

domain (NTD) of NPC1 to NPC2 in a bidirectional manner [19]. Based on this, Infante et al.
[19] proposed the “hand-off” working model, which assumes that NPC2 takes cholesterol in
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the lysosomal lumen and transports it to membrane-bound NPC1 for exportation to the ER

[19–21]. In late endosomes, lysobisphosphatidic acid (LBPA) regulates cholesterol, under the

control of Alix protein [22, 23]. The molecular mechanisms of this regulation are not

completely understood.

In E. histolytica, neither LDL receptors, nor NPC1 and NPC2 have been identified yet. The

TMK39 protein participates in cholesterol uptake, however, it does not have cholesterol bind-

ing domains, suggesting that it could associate to cholesterol through other trophozoite mole-

cules [24]. As in mammals, E. histolytica LBPA binds to EhADH (an E. histolytica ALIX family

protein) [25] inside phagolysosomes and multivesicular bodies (MVB) [26]. Though, we do

not discard the participation of other Alix proteins involved in endomembrane trafficking [27,

28]. Thus, it is plausible to assume that the “hand-off” model, “NPC2-NPC1-cholesterol-

NPC2-NPC1” proposed for mammalian cells, could also be functioning in trophozoites to first

carry exogenous cholesterol inside the cell and then, to transport it to distinct organelles. Here,

we searched for NPC1 and NPC2 orthologues in E. histolytica and studied their participation

in cholesterol uptake and trafficking, as well as their association with molecules involved in

phagocytosis. We also provide evidence that cholesterol depletion and trafficking arrest as well

as Ehnpc1 and Ehnpc2 genes knockdown, affect virulence, particularly erythrophagocytosis

and cell motility.

Results

E. histolytica possesses one npc1 (Ehnpc1) and two npc2 (Ehnpc2a,

Ehnpc2b) genes and their respective proteins bind cholesterol

Our exploration in the AmoebaDB (http://amoebadb.org/amoeba/) revealed the presence of a

1339 amino acid sequence (EHI_080220) with 19.7 to 35% identity to NPC1 proteins of differ-

ent species (Fig 1A, S1 Table). The putative EhNPC1 protein exhibited the patched (PD) and

the SSD domains present in all reported NPC1 proteins [29]. However, it did not show the

MMPL domain, found in bacteria as a putative integral membrane protein domain [30]. This

domain is also absent in Dictyostelium discoideum NPC1 [31] (Fig 1A). We also found two

sequences of 141 (EHI_068260) (EhNPC2a) and 146 (EHI_188770) (EhNPC2b) amino acids

containing the MLD domain, which is a NPC2 signature [15] (Fig 1B). These sequences

showed 29.4% identity between them and 11 to 26% with other NPC2 proteins (S2 Table).

The full length amino acid sequences of EhNPC1, EhNPC2a and EhNPC2b were compared

with NPC1 and NPC2 protein sequences from other organisms to construct phylogenetic trees

using the MEGA 5.05 software. EhNPC1 was grouped in a single clade with D. discoideum
NPC1 in the branch of slime molds, yeasts and filamentous fungus and far from hypothetical

NPC1s from protozoa such as Trichomonas vaginalis, Toxoplasma gondii and Leishmania
major (Fig 1C). Interestingly, EhNPC2a and EhNPC2b also displayed a close relationship with

D. discoideum NPC2 in the branch of slime molds and yeasts (Fig 1D).

To obtain further evidence on the structural relationship of EhNCP1, EhNPC2a and

EhNPC2b with their respective orthologues, we constructed their 3D models using RaptorX

server (http://raptorx.uchicago.edu). The predicted 3D structure of NTD EhNPC1 (1–248

amino acids) presented 92% structural identity to the Homo sapiens NTD NPC1 crystal (23 to

252 amino acids) [20]; and their merged images extensively overlapped (Fig 2A). EhNPC1

appeared as a membrane protein with 16 transmembrane domains, two structural regions

located in the endosomal lumen, where the NTD is found, as described for other organisms

[20], and a single larger domain in the cytosolic side (Fig 2B).

Docking analysis revealed two main interaction sites of EhNPC1 with cholesterol. Accord-

ing to in silico predictions, one site was located in the cytosol and the other at the NTD, in the
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endosomal lumen (Fig 2B). Results evidenced hydrophobic interactions of cholesterol with 13

amino acids of EhNPC1 at cytoplasmic domain (Thr670, Asp673, Val671, Val677, Leu721,

Val724, Phe725, Ala728, Ala738, Thr743, Ile746, Pro747 and Tyr823); and with eleven residues

of the NTD (Val39, Gly41, Glu100, Gln101, Leu104, Met198, Asn203, Pro204, Val205, Met206

and Pro207) (Fig 2B). The binding energies for these sites were ΔG ═ -8.6 and ΔG ═ -7.3 Kcal/

mol, respectively, indicating a weak binding.

The 3D structures of EhNPC2a and EhNPC2b proteins presented 83.2% structural identity

between themselves, and 88.6 and 86% with the Bos taurus crystal [32], respectively. EhNPC2

proteins exhibited seven beta strands (Fig 2C and 2D), as described for other NPC2 [32]. Inter-

estingly, EhNPC2a and EhNPC2b displayed an extra amino acid tail at the N-terminus formed

Fig 1. Structural domains and phylogenetic trees of EhNPC1, EhNPC2a and EhNPC2b. (A, B) Schemes show the main structural

characteristics of NPC1 (A) and NPC2 (B) from distinct organisms. PD: patched domain, SSD: sterol sensing domain, MMPL: putative integral

membrane domain, SP: signal peptide, MLD: MD-2 related lipid recognition domain. Numbers at the right correspond to the amino acids forming

the proteins. (C, D) Phylogenetic tree indicating the position of E. histolytica NPC1 (C), NPC2a and NPC2b (D) proteins among different species.

Numbers on horizontal lines in the trees indicate the confidence percentages of the tree topology from bootstrap analysis of 1000 replicates.

doi:10.1371/journal.ppat.1006089.g001
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by 14 and 18 residues, respectively (Fig 2C–2E) that have not been reported in other NPC2

orthologues. The Orientation of Proteins in Membranes (OPM) database (http://opm.phar.

umich.edu/) predicted that in EhNPC2a, Leu11, Phe12, Ala13 and Ala14 residues were

attached to the membranes (Fig 2E); whereas in EhNPC2b the residues in contact with mem-

branes were Thr19, Ala18, Leu17, Met16, Leu12 and Phe6 (Fig 2E), these results suggest that

both EhNPC2 could be peripheral membrane proteins, which allow them to cross the mem-

branes during cholesterol transport. The EhNPC2a interaction with cholesterol was predicted

to be carried out by hydrophobic bonds corresponding to Pro67, Leu69, Met71, Thr78, Val80,

Fig 2. 3D structures of NTD-EhNPC1, EhNPC2a and EhNPC2b and molecular dockings between them and with cholesterol. (A)

NTD-EhNPC1 model (1 to 250 amino acids) predicted by RaptorX server was compared with the crystal of human NTD-NPC1 protein (HsNPC1)

(23 to 254 amino acids). (B) Docking simulation of EhNPC1 with cholesterol performed using the AutoDock Tools V1.5.6 program. SSD: sterol

sensing domain. NTD: amino terminal domain. (C, D) The EhNPC2a and EhNPC2b 3D structures (full-length amino acid sequences) were

compared between them and with the NPC2 B. taurus crystal (BtNPC2). (E) Docking simulation of EhNPC2a and EhNPC2b with cholesterol.

Arrows: amino acids tail at the amino terminus that it is not present in the crystal of Btaurus NPC2. Squares at the right in B and E show the amino

acids involved in the protein-cholesterol interaction. (F) Docking simulation of EhNPC1 and EhNPC2a binding. ΔG: binding energy. Blue lines in

dockings: plasmatic membrane. NT: amino terminus. CT: carboxy terminus.

doi:10.1371/journal.ppat.1006089.g002
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Pro81, Leu82, Met107, Ile109, Pro110, Met112, Ser113 and Phe122 residues (Fig 2E). By con-

trast, EhNPC2b binds to cholesterol through Leu40, Pro41, Trp42, Ser50, Ile52, Met73, Val82,

Thr115, Gly123, Phe125, Phe140 and Pro142 residues (Fig 2E). Amino acids in bold are in

comparable positions and separated by the same number of residues in both proteins. The

cholesterol binding energies to EhNPC1 and EhNPC2 were also low: ΔG ═ -9 and -10.15 Kcal/

mol, respectively.

We also performed docking analysis using EhNPC1 and EhNPC2. Interestingly, results

showed that EhNPC1 presents two putative interaction sites with EhNPC2, in cytosol and

endosomal lumen (Fig 2F), with ΔG ═ -228.5 and -55.02 Kcal/mol, respectively. ΔG values

reflect a stronger binding between the proteins compared to those with cholesterol. However,

these values are still comparably low, corresponding to rather short-lived interactions. In sum-

mary, our bioinformatics analysis revealed that EhNPC1, EhNPC2a and EhNPC2b are NPC1

and NPC2 orthologues [21] that interact between them and with cholesterol, suggesting that

they could play an important role in cholesterol transport.

Ehnpc1, Ehnpc2a and Ehnpc2b genes are expressed in trophozoites

To confirm that the genes found in silico were bona fide genes in the parasite, we designed spe-

cific primers (S3 Table) using sequences obtained from the AmoebaDB. PCR amplification

from genomic DNA gave 4.0, 0.42 and 0.44 kbp fragments, corresponding to the expected size

of Ehnpc1, Ehnpc2a and Ehnpc2b full length genes, respectively (Fig 3A). Sequencing of the

three genes revealed full open reading frames, no introns and 100% identity to the genes anno-

tated in the AmoebaDB. RT-PCR assays evidenced bands at the expected size, indicating that

genes are transcribed (Fig 3B). Intriguingly, RT-qPCR assays showed that Ehnpc2a was

expressed 30 folds more than Ehnpc1 gene, whereas, Ehnpc2b was poorly expressed (Fig 3C).

We generated an antibody against an EhNPC1 specific polypeptide (766-DEQPMYDKDG-

QYVPVEKRLE-785) that detected in western blot assays the expected single 150 kDa band in

trophozoites samples (Fig 3D). Antibodies against EhNPC2a were produced in rats using

recombinant proteins. They revealed the expected 17 kDa band (Fig 3E) and it was used as a

pan antibody because they recognized both EhNPC2 recombinant proteins (S1 Fig), further-

more, the Ehnpc2a gene is transcribed more efficiently than Ehnpc2b. Pre-immune sera did

not recognize any band (Fig 3D and 3E).

Confocal images showed that in basal conditions (trophozoites cultured in TYI-S medium,

without stimulus), 100 and 60% of trophozoites were labeled in plasma membrane by α-

EhNPC1 and α-EhNPC2 antibodies, respectively (Fig 3F and 3H), co-localizing with the α-

Gal/GalNAc lectin antibody, used as a plasma membrane marker (Fig 3F). However, Pearson

coefficient (PC) showed a higher co-localization of Gal/GalNAc lectin with EhNPC2 (Fig 3I).

100 and 80% of trophozoites showed α-EhNPC1 and α-EhNPC2 antibodies label in the cyto-

plasm, and only 40 and 100% of trophozoites, respectively, presented fluorescence in the nuclei

(Fig 3F and 3H). We do not know yet the function, if any, of EhNPC1 and EhNPC2 in the

nucleus. In all experiments reported here, we used as controls only the secondary antibodies,

which always gave negative results (Fig 3G).

TEM gold immunolabeling assays confirmed the polytopic cellular location of these pro-

teins (Fig 4A). Images evidenced that in basal conditions, the majority of EhNPC1 and

EhNPC2 proteins appeared separated, some of them localized close each other and only few

appeared together (Fig 4A–4D). EhNPC1 and EhNPC2 were localized at plasma membrane, in

the vesicle lumen and membranes. The labeled vesicles could correspond to endosomes; in

there EhNPC1 was frequently surrounding them and EhNPC2 appeared inside (Fig 4A). Con-

trols using only the secondary antibodies gave none or scarce signals (Fig 4B and 4C). These
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results together evidenced that Ehnpc1 and Ehnpc2 genes are transcribed and translated and

their proteins are localized in several cellular regions, indicating that they are highly mobile

proteins, which is in agreement with their hypothetical function as cholesterol transporters.

Fig 3. Expression and localization of EhNPC1 and EhNPC2 in trophozoites. (A) Ehnpc1, Ehnpc2a and Ehnpc2b full-length genes were PCR

amplified using specific primers and genomic DNA. (B) RT-PCR amplification of transcript fragments using specific primers and cDNA. c: Controls

without gDNA or with mRNA as template. (C) The relative expression of the three genes was measured by RT-qPCR in trophozoites, using as a

control the 40s ribosomal S2 protein gene. ** p<0.01. (D, E) Total extracts of E. histolytica were separated by 10% SDS-PAGE and analyzed by

western blot assays using pre-immune serum (PS) or rabbit α-EhNPC1 (D) or rat α-EhNPC2 (E) antibodies. (F) Representative images of laser

confocal microscopy of PFA-fixed trophozoites using rabbit α-EhNPC1 or rat α-EhNPC2 or mouse α-Gal/GalNAc lectin antibodies. (G) Controls

using only secondary antibodies. Ph c: phase contrast images. (H) Protein localization of EhNPC1 and EhNPC2 in plasma membrane (pm),

cytoplasm (c) or nucleus (n). Counts were performed in 50 cells. (I) Pearson coefficient (PC) correlation measured in at least 15 confocal images,

indicating co-localization of EhNPC1 or EhNPC2 with Gal/GalNAc lectin in the entire cell and in the plasma membrane. Laser sections = 0.5 μm.

doi:10.1371/journal.ppat.1006089.g003
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After serum stimulus, EhNPC1 and EhNPC2 co-localize with cholesterol

The main source of cholesterol in trophozoites in culture comes from adult bovine serum

(ABS). We explored the participation of EhNPC1 and EhNPC2 in cholesterol trafficking after

a serum stimulus. After serum starving of trophozoites, confocal images revealed that both

proteins were barely present in the plasma membrane and cholesterol was faintly stained by

filipin, a highly specific compound for cholesterol detection (Fig 5). Immediately after ABS

addition (0.5 min), filipin detected cholesterol in the cytoplasm and nucleus, together with

EhNPC1 and EhNPC2 (Fig 5). At this time, EhNPC1 and EhNPC2 co-localized in vesicles and

in a uniform punctuate pattern at the plasma membrane (Fig 5A–5D). In most cases a yellow

area was evident in membrane protrusions, indicating co-localization of both proteins (Fig

5A–5D). We also observed both proteins out of the cell (Fig 5G and 5J). After 2 to 5 min, mem-

brane protrusions or putative vesicles appeared carrying cholesterol, and, in most of them,

EhNPC2 was outwardly (Fig 5E and 5K), strengthening the hypothesis on the mobilization of

both proteins during cholesterol capture. Number and size of membrane protrusions or puta-

tive vesicles increased through incubation time, and both proteins were close to cholesterol-

containing vesicles outside and inside of the cell (Fig 5A, 5B, 5E, 5F, 5H and 5I). In some tro-

phozoites, membrane protrusions or putative vesicles appeared at a cellular pole, in a “cap”

model (Fig 5, 5 min), but they were also seen in other parts of the plasma membrane (Fig 5, 7

Fig 4. Localization of EhNPC1 and EhNPC2 in trophozoites analyzed by TEM. (A) Thin sections of trophozoites were incubated with rabbit

α-EhNPC1 and rat α-EhNPC2 antibodies, followed by incubation with gold labeled α-rabbit and α-rat secondary antibodies (20 and 10 nm gold

particles, respectively). Squares indicate the magnified areas marked with the corresponding lower case letters. pm: plasma membrane, vl:

vesicle lumen, vm: vesicle membrane, es: extracellular space, n: nucleus. (B, C) Controls using only secondary antibodies. (D) Graph showing

number of EhNPC1 and EhNPC2 molecules recognized by the respective gold-labeled antibodies and their co-localization.

doi:10.1371/journal.ppat.1006089.g004
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min). Outside of the cell, joined or not to the plasma membrane, EhNPC2 was revealed in vac-

uoles with rod and sphere shaped forms (Fig 5G–5M). Network-like structures mainly formed

by EhNPC1 and cholesterol were observed inside the cells, adjacent to the networks formed

mainly by EhNPC1 and cholesterol, and inside EhNPC2-containing spheres (1.5 to 2 μm) also

appeared there (Fig 5E–5J). The spherical structures may correspond to the vesicles detected

by TEM (Fig 4). These findings strongly suggest that cholesterol promotes the mobilization

and secretion of EhNPC1 and EhNPC2.

In TEM images, we detected EhNPC1 and EhNPC2 in the extracellular space of trophozo-

ites in basal conditions (Fig 6A). To explore whether the proteins were secreted, we performed

secretion assays, giving an ABS pulse for different times to serum-starved trophozoites. In

agreement with the confocal microscopy images (Fig 5, 0 min), EhNPC1 and EhNPC2 were

poorly detected in secreted products of starved trophozoites. However, they were found in the

supernatants of trophozoites challenged with ABS for 0.5 min (Fig 6B), indicating that they

were secreted in response to the ABS pulse. Surprisingly, the α-EhNPC2 antibody did not

reveal the expected 17 kDa band, but only a 25 kDa band was detected in the secreted products.

This aberrant migration could be due to the binding of EhNPC2 to cholesterol present in the

Fig 5. Localization of EhNPC1 and EhNPC2 in trophozoites after an ABS pulse. Trophozoites were serum starved for 12 h by culturing in TYI

medium on coverslips. Then, ABS was added as a cholesterol source at 37˚C for 0.5 to 7 min. Cells were washed, fixed and incubated with filipin,

rabbit α-EhNPC1 and rat α-EhNPC2 antibodies, secondary antibodies, and examined by laser confocal microscopy. Arrows: cytoplasmic dots.

Squares marked with lower case letters are magnified at the right. (a-d) Membrane vacuoles containing EhNPC1 and EhNPC2. Arrows: show the

plasma membrane with EhNPC2 or EhNPC1 facing the extracellular space. (e) Networks stained by α-EhNPC1 antibody. (e-j) rod and spherical

structures (arrowheads) facing the extracellular space, stained mainly by α-EhNPC2 antibody. (k-m) Spherical structures of 1 to 2 μm (empty

arrowheads) inside the cell. n: nucleus, Ph c: phase contrast images, nw: networks like structures.

doi:10.1371/journal.ppat.1006089.g005
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serum. To get further evidence on this, the nitrocellulose membranes were re-blotted using an

α-cholesterol antibody. This antibody detected a band with similar migration than EhNPC1

and two bands of 17 and 25 kDa, corresponding to those detected by the α-EhNPC2 antibody.

EhCP112, used as a positive secretion control, was found in both, supernatant and trophozo-

ites extracts at all times, whereas actin, used as a negative control for secretion, was only

detected in trophozoites samples. These results strongly suggest that these proteins are associ-

ated with cholesterol. A hypothesis could be that vesicles containing EhNPC1 and EhNPC2

come from and back to the cell, possibly carrying cholesterol from outside.

EhNPC1 and EhNPC2 co-localize with cholesterol during phagocytosis

As phagocytosis is one of the main mechanisms for nutrients uptake and virulence expression

in the parasite and trophozoites have an intense membrane synthesis during the event, we ana-

lyzed the EhNPC1 and EhNPC2 behavior when cells ingest erythrocytes. Fig 7 shows images of

the most relevant facts observed in different experiments. Under basal conditions, both pro-

teins and cholesterol were found at the plasma membrane, cytoplasm, and nuclei (Fig 7A, 0

min). Immediately after sensing the presence of erythrocytes, EhNPC1 and EhNPC2 proteins

moved to the contact sites at the plasma membrane (Fig 7A and 7B); and they were present in

cytoplasmic vesicles with cholesterol inside (Fig 7, 2 min). Interestingly, EhNPC2 co-localized

with cholesterol of phagocytosed erythrocytes (Fig 7A and 7B). Both proteins were observed in

trophozoites as a continuous dot pattern from the partially ingested erythrocytes to the cyto-

plasm (Fig 7A, 2 min; 7Ba-d). EhNPC1 was seen in the external part of the phagocytic cup (Fig

7A and 7B). Between the nucleus and erythrocytes, networks-like structures were observed

decorated mainly by the α-EhNPC1 antibody and filipin, and spots recognized by α-EhNPC2

antibodies (Fig 7A, 2 min; 7B). At 90 min, cholesterol appeared distributed at the plasma mem-

brane, and in vacuoles inside other huge vacuoles that may correspond to phagolysosomes and

MVBs containing digested erythrocytes, and co-localizing with EhNPC2 and EhNPC1 (Fig

7A, 90 min; 7Bf). Co-localization of both proteins was not higher than 0.59 (Fig 7C), suggest-

ing that they do not interact all the time. Recently, we have identified LBPA and EhADH inside

phagolysosomes and MVBs after 60 and 90 min of phagocytosis [26]. By their size and appear-

ance at late times of phagocytosis, we presume that they correspond to the ones detected here

containing cholesterol, EhNPC1 and EhNPC2.

Then, we performed erythrophagocytosis assays in a pulse-chase model to detect protein

mobilization by western blot assays. In these experiments, trophozoites were incubated with

Fig 6. Secretion of EhNPC1 and EhNPC2 after ABS stimulus. (A) TEM of trophozoites under basal condition showing EhNPC1 and EhNPC2 in the

extracellular space. pm: plasma membrane, es: extracellular space. (B) After the ABS stimulus, supernatants were collected and trophozoites were

lysed at the indicated times. Secreted products and total extracts were analyzed by SDS-PAGE and western blot assays using rabbit α-EhNPC1, rat α-

EhNPC2, rabbit α-cholesterol, rabbit α-EhCP112 and mouse α-actin antibodies and corresponding secondary antibodies. Actin was used as a control of

cell integrity and EhCP112 as a secretion control.

doi:10.1371/journal.ppat.1006089.g006
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erythrocytes for 5 min, then, free and adhered erythrocytes were removed by washing samples;

and the phagocytic process of the already ingested erythrocytes continued at 37˚C for different

times. Total proteins and the soluble and insoluble fractions of lysed trophozoites taken at 0, 5

and 5+60 min of phagocytosis were identified by western blot assays. In basal conditions (0

min), EhNPC1 was detected enriched in the insoluble fraction. However, after 5 and 5+60

min of phagocytosis the protein was similarly distributed in the three samples (Fig 7D). By

contrast, under basal conditions, EhNPC2 was more abundant in the soluble fraction (Fig 7D).

Fig 7. Localization of EhNPC1, EhNPC2 and cholesterol during phagocytosis. (A) Trophozoites were incubated with erythrocytes (1:25) at 37˚C,

for the indicated times. Then, samples were prepared for laser confocal microscopy and stained with filipin, rabbit α-EhNPC1 and rat α-EhNPC2

antibodies and secondary antibodies. Ph c: phase contrast images, e’: erythrocytes, n: nucleus. Arrow head: cytoplasmic vesicles. (B) (a-d) Dotted

circles: Magnification of an erythrocyte that is being internalized. (e) Magnification of vesicles close to the plasma membrane. (f) Magnification of a

huge phagosome (ph) containing digested erythrocytes (arrows). nw: networks. (C) PC of the co-localization between filipin and EhNPC1 or EhNPC2

or EhNPC1 with EhNPC2 at distinct phagocytosis time. (D) Trophozoites were incubated with erythrocytes at 37˚C for 5 min, then adherent and non-

ingested erythrocytes were removed by washing with a mixture of water-TYI medium. Later, trophozoites were incubated at 37˚C again for 60 min with

TYI to continue the process. Trophozoites were lysed and also cellular fractionation was carried out. Samples were processed for 12% SDS-PAGE and

western blot assays. Representative blots of three experiments are shown. T: total extracts, S: soluble fraction, I: insoluble fraction. (E,F) Densitometry

of the bands in (D) corresponding to EhNPC1 (E) and EhNPC2 (F) using actin as loading control.

doi:10.1371/journal.ppat.1006089.g007
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Densitometry analysis using α-actin antibodies as loading control, confirmed this (Fig 7E and

7F). These findings suggest that in basal conditions EhNPC1 is more abundant in membranes,

whereas EhNPC2 is concentrated in the cytoplasm; while during phagocytosis they are more

homogenously distributed in the entire cells, evidencing the dynamic cholesterol trafficking.

EhNPC1 and EhNPC2 are located in the ER

In mammalian cells, NPC1 and NPC2 are located in the ER from where they distribute choles-

terol to different organelles. Here we searched for EhNPC1 and EhNPC2 in the ER. Confocal

images of trophozoites in basal conditions showed that both proteins co-localized in networks

and vacuoles with EhSERCA, an ER marker [33] (Fig 8Aa,b). EhNPC2 also appeared as 1.5 to

2 μm spheres in the cytoplasm (Fig 8A). After 5+2 min phagocytosis, co-localization did not

vary significantly (Fig 8A), suggesting that EhNPC1 and EhNPC2 proteins maintain a constant

presence in ER, as it has been described for other eukaryotes [34]. PC values of co-localization

of EhNPC1 and EhNPC2 with EhSERCA were between 0.25 and 0.51 (Fig 8B). These findings

corroborate that the proteins detected around the nuclei are indeed in the ER.

Fig 8. Co-localization of EhNPC1 and EhNPC2 with EhSERCA and EhRab7A. Trophozoites were incubated with erythrocytes at 37˚C and treated as

Fig 7. Samples were processed for confocal microscopy using α-EhNPC1, α-EhNPC2 and (A) α-EhSERCA or (C) α-EhRab7A antibodies. (a-e)

Magnification of the white squares. (B, D, E) PC of the co-localization between EhNPC1 or EhNPC2 with EhSERCA (B), or with EhRab7A in the whole cell

(D) or in cellular structures stained by the three antibodies (E).

doi:10.1371/journal.ppat.1006089.g008
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EhNPC1 and EhNPC2 co-localize with EhRab7A in endosomes.

The Nozaki group has found that EhRab7A is involved in the retrograde transport from pha-

gosomes to the Golgi apparatus and it is located mainly in late endosomes [35, 36]. Based on

their elegant work, we explored whether spherical structures containing EhNPC2 detected in

trophozoites, corresponded to endosomes. By laser confocal microscopy, the α-EhRab7A anti-

body recognized these cytoplasmic structures, which increased in size throughout the chase-

time phagocytosis assays (Fig 8C), evidencing that they are endosomes. In basal conditions

and throughout phagocytosis, EhRab7A was associated with EhNPC1 and EhNPC2; frequently

forming donut-like structures that may be phagolysosomes and MVBs (Fig 8Cc-e). PC values

for EhNPC1 and EhNPC2 with EhRab7A were 0.39 to 0.55 in the entire cell (Fig 8D) and

increased to 0.47 to 0.78 in the donut-like structures (Fig 8E). These results strengthen the

assumption that EhNPC1 and EhNPC2 are also in endosomes.

EhNPC1 and EhNPC2 associate with endosomal molecules in acidic

vesicles

In mammals, NPC1 binds to cholesterol in late endosomes in an acidic milieu where LBPA

and Alix protein participate in cholesterol homeostasis [22]. We hypothesized that cholesterol

containing vesicles inside phagolysosomes, together with EhNPC1 and EhNPC2, also contain

LBPA and EhADH [25, 26]. Thus, we investigated the nature of these vesicles during phagocy-

tosis using Lysotracker, a marker of acidic vesicles. After 5+30 and 5+60 min of erythrophago-

cytosis, more than 90% of the phagosomes were positive for α-EhNPC1, α-EhNPC2 antibodies

and Lysotracker (Fig 9A). Lysotracker appeared in phagolysosomes and MVBs, containing

partially digested erythrocytes (Fig 9Aa-d). These results show that EhNPC1 and EhNPC2 are

in an acidic milieu characteristic of phagolysosomes.

Besides, at 5+30 min, all phagolysosomes showed EhNPC1, EhNPC2 and LBPA (Fig 9Be-

g). Moreover, EhADH co-localized with EhNPC1 or EhNPC2 under basal conditions, mainly

in the plasma membrane, and, during phagocytosis, in phagolysosomes and MVBs (Fig 9Ch-

j). Immunoprecipitation assays using α-EhNPC1 antibody confirmed that this protein is asso-

ciated under basal conditions and during phagocytosis with EhNPC2, EhADH and EhRab7A,

but not with EhSERCA (Fig 9D), However, α-EhNPC2 antibody precipitated all of these pro-

teins including EhSERCA, suggesting that at some point these proteins are interacting (Fig

9E). Cholesterol was also detected in dot blots in both immunoprecipitates (Fig 9D and 9E).

These results evidenced that cholesterol, LBPA, EhADH, EhRab7A, EhNPC1 and EhNPC2 co-

localize in phagolysosomes and MVBs, probably cooperating to facilitate the phagocytosis-

digestion processes; and our data also reinforce the association of EhNPC1 and EhNPC2 with

cholesterol.

Trophozoites with stocked cholesterol diminish their rate of phagocytosis

and do not disturb the intestinal barrier

To evaluate the effect of cholesterol trafficking on phagocytosis, we used the U18666A (3-β-

[(2-diethyl-amino)ethoxy]androst-5-en-17-one) (U18) drug that binds to NPC1 in the SSD,

blocking the cholesterol traffic [37]. For these experiments, trophozoites cultured without

serum (TYI), to eliminated part of the cholesterol source, showed less than 50% of the choles-

terol concentration that the cells cultured in basal conditions (with serum). Trophozoites cul-

tured without serum and in the presence of U18 presented slight differences in cholesterol

concentration (Fig 10A). By confocal microscopy, U18 treated trophozoites, showed filipin-

positive abundant clumps in the cytoplasm suggesting cholesterol accumulation (Fig 10B).
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These results suggest that in E. histolytica, U18 also interferes with the cholesterol trafficking,

but not with the cholesterol amount inside the trophozoites (Fig 10A and 10B). However, U18

treated cells ingested at 60 min, 2 erythrocytes/trophozoite, whereas trophozoites cultured in

TYI medium engulfed about 6 erythrocytes, and trophozoites cultured in TYI-S medium

ingested a mean of 18 erythrocytes (Fig 10C). These findings suggested that the cholesterol

arresting by U18 interferes with the rate of phagocytosis.

Fig 9. Co-localization and association of EhNPC1 and EhNPC2 with cholesterol and endosomal molecules. Trophozoites were incubated with

erythrocytes as in Fig 7 and processed for confocal microscopy after incubation with α-EhNPC1 and α-EhNPC2 antibodies and (A) Lysotracker or (B) α-

LBPA or (C) α-EhADH antibody and corresponding secondary antibodies. (a-d,g,h) Magnification of white squares. (e,f,i,j) Magnifications from other

images. Ph c: phase contrast images, arrow in I: EhNPC1 outside endosomes, arrowhead: EhNPC2 inside endosomes. D, E) Trophozoites in basal

condition or after 5+60 min of erythrophagocytosis were lysed and immunoprecipitation assays (IP) were performed using α-EhNPC1 (D) or α-EhNPC2

(E) antibodies or preimmune serum (PS). Immunoprecipitated proteins of trophozoites were analyzed by western blot and dot blot experiments, using α-

EhNPC1, α-EhNPC2, α-EhADH, α-EhRab7A, α-EhSERCA and α-cholesterol antibodies.

doi:10.1371/journal.ppat.1006089.g009
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We also analyzed the effect of the cholesterol trafficking arrest by using U18 in the amo-

ebiasis intestinal mice model (strain C57BL/6) [38]. In this model, virulent trophozoites

compromise the intestinal epithelial barrier, which could be monitored by Evans blue dye per-

meability [39]. The intestinal epithelium of mice inoculated with U18-treated trophozoites did

not suffer damage, giving similar results to the negative controls (mice inoculated only with

PBS), and showing that the epithelial barrier was not disrupted (Fig 11A and 11B). By contrast,

trophozoites cultured in TYI induced 62% permeability in colonic epithelium compared to

trophozoites cultured in TYI-S medium, that was taken as 100% (Fig 11A and 11B). Thus,

while cholesterol depletion only ameliorated the capacity of trophozoites to induce intestinal

epithelial permeability, U18 treatment completely inhibited it. Tissue sections of colon epithe-

lium stained with hematoxylin-eosin showed that trophozoites grown in TYI-S medium pro-

voked discontinuity in epithelial layer, cells rounding, and a higher number of cells layers,

cellular infiltration and swelling, whereas animals inoculated with U18 treated trophozoites

presented normal epithelium, similar to the negative controls (Fig 11C). Our results showed

that cholesterol is necessary for trophozoites to ingest red blood cells, and to impair the intesti-

nal epithelial barrier.

Knockdown of Ehnpc1 and Ehnpc2 genes diminishes rate of

phagocytosis and cell motility

Phagocytosis and cell motility require cholesterol for membrane synthesis and fluidity. To get

further evidence that EhNPC1 and EhNPC2 proteins are responsible for transporting the cho-

lesterol for these events, we knocked down trophozoites in the Ehnpc1 and Ehnpc2 genes, using

trophozoites of clone G3 and the psAP-2 vector to transfect them [40]. Both types of silenced

trophozoites (KD Ehnpc1 and KD Ehnpc2) expressed 30 and 50% of Ehnpc1 and Ehnpc2
mRNA, respectively, compared with the G3 trophozoites transfected only with the empty vector

(Fig 12A). Protein expression was also diminished in silenced trophozoites in basal conditions;

although, surprisingly, protein level decreased more in EhNPC2 than in EhNPC1 (Fig 12B and

12C), even when E. histolytica has two Ehnpc2 genes that are transcribed (Fig 3), and only

Ehnpc2a was silenced. These suggest mechanisms for a fine regulation in the level or in the half-

Fig 10. Erythrophagocytosis of trophozoites cultured in TYI-S, TYI and TYI plus U18. Trophozoites were incubated ON at 37˚C in TYI-S, TYI and TYI

plus U18. (A) Cholesterol concentration in the respective trophozoites was measured as described in material and methods. (B) Laser confocal microscopy

showing the morphology and the cholesterol localization by filipin staining. Nuclei were counterstained with propidium iodide (pi). Images were false colored

to obtain a better contrast. Ph c: phase contrast images, arrows: cytoplasmic dots. (C) Rate of erythrophagocytosis spectrophotometrically measured by

hemoglobin (Hb) concentration inside trophozoites.

doi:10.1371/journal.ppat.1006089.g010
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life of the proteins that might be elucidated in the future. Confocal microscopy images con-

firmed the decrease of both proteins in mutant trophozoites in basal conditions; and showed

that proteins were re-localized (Fig 12D). In KD Ehnpc1 trophozoites, EhNPC1 protein was

polarized in the plasma membrane, whereas, in KD Ehnpc2 cells, EhNPC2 was scarcely found

in plasma membrane and it was detected as few cytoplasmic dots (Fig 12D). KD Ehnpc2 tropho-

zoites presented a lesser amount of intracellular cholesterol (1.9 ng/μl) than KD Ehnpc1 (2.8 ng/

μl) whereas, the trophozoites transfected with the empty vector presented 4.0 ng/μl (Fig 12E),

strongly suggesting the participation of these proteins in cellular cholesterol uptake.

The rate of erythrophagocytosis was also modified in silenced trophozoites. In early times

of phagocytosis (2 to 5 min), KD Ehnpc1 and control trophozoites ingested the same amount

Fig 11. In vivo virulence of trophozoites cultured in TYI-S, TYI and TYI plus U18. Capability of trophozoites to impair the

mouse intestinal barrier. (A) Distal parts of the mouse colons after treatment with trophozoites or with PBS. Intestinal barrier

impairment was measured as the ability of the Evans blue dye to permeate the mouse intestinal epithelium after contact with

trophozoites. n = 5. (B) Data represent the mean ± standard error. PBS: mice undergoing surgery, but not inoculated with

trophozoites. * p<0.05, ** p<0.01. (C) Hematoxylin-eosin staining of tissues. Squares were magnified in the corresponding lower

panels. Arrows: trophozoites.

doi:10.1371/journal.ppat.1006089.g011
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of erythrocytes (6 erythrocytes/trophozoite). However, after 5 min, KD Ehnpc1 trophozoites

arrived to a plateau, ingesting a mean of 10 erythrocytes/trophozoite, in comparison with con-

trol trophozoites that continued erythrocytes ingestion, reaching 18 erythrocytes/trophozoite

at 30 min (Fig 12F and 12G). On the other hand, from 2 to 15 min of phagocytosis, the KD

Ehnpc2 trophozoites ingested a mean of 4 to 10 erythrocytes/trophozoite in comparison with

control trophozoites, which ingested a mean of 5.6 to 14.4 erythrocytes/trophozoite. However,

at 30 min of phagocytosis, KD Ehnpc2 trophozoites recuperated the rate of phagocytosis and

ingested a mean of 18 erythrocytes/trophozoite, similar to control trophozoites (Fig 12F and

12G). These results indicate that in the KD Ehnpc2 trophozoites, the rate of erythrophagocyto-

sis was affected only in early times, whereas, in KD Ehnpc1 trophozoites, the erythrophagocy-

tosis was affected after 10 min of contact with erythrocytes.

To evaluate the impact of EhNPC1 and EhNPC2 proteins on motility, we placed the trans-

fected trophozoites in the upper chamber of transwell inserts and counted the number of

Fig 12. Silencing of Ehnpc1 and Ehnpc2 genes in E. histolytica. (A) Trophozoites clone G3 were transfected with psAP-2, psAP-2Ehnpc1 or psAP-

2Ehnpc2a plasmids and stable populations were selected with 4 μg/ml G-418. RT-qPCR assays were performed using mRNA from transfected trophozoites

(empty vector, KD Ehnpc1 and KD Ehnpc2), using specific primers for Ehnpc1 and Ehnpc2a genes and as a housekeeping the 40s ribosomal S2 protein

gene. (B) Western blot assays of transfected trophozoites extracts, using α-EhNPC1 and α-EhNPC2 antibodies and respectively secondary antibody. As a

loading control, the same membrane was reblotted with α-actin antibodies. (C) Densitometry analysis of bands showed in (B) normalized again actin protein.

(D) Confocal microscopy of transfected trophozoites in basal conditions using α-EhNPC1 or α-EhNPC2 antibodies. Ph c: phase contrast. (E) Cholesterol

concentration in the transfected trophozoites was measured as described in material and methods. (F) Rate of erythrophagocytosis of transfected tropho-

zoites. * p<0.05, ** p<0.01. (G) Diaminobenzidine-stained trophozoites that ingested erythrocytes for different times. (H) Motility assays of transfected

trophozoites cultured in transwell inserts. *** p<0.001.

doi:10.1371/journal.ppat.1006089.g012
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trophozoites that were able to move toward the lower chamber, following a serum stimulus.

Interestingly, after 3 h incubation, KD Ehnpc1 trophozoites remained in the upper chamber,

showing migration incapacity, whereas, KD Ehnpc2 trophozoites showed similar motility than

the control. (Fig 12H). These findings altogether revealed that EhNPC1 and EhNPC2 proteins

have no redundant functions but they cooperate during cholesterol trafficking.

Discussion

Using in silico analysis and distinct experimental approaches, we have shown here that the

early emerging protozoan E. histolytica has one Ehnpc1 and two Ehnpc2 genes. In contrast,

most eukaryotes have two npc1 (npc1 and npc1l1) and one npc2 genes [14, 29, 32]. Molecular

docking, co-localization and immunoprecipitation assays revealed that EhNPC1 and EhNPC2

proteins can interact between them and with cholesterol. Moreover, they associate with

EhRab7A and EhADH proteins, whereas only EhNPC2 interacts with EhSERCA, although

both proteins co-localized, immunoprecipitation assays showed no interaction between them

at the times explored. Experiments with silenced trophozoites in Ehnpc1 and Ehnpc2 genes

gave evidence that their corresponding proteins do not carry out redundant functions, but

they cooperate in the cholesterol trafficking. The relevance of our findings lies in three main

facts: firstly, cholesterol is fundamental for endocytosis and motility; both important for

nutrition and virulence of E. histolytica [2–4, 8]. Secondly, cholesterol is not synthesized by

trophozoites and very little is known on cholesterol trafficking in protozoa. In particular, the

mechanism of cholesterol uptake and trafficking in E. histolytica trophozoites was almost

unknown, except for the role of TMK39 protein in LDL proteins uptake [24], which could

function in association with other proteins, such as EhNPC1 and EhNPC2, because it has not

the canonical cholesterol binding sites [24]. In protozoa, except for a NPC1 like protein identi-

fied in T. gondii [41], no other references were found by us about the presence and function of

NPC1 and NPC2; their genes only appear in the databases, but no experimental characteriza-

tion has been done. This makes E. histolytica the first protozoa in which both genes and pro-

teins has been identified and characterized. Thirdly, E. histolytica has a simple cholesterol

trafficking, compared to other eukaryotes, because it depends on exogenous cholesterol, pro-

viding an excellent and less complicated model to elucidate this intricate event in eukaryotic

cells.

NPC1 and NPC2 are ancient proteins, highly conserved throughout eukaryotic evolution

[42]; to the extent that human and yeast npc1 genes are genetically and functionally inter-

changeable [42]. Our results fortify this assumption by the high structural homology presented

by human NTD-NPC1 and the B. taurus NPC2 crystals with EhNPC1 and EhNPC2 3D struc-

tures, respectively. The recent publication elucidating the 3D structure of the complete NPC1

protein in human [37] gives support to our model. In contrast to other eukaryotes, EhNPC2a

and EhNPC2b present an amino acids tail with several residues that could be in contact with

membranes. This, together with the positively charged protein regions [17], gives to EhNPC2

proteins the possibility of translocation across the plasma membrane and other organelle

membranes, as our experimental approaches have suggested. These characteristics give further

support to the hypothesis of the "hand-off" model, which can be working also in E. histolytica
for cholesterol uptake and trafficking [19]. Immunoprecipitation assays using α-EhNPC1 or

α-EhNPC2 antibodies confirmed that both proteins are associated, among them and with cho-

lesterol, in trophozoites in basal conditions and during phagocytosis although sometimes they

also appeared separated, supporting the "hand-off" model.

In this study we also asked: How do E. histolytica trophozoites bring exogenous cholesterol

to their distinct organelles without a canonical LDL receptor?
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Now, have evidences that EhNPC1 and EhNPC2 proteins carry cholesterol and participate

in all processes from the sensing of external cholesterol sources to the digestion of the endocy-

tosed products in phagolysosomes. Proximity and co-localization of EhNPC1 and EhNPC2 in

the trophozoites surface immediately after ABS pulse and at the beginning of erythrophagocy-

tosis, as well as their detection in secreted products, suggest that they are in charge of choles-

terol capturing in E. histolytica. Our results do not discard the participation of other proteins,

such as TMK39 protein.

Experiments using serum-starved trophozoites suggest that the external cholesterol is taken

up into the cell by EhNPC1 and EhNPC2 in several steps: i) Immediately after sensing the cho-

lesterol, EhNPC1 and EhNPC2 are organized in the plasma membrane in a punctuated pat-

tern, co-localizing in some regions, but staying close and uncomplexed in some areas. It is

plausible to speculate that EhNPC1 facilitates the transport of EhNPC2 to the plasma mem-

brane to uptake exogenous cholesterol, but more experiments are necessary to probe this. ii)

Next, small membrane projections or putative vacuoles that grow in size and amount through-

out the endocytosis process appear at early times of endocytosis that are full of EhNPC1 and

EhNPC2. iii) Then, EhNPC2-containing vesicles appear outside the cell, assuming rod- and

sphere-like shapes that are in contact with vesicles full of cholesterol. It was also possible to dis-

tinguish in them small spots recognized by α-EhNPC1. Secretion assays confirmed that

EhNPC1 and EhNPC2 are indeed released into the medium, probably to capture cholesterol.

iv) EhNPC2 appears in vesicles co-localizing with cholesterol inside trophozoites, frequently

making contact with smaller EhNPC1 containing vesicles. v) EhNPC1 and cholesterol formed

networks from the plasma membrane to the nucleus and the ER; and also EhNPC2 appears

there. vi) EhNPC1 and EhNPC2 accumulate in the ER and the nucleus. We do not know yet

the significance of these proteins in the nucleus. vii) Cholesterol was driven to the plasma

membrane and to vacuoles that are surrounded by EhNPC1 with EhNPC2 inside. All these

steps are summarized in the cartoon of Fig 13.

Through erythrophagocytosis, most of these steps are also evident with some particularities.

i) Co-localization of EhNPC1 and EhNPC2 is starting after two minutes contact or before. ii)

Adhered, but not yet ingested, erythrocytes appear covered by EhNPC2 protein before target

cell ingestion is finished. Trophozoites presented a channel, with partially ingested erythro-

cytes strongly stained by the α-EhNPC2 antibody and filipin, whereas the external part of the

phagocytic cup was detected by α-EhNPC1 antibody. iii) At 30 and 90 min after phagocytosis,

cholesterol appeared together with EhNPC1 and EhNPC2 in vacuoles, some with a relative

uniform size, inside of phagolysosomes or MVBs. Interestingly, EhRab7A, LBPA, EhADH and

cholesterol co-localized in late endosomes with EhNPC1 and EhNPC2, suggesting that they

may participate in the cholesterol trafficking and homeostasis, as in mammalian cells [22]. vi)

Cholesterol returned to plasma membrane following a similar movement than EhNPC1 and

EhNPC2. It is possible that EhNPC1 and EhNPC2 tasks do not end until the digestion process

is finished and no more cholesterol is available in the phagocytosed erythrocytes (Fig 13).

The phagocytosis process relies on cholesterol trafficking through the distinct type of endo-

somes formation. Here we used two strategies to evaluate this: i) we arrested the cholesterol

trafficking by U18 drug which binds to the SSD sites in NPC1 [37, 43]. In our experiments we

confirmed that the intracellular cholesterol concentration did not vary in comparison with

TYI cultures trophozoites, but it accumulates in clumps and severely affected phagocytosis and

in vivo virulence. Mice inoculated with U18 treated trophozoites did not present damage in

the colon epithelium. ii) Experiments with trophozoites knocked down in Ehnpc1 and Ehnpc2a
genes gave strong support to the fact that both genes are important in cholesterol uptake. The

diminish expression of proteins, provoked a reduction in the rate of phagocytosis. Interest-

ingly, Ehnpc1 knocked down trophozoites presented a dramatic decrease in motility, strongly
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suggesting a role of EhNPC1 protein in this function. We do not speculate on the role of

EhNPC2 protein, because the presence of two genes and a possible compensatory mechanism

in the cell could promote the transcription of the Ehnpc2b gene after the stimulus given by

serum or erythrocytes. Another possibility is a half-life increase of the EhNPC2 protein. It is

currently under study in our laboratory.

In conclusion, we provide the first evidence that E. histolytica presented two cholesterol

transporting proteins, EhNPC1 and EhNPC2, that participate in exogenous cholesterol uptake

and in its cellular trafficking, impacting in motility and phagocytosis. Future studies need to

be addressed to fully elucidate remaining questions: How do EhNPC1 and EhNPC2 arrive to

Fig 13. Working model of the EhNPC1 and EhNPC2 participation in cholesterol trafficking in E. histolytica. (A) Cholesterol uptake: EhNPC1 and

EhNPC2 capture the cholesterol in the extracellular space and in the plasma membrane probably following the “hand-off” model (EhNPC1-cholesterol-

EhNPC2-cholesterol-EhNPC1) and with the TMK39 participation. (B) Network-like structures formation: EhNPC1 and cholesterol form networks from

cholesterol-containing membrane protrusions to ER, endosomes and nucleus that possibly facilitate cholesterol trafficking through EhNPC2 in a “hand-

off” model. (C) Cholesterol influx: EhNPC1 and EhNPC2 associate with cholesterol and are internalized in EhRab-7A containing endosomes under basal

conditions and during erythrophagocytosis. (D) EhNPC1 and EhNPC2 associate with phagolysosomal and MBVs molecules, particularly with LBPA and

EhADH, which probably regulate cholesterol trafficking. (E) EhNPC1 and EhNPC2 accumulate in nucleus (n) and ER and may be distributed from there to

other organelles.

doi:10.1371/journal.ppat.1006089.g013
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the plasma membrane and leave the cell? Combining our findings with results in other eukary-

otes [44] we propose that EhNPC2 is transported by EhNPC1 to these places. How does

EhNPC2 enter to the phagocytosed erythrocytes? We hypothesized that the “hand-off” model

proposed for mammalian cells could be also applicable to E. histolytica. This implies that

EhNPC2 moves to the plasma membrane, together with EhNPC1 and from there, cholesterol

is “handed-off” from one protein to another, avoiding cholesterol trafficking through the

hydrophobic medium, efficiently reaching its target organelles and facilitating the expression

of virulence properties that require membrane synthesis and vacuoles fusion. The importance

of cholesterol transport for the virulence and the involvement of EhNPC1 and EhNPC2 in this

process, make these proteins promising targets for developing better strategies to defeat the

amoebiasis.

Materials and Methods

E. histolytica cultures

Trophozoites of E. histolytica, clone A, strain HM1:IMSS [45] (already-existing collection) and

clone G3 [40] were axenically grown at 37˚C in TYI-S-33 medium (TYI-S) and harvested at

logarithmic growth phase by chilling the culture flasks at 4˚C [46]. For some experiments, tro-

phozoites were cultured in TYI medium without serum during 12 h (TYI) or in TYI supple-

mented with 3 μg/ml of U18 during 12 h (Sigma-Aldrich). Then, fresh medium with or

without the drug was added to proceed with the experiments. All experiments presented here

were performed at least three times in duplicate.

In silico analysis and phylogenetic trees construction

Human NPC1 (access number: hsa 4864) and bovine NPC2 (access number: bta 280815) pro-

tein sequences retrieved from the KEGG database (http://www.genome.jp/kegg/) were used as

query to search putative E. histolytica EhNPC1 and EhNPC2 proteins and their orthologues.

Structural domains were identified using the SMART genomics server (http://smart.embl-

heidelberg.de/). Identity and e-value between EhNPC1 and EhNPC2 hypothetical proteins,

compared with their orthologues, were determined using the Expert Protein Analysis System

(ExPASy) of the Proteomic Analysis Server from the NCBI Blast service program (http://www.

expasy.org/). The predicted amino acid sequences of EhNPC1, EhNPC2a and EhNPC2b

(ehi_080220, ehi_068260 and ehi_188770, respectively) were aligned with orthologues

sequences by ClustalW and data were submitted to phylogenetic analysis by UPGMA using

MEGA 5.05 software [47]. Bootstrapping was performed for 1000 replicates.

3D structure modeling and molecular docking

The amino acid sequences of EhNPC1, EhNPC2a and EhNPC2b were analyzed using the Rap-

torX server (http://raptorx.uchicago.edu/) and predicted structures and orientation were

obtained via the OPM database (http://opm.phar.umich.edu/). The 3D NTD EhNPC1 model (1

to 250 amino acids) was compared with the human NTD-NPC1 (3GKI) (23 to 254 amino acids)

crystal, whereas the EhNPC2 3D structure (full amino acid sequence) was compared with the B.

taurus NPC2 crystal (2HKA). Both crystals were retrieved from the Protein Data Bank (PDB).

Templates of other NPC1 and NPC2 proteins, located at PDB, were used to obtain the EhNPC1,

EhNPC2a and EhNPC2b 3D structures, which were visualized using the UCSF Chimera soft-

ware. Molecular docking with cholesterol was performed for the three proteins using the Auto-

DockTools V1.5.6 program, and the interaction sites were analyzed by Ligplotv.4.5.3 program

(http://www.ebi.ac.uk/thorntonsrv/software/LIGPLOT/). The grid size was 126x126x126 points
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with a 0.8 Å spacing. Dockings were performed with the empiric free energy function and the

Lamarckian genetic algorithm. Number of GA runs was 200, using a maximum number for

evaluation of 2x106. Cholesterol structure was obtained from the ZINC12 database (zinc.

docking.org) in PDB format and energy minimization was obtained through PRODGR

(davapc1.boich.dundee.ac.us/prodrg/) and the CHIMERAV1.10.1 software.

PCR and RT-PCR assays

Genomic DNA and total RNA were isolated from trophozoites using the Wizard Genomic

DNA Purification kit (Promega) and Trizol reagent (Invitrogen), respectively, according to the

manufacturer’s recommendations. cDNA was synthesized using oligo dT primers and the

Superscript II reverse transcriptase (Invitrogen). PCR amplifications were carried out using

200 ng of DNA or cDNA as template and specific primers for Ehnpc1 or Ehnpc2a or Ehnpc2b
genes (S3 Table). We used 20 μl reaction volume containing 0.5 μM each primer, 2 mM

MgCl2, 200 μM dNTPs, 1X Taq buffer and 1 U Taq DNA polymerase (Invitrogen). Cycling

conditions included an initial denaturing step at 94˚C for 1 min, followed by 30 cycles of 94˚C

for 1 min, 50 or 55˚C (according to respective Tm) for 1 min, and 72˚C for 3 min, with a final

extension step at 72˚C for 7 min. Products were separated by electrophoresis in 1% agarose

gels and then, cloned and sequenced. As controls, for PCR amplification of DNA we omitted

the DNA in the reaction mixture, and for RT-PCR we used DNAse-treated RNA as template.

For RT-PCR assays, 100 ng of cDNA, 0.15 μM of each primer (S3 Table) and the KAPA SYBR

FAST PCR Master Mix (Kapa Biosystems) were used in a StepOneTM Real-Time PCR System

(Applied Biosystem). Data from three independent cDNA preparations were analyzed using

the 2−ΔΔCt method with ribosomal 40s S2 protein as house-keeping gene.

Production of α-EhNPC1 and α-EhNPC2 antibodies

The DEQPMYDKDGQYVPVEKRLE polypeptide from EhNPC1 (776 to 785 amino acids) was

synthesized together with the KLH (Keyhole Limpet Hemocyanin) tag to increase its immuno-

genicity (GenScript). New Zeland rabbits (already-existing collection) were immunized first

with100 μg of this polypeptide resuspended in Titermax Gold adjuvant (1:1) (Sigma) and then,

with two more weekly doses of 50 μg each, to generate the α-EhNPC1 antibody.

The Ehnpc2a and Ehnpc2b full-length genes were PCR-amplified using cDNA as template

and specific primers, which introduced unique BamHI and SalI restriction enzyme sites, in the

sense and antisense primers, respectively (underlined in S3 Table). Genes were cloned into the

pGEX6P-1 plasmid to generate pGEX6P-Ehnpc2a and pGEX6P-Ehnpc2b constructs. E. coli
pLys-S bacteria were transformed with the plasmids, then, recombinant proteins were

obtained by 0.1 mM IPTG induction. Recombinant proteins were electro-eluted and purified

by size exclusion chromatography using a PD-10 column (GE Healthcare). Then, 60 μg of

each purified recombinant protein (rEhNCP2a and rEhNPC2b) were emulsified in Titer-Max

Gold adjuvant (Sigma) and subcutaneously and intramuscularly inoculated in Wistar rats

(already-existing collection) and BALB/C mice (already-existing collection), respectively. Two

more doses (30 μg) of each protein were injected at 20 day intervals followed by bleeding to

obtain antibodies. In all experiments, we used the rat α-EhNPC2a antibody (α-EhNPC2) as

pan antibody, because it detected both EhNPC2a and EhNPC2b recombinant proteins. Pre-

immune serum was obtained before immunizations.

Cell fractionation and western and dot blot assays

Trophozoite extracts (30 μg) were centrifuged 10 min at 13,000xg, and, soluble (supernatant)

and insoluble (pellet) fractions were obtained. Samples were separated by 10 or 12% sodium
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dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), transferred to nitrocellulose

membranes and probed with rabbit α-EhNPC1 (1:3000) or rat α-EhNPC2 (1:3000) or rabbit

α-EhADH (1:500) [24] or rabbit α-EhRab7A (1:200) (kindly provided by Dr. Tomoyoshi

Nozaki, National Institute of Infectious Diseases, Tokyo, Japan) [36] or rabbit α-EhCP112

(1:3000) [48] or rabbit α-SERCA (1:200) [32] or mouse α-actin (1:200) [49] antibodies. Mem-

branes were washed and incubated with the species-specific HRP-labeled secondary antibodies

(Zymed; 1:10000), and developed with ECL Prime detection reagent (GE-Healthcare). Pre-

immune sera were used as controls. For dot blots analysis, samples were prepared as described

[26], dripped on nitrocellulose membranes and treated with rabbit α-cholesterol antibodies

(1:100). (Cloud Clone Co) followed by HRP-labeled secondary antibodies.

Laser confocal microscopy experiments

Trophozoites (grown in coverslips) in basal conditions or after phagocytosis were fixed with

4% paraformaldehyde (PFA) at 37˚C for 1 h, permeabilized with 0.2% Triton X-100 and

blocked with 10% fetal bovine serum (FBS) in PBS. Then, preparations were incubated at 37˚C

for 1 h with α-EhNPC1 (1:100) or α-EhNPC2 (1:100) or α-EhADH (1:500) or α-EhRab7A

(1:500) or α-Gal/GalNAc lectin (1:50) (kindly provided by Dr. W. Petri, University of Virginia,

Charlottesville, USA) [50] or α-LBPA (1:30) [23, 26] or α-EhSERCA (1:1000) antibodies; fol-

lowed by extensive washing and incubation for 1 h with species-specific FITC-, TRITC- or

Cy5- labeled secondary antibodies (Zymed; 1:100) as appropriate. In some cases, nuclei were

counterstained with propidium iodide (0.1 μg/ml) (Sigma) for 5 min. For cholesterol detec-

tion, cells were stained with 250 μg/ml filipin (Sigma). For acidic vacuoles detection, fixed tro-

phozoites were incubated with 2 μg/ml of Lysotracker (Molecular Probes) for 2 h at 37˚C. We

also performed experiments using 12 h ABS-starved trophozoites (incubated in TYI medium),

cultured on coverslips, and challenged with 100 μl of ABS for 0.5 to 7 min at 37˚C, then, sam-

ples were processed as above. All preparations were preserved using Vecta Shield antifade

reagent (Vector), examined using a Carl Zeiss LMS 700 confocal microscope and processed

with ZEN 2009 Light Edition Software (Zeiss). To evaluate the co-localization between mole-

cules, Pearson coefficients (PC) were obtained from at least 15 confocal independent images

(laser sections: 0.5 μm) using the ImageJ 1.45v software and the JACoP plugin [51].

Transmission electron microscopy (TEM)

For immunogold-labeling experiments, trophozoites in basal conditions were fixed with 4%

PFA and 0.5% glutaraldehyde in PBS for 1 h at room temperature (RT). Samples were embed-

ded in LR White resin (London Resin Co) and polymerized under UV at 4˚C for 48 h. Thin

sections (60 nm) were mounted on formvar-covered nickel grids followed by overnight (ON)

incubation with α-EhNPC1 or α-EhNPC2 antibodies (1:20) and, then, incubated ON, with the

respective secondary antibodies (1:60) conjugated to 20 and 10 nm gold particles, respectively

(Ted Pella Inc.). Thin sections were contrasted with uranyl acetate and lead citrate and

observed with a Jeol JEM-1011 transmission electron microscope. Number of gold particles

was counted in 12 independent images of 10 μm2 each.

Cholesterol quantification

Trophozoites (5x105) were re-suspended in a mixture of chloroform: isopropanol:Nonidet P40

(7:11:1) and centrifuged at 13,000xg for 10 min. The organic phase was collected and dried at

50˚C. Lipid samples were processed according to the Cholesterol Quantitation kit (Sigma)
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Secretion assay

Trophozoites were grown in TYI medium for 12 h and incubated with 100 μl of ABS for 0.5, 5

and 15 min at 37˚C. Then, medium was collected in the presence of 1 mg/ml of E64 (Sigma)

and centrifuged at 13,000xg for 10 min to obtain the secreted molecules in the supernatant

fraction. To obtain the trophozoite extracts, cells were washed and lysed with proteases inhibi-

tors as reported [52]. Samples were submitted to 12% SDS-PAGE and western blot assays

using α-EhNPC1, or α-EhNPC2, or α-cholesterol, or α-EhCP112 or α-actin antibodies as

described above.

Immunoprecipitation assays

Trophozoites were lysed in the presence of 10 mM Tris-HCl, 50 mM NaCl and protease inhibi-

tors by freeze-thawing cycles and vortexing. Immunoprecipitation assays were performed

using 200 μl of protein G-agarose (Invitrogen) and α-EhNPC1 or α-EhNPC2 antibodies as

described [53]. Immunoprecipitates were analyzed by SDS-PAGE and western blot assays

using α-EhNPC1 or α-EhNPC2 or α-EhADH or α-EhRab7A or α-EhSERCA or α-cholesterol

antibodies, as described [24].

Phagocytosis assays

Trophozoites were incubated with human erythrocytes (already-existing collection) (1:25) at

37˚C (for phagocytosis assays) for 5 to 60 min. For pulse-chase experiments, incubation was

carried out for 5 min at 37˚C. Then, preparations were quickly washed three times with TYI-

water (1:1) to remove the adhered and non-ingested erythrocytes. Adhered and non-ingested

erythrocytes were lysed by incubation in distilled water for 10 min at RT. Then, trophozoites

and ingested erythrocytes were lysed using absolute formic acid and the hemoglobin was

quantified by spectrophotometry at 400 nm [54]. In some experiments ingested erythrocytes

were stained by Novikoff solution [55] and samples were observed through the light micro-

scope (Axiolab, Zeiss).

In vivo virulence assays

Mice C57BL/6 strain (already-existing collection, 8–12 week old in a weight range of 22–30 g

each), were anesthetized by an intraperitoneal injection of 25 mg/ml of ketamine and 2.5 mg/

ml of xylazine in PBS. Then, 106 trophozoites were anally inoculated (with previously glycerol

lubrication) in five mice per condition. As a control, mice were inoculated with PBS. After 30

min, laparotomy was performed, a cannula was inserted through a small incision in the proxi-

mal colon and the colon was washed extensively with PBS. After this, using the same cannula,

Evans blue dye was administrated into the colon and mice were left at RT for 15 min. Then,

anesthetized mice were euthanized by cervical dislocation. Subsequently, the colon was flushed

with abundant PBS to remove the dye, followed by washing with 1 mM N-acetylcysteine to

remove dye from mucus. Colon was dissected, weighted and the leaked dye was extracted with

gentle shaking in 2 ml dimethyl formamide and spectrophotometrically measured at 620 nm.

Permeability was calculated as OD620 per g tissue.

Hematoxylin and eosin staining

Colon samples were fixed in 10% phosphate-buffered formalin and processed for conventional

embedding paraffin, then, 4–6 μm sections were stained with hematoxylin and eosin [56].

Samples were analyzed using a light microscope (Axiolab, Zeiss).

Cholesterol Trafficking in Entamoeba histolytica

PLOS Pathogens | DOI:10.1371/journal.ppat.1006089 December 21, 2016 24 / 29



Plasmid construction for silencing experiments

The first 400 or 420 bp from the 50-end of Ehnpc1 and Ehnpc2a genes, respectively, were PCR

amplified using specific primers (S3 Table) and cloned into the vector psAP-2 downstream of

the 50 upstream segment (473 bp) of the ap-a gene [40].

Transfection assays

Trophozoites of clone G3 were transfected as described [57]. Briefly, G3 trophozoites were cul-

tured in 35-mm Petri dishes and transfected with 20 μg of the corresponding plasmid: psAP-2-

Ehnpc1 (1–400 bp) or psAP-2-Ehnpc2a (1–420 bp) containing gene fragments, using SuperFect

(Qiagen) reagent. The transfected parasites were incubated for 48 h at 37˚C, selected by 4 μg/

ml of G-418 (Sigma-Aldrich) and maintained as a stable cell line. Then, Ehnpc1 and Ehnpc2a
silencing was confirmed by RT-qPCR, western blot analysis and immunofluorescence.

Migration assays

Serum-starved (3 h) trophozoites (7.5x104) were placed in the upper chamber of transwell

inserts (5 μm pore size, 24 well, Costar) and 500 μl of ABS were added to the lower chamber.

Trophozoites were then incubated for 3 h at 37˚C. At the end of the incubation, the inserts and

media were removed, and trophozoite migration was determined by counting the number of

trophozoites that were attached to the lower chamber of the well.

Statistical analysis

Values of all assays were expressed as mean ± standard error of three independent experi-

ments, each in duplicate. Statistical analyzes were carried out using the GraphPad Prism V

5.01 software by Anova or Studentˈs test.

Ethic Statements

The Institutional Animal Care and Use Committee (IACUC) ethics committee reviewed and

approved the animal care and use of mice, rabbits and rats to produce antibodies and mice

used in virulence in vivo experiments (Protocol Number 0313–06) by the document CICUAL

001, in which is specified that our institute fulfils the NOM-062-ZOO-1999 that deals with the

Technical Specifications for Production, Care and Use of Laboratory Animals given by the

General Direction of Animal Health of the Minister of Agriculture (SAGARPA), that verify

the fulfil of the international regulations/guidelines for the use and care of animals used in lab-

oratory and has verified and approved the animal care at CINVESTAV (Verification Approval

Number: BOO.02.03.02.01.908).
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S1 Fig. Inmunodetection of EhNPC2 proteins. Western blot assays of rEhNPC2a and
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zoites lysates (ET) were used as a positive control.
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