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Objectives: The probability of Breast Imaging Reporting and Data Systems (BI-RADS)
4 lesions being malignant is 2%–95%, which shows the difficulty to make a diagnosis.
Radiomics models based on magnetic resonance imaging (MRI) can replace
clinicopathological diagnosis with high performance. In the present study, we
developed and tested a radiomics model based on MRI images that can predict the
malignancy of BI-RADS 4 breast lesions.

Methods: We retrospective enrolled a total of 216 BI-RADS 4 patients MRI and clinical
information. We extracted 3,474 radiomics features from dynamic contrast-enhanced
(DCE), T2-weighted images (T2WI), and diffusion-weighted imaging (DWI) MRI images.
Least absolute shrinkage and selection operator (LASSO) and logistic regression were
used to select features and build radiomics models based on different sequence
combinations. We built eight radiomics models which were based on DCE, DWI, T2WI,
DCE+DWI, DCE+T2WI, DWI+T2WI, and DCE+DWI+T2WI and a clinical predictive model
built based on the visual assessment of radiologists. A nomogram was constructed with
the best radiomics signature combined with patient characteristics. The calibration curves
for the radiomics signature and nomogram were conducted, combined with the Hosmer-
Lemeshow test.

Results: Pearson’s correlation was used to eliminate 3,329 irrelevant features, and then
LASSO and logistic regression were used to screen the remaining feature coefficients for
each model we built. Finally, 12 related features were obtained in the model which had the
best performance. These 12 features were used to build a radiomics model in
combination with the actual clinical diagnosis of benign or malignant lesion labels we
have obtained. The best model built by 12 features from the 3 sequences has an AUC
value of 0.939 (95% CI, 0.884-0.994) and an accuracy of 0.931 in the testing cohort. The
sensitivity, specificity, precision and Matthews correlation coefficient (MCC) of testing
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cohort are 0.932, 0.923, 0.982, and 0.791, respectively. The nomogram has also been
verified to have calibration curves with good overlap.

Conclusions: Radiomics is beneficial in the malignancy prediction of BI-RADS 4 breast
lesions. The radiomics predictive model built by the combination of DCE, DWI, and T2WI
sequences has great application potential.
Keywords: LASSO, BI-RADS 4, breast lesion, magnetic resonance imaging, radiomics
INTRODUCTION

The 2020 Global Cancer Report released by the International
Agency for Research on Cancer (IARC) shows that female breast
cancer has replaced lung cancer as the most common cancer in
the world with an increase of approximately 2.3 million new
cases (11.7%) throughout the year (1). Breast cancer is also
estimated to top the list of new morbidity and mortality among
all types of cancers in women. During treatment, the diagnosis of
benign or malignant breast lesions has become the most basic
and important step in the treatment of breast diseases.

According to the breast cancer screening guidelines of the
National Comprehensive Cancer Network (NCCN) and BI-
RADS, suspicious lesions can be classified into 6 categories (2).
The fourth category of breast disease is defined as a type of breast
lesions with suspicious malignancy and uncertain pathological
types. The probability of being malignant is 2%–95%, although
this type of breast disease has a further classification of 4a, 4b,
and 4c, because of the large range of the possibility of the
existence of malignant lesion, all patients with BI-RADS 4
breast diseases are recommended to undergo biopsy of
suspicious areas to clarify their pathological properties (3).
Because of the blurry qualitative characteristics of BI-RADS 4
breast diseases, we can see that most patients with BI-RADS 4 of
breast diseases are overdiagnosed and treated with the puncture
case analysis, which requires a certain degree of trauma to the
body. Moreover, the clinical diagnosis inevitably has a certain
false-positive rate and missed diagnosis rate (4, 5). Therefore, we
propose a hypothesis to establish a predictive radiomics model
based on the patients’ preoperative imaging information, thereby
avoiding patients with benign breast lesions from undergoing
invasive pathological testing.

Computer-aided diagnosis methods based on medical imaging
have been increasing in clinical application value in recent years.
This method only needs to mark the abnormal signs, and then
perform common image processing on this basis to get the
diagnosis result. Therefore, the concept of radiomics came into
being (6). Radiomics is a research method that extracts high-
throughput image features from medical images and conducts
quantitative research. DCE, DWI, and T2WI are three routine
methods for the diagnosis and observation of breast diseases.
Breast DCE imaging has high sensitivity in breast cancer screening
for women who have accumulated breast cancer risk for more
than 20%–25% (7). However, its specificity depends on a variety of
external factors, such as the professional skills of the reader or the
method of using quantitative techniques. DWI can characterize
2

the three-dimensional fluidity of water in the body and indirectly
detect and visualize the microstructure (8). DWI and apparent
diffusion coefficient (ADC) have been successfully applied to the
clinical diagnosis and screening of breast cancer. Compared with
the average specificity of 80% in DCE for breast cancer diagnosis,
the average specificity of the combined diagnosis of DCE and DWI
can reach 89.2% (9). Therefore, radiologists mainly use the
combination of these two technologies in the diagnosis of breast
cancer. T2WI is usually used to exclude cysts, intramammary
lymph nodes, and other benign breast lesions (10). One of the
most advantageous characteristics of T2WI is that signal strength
is directly related to the underlying disease state for most breast
cancer lesions mainly showing uneven or slightly high signal on
T2WI MRI, while the surrounding tissues show low or medium
signal (11). As existing research shows that the T2WI MRI image
has a strong ability to interpret the pathology and diagnosis of
breast diseases (12). Research combining T2WI MRI, DCE MRI,
and DWI MRI to increase the actual diagnosis efficiency also
picture a wider application of combining multiple MRI features in
the field of breast diagnosis (13, 14).

It can be seen from the above results that the combined
application of different MRI images can play a greater practical
role in the diagnosis of breast diseases. This study aims to
establish an auxiliary diagnosis prediction model that can be
used to predict benign and malignant breast lesions by
combining MRI images with three sequences of DCE, DWI,
and T2WI.
MATERIALS AND METHODS

This study had been reviewed and approved by the Ethics
Committee of Cancer Hospital, Chinese Academy of Medical
Sciences, and had been in line with the Declaration of Helsinki.
All patients participating in this study waived the requirement of
informed consent. The image processing methods had met the
terms and conditions mentioned in the Transparent Reporting of
a Multivariable Model for Individual Prognosis or Diagnosis
(TRIPOD), Image Biomarker Standardization Initiative (IBSI),
Checklist for Artificial Intelligence in Medical Imaging (CLAIM).

Patients
The patient information for this research study comes from the
picture archiving and communication system (PACS) of the
Cancer Hospital of the Chinese Academy of Medical Sciences.
Due to the following criteria, we continuously enrolled a total of
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216 research subjects from 230 patients who received diagnosis
at our hospital from September 2018 to December 2019. Each of
the patients was classified with the fifth version of BI-RADS
guidelines. The criteria for inclusion in the group were as follows:
(i) Patients have been diagnosed with a BI-RADS type IV breast
lesion. (ii) The pathological diagnoses results were confirmed by
puncture pathology diagnoses. (iii) Patients have complete MRI
images in PACS with axial DCE, DWI, and T2WI sequences
obtained before patients underwent biopsy.

All the in-group patients were separated into a training cohort
of 144 patients and a testing cohort of 72 patients divided by scan
time from early to late according to the ratio of 2:1. We use leave-
one-out cross-validation (LOOCV), and the training cohort is
used to train and validate the model. Testing cohort is used to
test the performance of the model.

Semiautomatic Image Segmentation and
Feature Extraction
We collected image information of the 216 enrolled patients,
which were composed of three kinds of MRI images: DCE, DWI,
and T2WI. All patients’ MRI scans were completed before they
underwent biopsy. Patients in training and testing cohorts were
scanned using the same equipment. The DCE sequences were
obtained by a higher axial resolution T1-weighted DCE imaging
with a temporal resolution of 90 s. The DWI sequences were
obtained by a DWI sequence with two b‐values (0–1,000 s/mm2).
The T2WI sequences were obtained from a higher axial
resolution T2WI turbo spin-echo sequence. All scans were
done at a magnetic field strength of 3.0 T.

These MRI images were reviewed by 2 radiologists who were
not aware of the real pathological diagnoses. They calibrated and
refined the segmentation results from Radiomics (www.
radiomics.net.cn) of the breast lesion regions of interest (ROI)
of the patients’ pretreatment images in the DCE, DWI, and T2WI
views. This software is a computerized semiautomatic image
segmentation software with high accuracy trained by using a
deep learning model. It uses the most recognized nnU-Net model
framework, which is a generalized U-net framework and can
obtain better training results through a careful preprocessing
process and diverse network training schemes. An example of
Radiomics software combined with manual fine-tuning for
semiautomatic image segmentation is shown in Figure 1.

The specific operations of feature extraction were all done
through Python (3.7.9), where the “pyradiomics” package
(pyradiomics.readthedocs.io) was used in conjunction. The
hyperparameters of feature extractor set as follows: Laplacian
of Gaussian filter: sigma: [2.0, 3.0, 4.0, 5.0]; normalize: True;
normalize scale: 100; resampled pixel spacing (1, 1, 1):;
interpolator: sitkBSpline; binWidth: 5; and voxelArrayShift:
300. The other settings are default. A total of 3,474
quantitative original image features including first-order
statistics features (18 features), 3D shape-based features (14
features), gray-level cooccurrence matrix features (24 features),
gray-level run length matrix features (16 features), gray-level size
zone matrix features (16 features), and gray-level dependence
matrix features (14 features) were extracted from the
Frontiers in Oncology | www.frontiersin.org 3
corresponding regions of interest in the original images in the
DCE, DWI, and T2WI views (15). The original images were later
added with wavelet filtering and Laplace of Gaussian (LoG)
filtering respectively to extract the above features. Wavelet
filtering was aimed to yield 8 decompositions per level of the
original images. LoG filtering was used as an edge enhancement
filter which emphasized areas of gray level changes, where sigma
defines how the emphasized textures are supposed to be (16, 17).

Radiomics Signature Building
Due to the same coarse-to-fine strategy, we filtered the features to
prevent the model from overfitting (18–20). First, a mono-factor
analysis was performed on all features, and all features were
ranked in order from smallest to largest p-value, and the top 5%
of features were filtered out. Second, the LASSO algorithm made
the image features most relevant to the BI-RADS 4 breast lesions
to be filtered out by compressing the correlation coefficients of
some of the features and zeroing out another part of the
coefficients. Finally, the LOOCV was performed to select a
model. After the above steps are completed, the coefficients of
most radiomics features were compressed to zero. Then, a
radiomics signature was established based on a linearly
weighted combination of features with nonzero coefficients
(21). The above content is the entire process of our training
model. The feature extraction and selection process were
implemented in Python (3.7.9).

The ability of the model to recognize benign and malignant
lesions is evaluated by the drawn ROC. ROC can directly show
the sensitivity (true-positive rate) and false-positive rate of the
predicted results of the model. Meanwhile, the AUC value and
the accuracy value are two main indicators that can be indirectly
obtained from the curve. In addition, we also calculated precision
and MCC metrics to evaluate the model.

Development and Performance of the
Models Built With Sequences
Combinations
Based on the above modeling steps, we performed prediction
model building using different combinations of the three
sequences, respectively. First, we modeled the three sequences
individually based on the eigenvalue data extracted from each
sequence. Second, the feature data of each two sequences were
combined and modeled based on this data. Finally, we modeled
the data using the combined data of the three sequences. These
seven different models were used to compare performance in the
same computational way.

Development and Performance of the
Radiomics Nomogram
To verify that radiomics signature combined with clinical factor
has a greater predictive ability, we built the radiomics nomogram
(21). Through the progress of organizing the patients’
information and univariate logistic regression analysis, we
selected age as the clinical factor used for radiomics nomogram
building. We constructed a calibration curve for the nomogram
to demonstrate its predictive efficacy.
January 2022 | Volume 11 | Article 733260
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FIGURE 1 | Image segmentation and the procedure of developing a predictive model. The experiment is divided into three main parts: image pre-processing, image
radiomic analysis and statistical analysis. Radiomic analysis includes image feature extraction and feature filtering. DCE, dynamic contrast enhanced imaging; DWI,
diffusion weighted imaging; T2WI, 2 weighted imaging; ROC, receiver operating characteristic curve.
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Imaging Diagnosis by the Radiologists
In order to further verify the application value of the prediction
model, we invited two radiologists to participate in our model
verification step. Both radiologists come from the Cancer
Hospital of the Chinese Academy of Medical Sciences and
have more than 10 years of clinical diagnosis experience. The
experiment requires the two experts to combine DCE, DWI, and
T2WI MRI images of each patient without contacting the patient
and completely ignorant of the clinical information and actual
diagnosis results to jointly make their pathological diagnosis of
each case of whether benign or malignant breast lesion
judgments. During the actual experiment, two radiologists
conducted pathological identification of all patients through
visual observation of images. By comparing the prediction
results of our model with the diagnosis results of these two
experts, we can evaluate whether this model has value in
clinical application.

After obtaining the diagnosis results of the two radiologists,
we used the same calculation method to calculate the accuracy,
sensitivity, specificity, precision, and MCC of the radiologist’s
diagnoses and compare them with the corresponding indicators
of the radiomics model.

Data and Statistical Analysis
To further evaluate the results, we plotted nomograms from the
clinical information and plotted calibration curves combined
with the Hosmer-Lemeshow test for the nomograms and the
ROC curves of the radiomics model with the strongest
performance. The p-value was calculated by a two samples t-
test to evaluate the degree of group differentiation of the data.
The above statistical evaluation work was done through R
version 4.0.5 (R Foundation for Statistical Computing,
Vienna, Austria).
RESULTS

Clinical Characteristics of the Patients
The clinical characteristics of the patients in the training cohort
and the testing cohort are shown in Table 1. The benign rate of
Frontiers in Oncology | www.frontiersin.org 5
breast lesion in the training cohort is 25.69% and that of the
testing cohort is 18.05%. The differences in imaging devices, age,
and other clinical characteristics were not statistically significant
between the two cohorts.

Feature Selection, Radiomics Signature
Development, and Validation
Twelve features were derived from DCE, DWI, and T2WI MRI
images with the principle of coarse-to-fine. The selected features
and corresponding coefficients are listed in Table 2.

Development, Performance, and
Evaluation of the Prediction Models
By comparing the ROC curves obtained after building radiomics
prediction models for single sequences separately and for every
two sequences combined with the ROC curve of radiomics
prediction models built by combining the three sequences, the
radiomics models built by combining the DCE, DWI, and T2WI
sequences obtained a significant performance improvement.
Also, the AUC value of the model based on three sequences
combined is the highest among all AUC values we have got. The
performance of our joint prediction model is significantly
improved, especially in terms of the specificity of the model
prediction. The results are shown in Table 3. The ROC curves
are shown in Figure 2.

Assessment of the Radiomics Nomogram
We conducted the radiomics nomogram by combining the
patients’ ages and the radiomics signature. The nomogram has
achieved an AUC value of 0.965 (95% CI, 0.926–0.999) and an
accuracy of 0.912 in the testing cohort. The radiomics nomogram
is shown in Figure 3. The calibration curves of the radiomics
nomogram and the radiomics model based on DCE, DWI, and
T2WI are shown in Figure 4.

Comparison of the Prediction Results
Between Radiologists and the Radiomics
Prediction Model
Two radiologists who have reviewed the in-group patients’
images reached a good consensus of their visual diagnosis
TABLE 1 | Basic clinical information of enrolled patients.

Characteristics Training (N = 144) Testing (N = 72) Total (N = 216) P-value

Age at surgery (years), median (range) 45 (22-72) 45 (23-78) 45 (22-78) 0.052a

Benign (%) 37 (25.69) 13 (18.06) 50 (23.15) 0.867b

Adenomatosis 9 (6.25) 3 (4.17) 12 (5.56)
Phyllodes tumor 28 (19.44) 10 (13.89) 38 (17.59)

Malignant (%) 107 (74.31) 59 (81.94) 166 (76.85) 0.066b

Invasive ductal carcinoma 67 (46.53) 28 (38.89) 95 (43.98)
Colloid carcinoma 20 (13.89) 11 (15.28) 31 (14.35)
Medullary carcinoma 18 (12.60) 19 (25.39) 37 (17.13)
Neuroendocrine carcinoma 1 (0.69) 1 (1.39) 2 (0.93)
Solid papillary carcinoma 1 (0.69) 0 (0.00) 1 (0.46)
Ja
nuary 2022 | Volume 11 | Article
The differentiation in the characteristics (age when diagnosed, benignity and malignancy, pathological diagnosis) in the training cohort and the Testing cohort were evaluated. P-value less
than 0.05 proves that the groups are significantly different. The above P-values show the training and the Testing cohorts are non-significantly different.
aP-value was calculated by two sample t-test.
bP-values were calculated by Fisher exact test.
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upon the DCE, DWI, and T2WI sequences’ combination. The
results from the radiologists have been used to make a further
assessment. According to the model built with the visual
assessment achieved from the experts, the AUC value is 0.563
(95% CI, 0.470–0.772), and the accuracy is 0.611 in the testing
cohort. The results of the Delong test showed that the predictive
AUC values and accuracy of the radiomics prediction model with
the combination of the three sequences were significantly higher
than those of the prediction model built by the experience
of radiologists.
DISCUSSION

In this study, we conducted a study on the relationship between
the malignancy of BI-RADS 4 breast lesions and the imaging
features in DCE, DWI, and T2WI MRI, and developed a
radiomics prediction model based on MRI. It has been proved
Frontiers in Oncology | www.frontiersin.org 6
that the model has a stronger predictive ability than radiologists’
empirical predictions and can accurately identify the benign and
malignant BI-RADS 4 breast lesions, which has application
value (22).

Breast MRI has the advantages of good soft-tissue resolution
and no radiation and is significantly better than mammography
and ultrasonography for early diagnosis and local staging of
breast cancer (23, 24). Because MRI is insensitive to
microcalcifications and requires a high degree of magnetic field
homogeneity, it is easy to cause a false-negative diagnosis (25).
Inaccuracies in visual assessment can also lead to overdiagnosis
of patients. As a definition from the NCCN guidelines points out,
the possibility of the occurrence of BI-RADS 4 breast lesion
malignancy range from 2% to 95%, but the actual PPV of breast
lesion ranges from 25.7% to 59.2% (26–28). Also, the radiomics
model we developed combines multimode MRI images to
provide diagnostic doctors and oncologists with a quantitative
evaluation tool with greater reliability.
TABLE 3 | Results of the radiomic models and the models based on the nomogram and visual assessment.

AUC Accuracy Sensitivity/Recall Specificity Precision MCC

Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing
(95% CI) (95% CI)

DCE 0.901 0.844 0.806 0.819 0.804 0.864 0.811 0.615 0.925 0.911 0.561 0.444
(0.853-0.949) (0.741-0.946)

DWI 0.871 0.798 0.847 0.801 0.846 0.814 0.865 0.769 0.947 0.941 0.651 0.493
(0.812-0.930) (0.689-0.907)

T2WI 0.877 0.838 0.868 0.777 0.879 0.746 0.838 0.846 0.940 0.957 0.679 0.492
(0.822-0.932) (0.731-0.940)

DCE+DWI 0.932 0.821 0.861 0.708 0.860 0.712 0.865 0.692 0.948 0.913 0.675 0.324
(0.894-0.970) (0.727-0.916)

DCE+T2WI 0.924 0.853 0.889 0.820 0.907 0.813 0.838 0.846 0.942 0.96 0.721 0.551
(0.880-0.968) (0.751-0.957)

DWI+T2WI 0.889 0.834 0.882 0.777 0.869 0.780 0.919 0.769 0.969 0.939 0.730 0.453
(0.837-0.941) (0.731-0.938)

DCE+DWI+T2WI 0.940 0.939 0.924 0.931 0.935 0.932 0.892 0.923 0.961 0.982 0.806 0.791
(0.904-0.975) (0.884-0.994)

Nomogram 0.952 0.965 0.896 0.912 0.887 0.932 0.919 0.846 0.969 0.965 0.756 0.737
(0.922-0.983) (0.926-0.999)

Visual Assessment 0.613 0.563 0.632 0.611 0.644 0.627 0.594 0.538 0.821 0.860 0.21 0.130
(0.528-0.712) (0.470-0.772)
J
anuary 2022 | Volume
 11 | Article
The 9 models contain models based on DCE, DWI, T2WI, DCE+DWI, DCE+T2WI, DWI+T2WI, DCE+DWI+T2WI, nomogram and visual assessment.
TABLE 2 | Results of the feature selection for the model based on DCE, DWI and T2WI.

Sequences Features Coefficients

T2WI Wavelet LHH glrlm long run low gray level emphasis -0.19765
Original glszm Gray Level Non-Uniformity Normalized -0.52642
Wavelet LLL glszm Small Area Low Gray Level Emphasis -1.53857
Wavelet LHL glszm Low Gray Level Zone Emphasis -1.34546
Wavelet LLH glszm Small Area Low Gray Level Emphasis -6.49947
Log sigma 4-0-mm-3D glrlm Long Run Low Gray Level Emphasis -0.00238
Log sigma 4-0-mm-3D glrlm Long Run Emphasis -0.00004
Wavelet LHH glszm Gray Level Non-Uniformity Normalized -1.11352

DCE Original glszm Small Area Emphasis 4.57208
Wavelet LHH glcm Correlation 12.60474
Wavelet LLL glcm Inverse Variance -4.61787

DWI Wavelet HHH glrlm Long Run High Gray Level Emphasis -0.02102
The features were selected by LASSO algorithm. These coefficients show the magnitude of the weight of their corresponding characteristics in the regression model.
733260
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In summary, our study focuses the concentration on
developing a way to predict malignant breast lesions through
imaging data without causing trauma to the patients.

Among the finally obtained features after extraction and
compression by the LASSO logistic regression, the number of
T2WI image features is the largest, the coefficient value of DCE
image features is the largest, and only one DWI feature is selected
and the correlation coefficient of this feature is relatively small,
which shows that the image features of T2WI and DCE have a
greater influence on the benignity and malignancy of breast
lesions. Compared with other parametric images, T2WI MRI
images are more likely to reflect the cyst, the margins of the
Frontiers in Oncology | www.frontiersin.org 7
lesion, and the surrounding lymph nodes (29). Therefore,
T2WI images are often used to detect benign lesions
(12). DCE scanning is the most common scan used to
diagnose breast disease in clinical practice; it provides higher
sensitivity, however, its specificity is variable (30). It can be
concluded that T2WI scanning and DCE scanning have
some complementary properties, and therefore a prediction
model combining both sequences can yield substantial
performance improvements.

From the features we screened out, wavelet-filtered small area
low gray-level emphasis texture feature in the T2WI sequence
and wavelet-filtered correlation texture feature in the DCE
FIGURE 2 | ROC curves of the models. The ROC curves generated by models based on: DCE, DWI, T2WI, DCE+DWI. DCE+T2WI, DWI+T2WI, DCE+DWI+T2WI,
nomogram combined age and the radiomic signature and the visual assessment of the radiologists. DCE, dynamic contrast enhanced imaging; DWI, diffusion
weighted imaging; T2WI, 2 weighted imaging.
January 2022 | Volume 11 | Article 733260
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sequence was the most descriptive for breast BI-RADS4-like
suspicious lesions. Small area low gray-level emphasis is one of
the gray-level size zone matrix (GLSZM) features, which describe
the amount of homogeneous connected areas within the volume
of a certain size and intensity, thereby describing lesion
heterogeneity at a regional scale (26). The grayscale area size
matrix is the primary form of the Thibault matrix, which is an
advanced statistical matrix of texture features and a powerful tool
for medical image analysis. The more homogeneous the image
Frontiers in Oncology | www.frontiersin.org 8
texture is, the larger and flatter the matrix width is. Unlike the
stroke and cooccurrence matrices, the GLSZM does not require
multiple directional calculations. Specifically, GLSZM is effective
in characterizing texture consistency, nonperiodic or speckled
textures, and has better performance than granularity, stroke
matrix, and cooccurrence matrix for cell nuclei, and dermis (27).
Wavelet filtered correlation texture feature is one of the gray level
cooccurrence matrix (GLCM) features, which describes the joint
distribution of two pixels that have some spatial location
FIGURE 3 | Radiomic nomogram. The radiomic nomogram was conducted based on the patients’ ages from the clinical information and the radiomic signature
obtained from the best radiomic model which was based on DCE, DWI and T2WI.
FIGURE 4 | Calibration curves of the radiomic model and the radiomic nomogram. Calibration curves of radiomic signature were built by the radiomic model based
on DCE, DWI and T2WI. Calibration curves of radiomic nomogram were built by the nomogram. The diagonal line represents the perfect prediction of the ideal
model. The blue and pink lines represent the performance of the training and testing cohort in the models, where the models closer to the diagonal line represent
better predictions. The calibration curves have gone through the Hosmer-Lemeshow test and have achieved a favorite result.
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relationship (28). The correlation features to measure the degree
of similarity of the elements of the spatial grayscale cooccurrence
matrix in the row direction. Thus, the local grayscale correlation
in the image can be seen from the correlation value magnitude.
When the values of matrix elements are uniformly equal, the
correlation value is large; contrarily, the correlation value is small
when the matrix pixel values differ significantly. If there is a
horizontal texture in the image, the correlation value of the
horizontal matrix is larger than that of the rest of the matrixes.

Another noteworthy strength of this study is our image
segmentation method. The images used in this study were
automatically segmented by computer using an optimized deep
learning model and then corrected and refined by 2 professional
radiologists, so our regions of interest segmentation have a high
degree of accuracy and precision. This shows that the image
feature values we extracted in this research-based learning are
also more convincing. As for image feature values are the basis
for the establishment of our prediction model, so this is one of
the reasons that can prove that the prediction denseness has
application value.

In addition, to demonstrate that this prediction model can
reach a higher level than physicians’ diagnosis, we invited two
radiologists who have more than 10 years of experience in breast
cancer. The two doctors had no prior information about the
patient’s personal information and real diagnosis; they were able
to determine the benignity or malignancy of the patient’s breast
lesions by combining only three sequences of MRI images. The
results confirmed that the AUC value, accuracy, sensitivity,
specificity precision, and MCC of our developed radiomics
prediction model were much higher than those of the
radiomics experts.

Medical imaging technology is able to captures a vast amount
of information, but most of information was reported in a
qualitative and quantitative way. Prospective studies indicated
that the computer aided detection (CAD) system constructed
using extracted and selected features can effectively distinguish
benign and malignant breast lesions (31, 32). Chen et al. (33)
extracted a large number of dynamic features from the temporal
enhancement pattern of a tumor. Zheng et al. (34) extracted
dynamic enhancement and architectural features and spatial
variations of pixelwise temporal enhancements from MRI
images. Although these studies had also achieved good results,
due to the development of medical imaging technique, these
features cannot contain rich information on tumors. In 2012,
Lambin et al. (17) formally proposed radiomics which attracted
the attention of many computer scientists, radiologists, and
oncologists. Liu et al. (22) used deep learning to extract
features from mammography-based in predicting malignancy.
Karen et al. (35) used datasets that contained 64 lesions DCE-
MRI images and extracted 38 radiomics features from each
image to build SVM models which is able to distinguish the
malignant and benign lesions. However, the datasets in these
reports are all single modality. Extracting more features can
discover the connection between deeper features and the training
task. The higher dimensional radiomics features can more fully
express tumor heterogeneity, and these features can in part
Frontiers in Oncology | www.frontiersin.org 9
describe the characteristics of breast cancer based on their
usefulness, predictive power and uniqueness. In our research,
we extracted 3,474 radiomics features from a combination of
three sequences (DCE, DWI, T2WI) MRI images to build the
model. Thus, we have achieved a satisfactory result.

Our research results confirmed that the multimodal fusion
models can complement each other. When one modality cannot
obtain obvious information of a single modality, another modality
can provide weak supervision information for it. Among the
single-sequence models, the model constructed based on DCE
scanning technology has the highest AUC. DCE sequence cannot
only clearly show morphologic and hemodynamics features of the
lesion (36) but also have more significance for the sharpening of
the shape and scope of the lesion according to various
manifestations such as enhancement mode, blood supply, and
cell composition of the lesion. In the dual-sequence combined
model, the DCE+T2WI model has higher model evaluation
performance than the single-sequence model in terms of
accuracy, specificity, and sensitivity. The signal intensity of
T2WI is directly related to the shape of the underlying lesion
and is usually used to exclude cysts, intramammary lymph nodes,
and other benign breast lesions to improve the specificity of
diagnosis (37). Among all the models in this study, the best
model effect is DCE+T2WI+DWI. Each model of a single
sequence has advantages and disadvantages, but the fusion of
the three sequences can assist each other (37, 38). By comparing
the single-sequence model with the multisequence model, it was
found that the multimodal fusion models had better performance
in predicting the benign and malignant of BI-RADS 4
breast lesions.

Upon reflection, although this study provides significant
benefits, it also has some limitations worth discussing. Firstly,
this is a single-center study. Therefore, the lack of multicenter
data fusion analysis might affect the generalization ability of the
model to a certain extent. Secondly, this prediction model is
based on three sequences of images from breast MRI and can
combine the characteristics of different images for prediction.
However, breast ultrasonography and mammography are also
two major means of detecting breast disease (39, 40). Because of
the higher cost of MRI, the more restrictive population, and the
limitations of an incomplete examination, mammography, and
ultrasound scans are even more routinely used as clinical tests
(41, 42). So, the absence of these two medical images in this study
could potentially cause our model to be less representative, as our
prediction model could not be applied to these two sequences
of images.

In conclusion, the model based on DCE, DWI, and T2WI
combined is the most effective in predicting the benignity and
malignancy of BI-RADS 4 suspicious lesion.
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