

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Chlorido(4-methylpyridin-2-amine- κN^1)- $(2-\{[(4-methylpyridin-2-yl)imino-\kappa N]$ methyl}phenolato- κO)copper(II)

Bussa Bhagyaraju, P. Sambasiva Rao⁺ and Toka Swu^{*}

Department of Chemistry, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605 014 India

Correspondence e-mail: tokaswu.che@pondiuni.edu.in

Received 25 October 2012: accepted 16 November 2012

Key indicators: single-crystal X-ray study; T = 300 K; mean σ (C–C) = 0.007 Å; R factor = 0.055; wR factor = 0.114; data-to-parameter ratio = 13.7.

In the title complex, $[Cu(C_{13}H_{11}N_2O)Cl(C_6H_8N_2)]$, the Cu^{II} atom adopts a distorted tetrahedral geometry being coordinated by the phenolic O atom and the azomethine N atom of the Schiff base ligand N-salicylidene 2-aminopyridine, and by the 2-aminopyridine N atom and a Cl atom. The pyridyl N atom of the Schiff base and the imino N atom of the 4-methylpyridine-2-ylimino ligand are not involved in the coordination. There is an intramolecular N-H···N hydrogen bond involving the pyridine N atom and the amino group of the 2aminopyridine ligand. In the crystal, molecules are linked via N-H···Cl hydrogen bonds, forming chains propagating along [001].

Related literature

For the preparation of similar compounds, see: Miao et al. (2009); Parashar et al. (1988); Castineiras et al. (1989). For the crystal structures of related compounds, see: Castineiras et al. (1989); Miao et al. (2009).

metal-organic compounds

V = 1846.1 (6) Å³

Mo $K\alpha$ radiation

 $0.40 \times 0.40 \times 0.06 \text{ mm}$

7213 measured reflections

3339 independent reflections

2017 reflections with $I > 2\sigma(I)$

 $\mu = 1.34 \text{ mm}^-$

T = 300 K

 $R_{\rm int} = 0.063$

Z = 4

Experimental

Crystal data

 $[Cu(C_{13}H_{11}N_{2}O)Cl(C_{6}H_{8}N_{2})]$ $M_r = 418.37$ Monoclinic, $P2_1/c$ a = 17.443 (4) Å b = 11.2197 (19) Å c = 9.4435 (19) Å $\beta = 92.67 (2)^{\circ}$

Data collection

Oxford Diffraction Xcalibur, Eos diffractometer Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) $T_{\min} = 0.565, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	H atoms treated by a mixture of
$wR(F^2) = 0.114$	independent and constrained
S = 0.94	refinement
3339 reflections	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
243 parameters	$\Delta \rho_{\rm min} = -0.45 \text{ e} \text{ Å}^{-3}$
2 restraints	

Table 1

H	ydro	ogen-	bond	geom	etry	(A, '	°).	
---	------	-------	------	------	------	-------	-----	--

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H2NB \cdots N3$ $N2 - H2NA \cdots Cl1^{i}$	0.85(4) 0.86(4)	2.27 (4) 2.44 (4)	3.039 (6) 3.305 (5)	150 (5) 179 (7)
2	. 1 1			

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009); software used to prepare material for publication: OLEX2.

BB thanks the Department of Science and Technolgy, New Delhi, India, for financial support and for providing the singlecrystal X-ray diffractometer facility at the Department of Chemistry, Pondicherry University, under the DST-FIST program.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2518).

References

- Castineiras, A., Castro, J. A., Duran, M. L., Garcia-Vazquez, J. A., Romero, J. & Sousa, A. (1989). Polyhedron, 8, 2543-2549.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Miao, J., Zhao, Z., Chen, H., Wang, D. & Nie, Y. (2009). Acta Cryst. E65, m904. Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd., Yarnton, England.
- Parashar, R. K., Sharma, R. C., Kumar, A. & Mohan, G. (1988). Inorg. Chim. Acta, 151, 201-208.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, m1523 [doi:10.1107/S1600536812047198]

Chlorido(4-methylpyridin-2-amine- κN^1)(2-{[(4-methylpyridin-2-yl)imino- κN]methyl}phenolato- κO)copper(II)

Bussa Bhagyaraju, P. Sambasiva Rao and Toka Swu

Comment

The Schiff base, *N*-salicylidene 2-aminopyridine, has been widely studied as a potential tridentate ligand. For example, the complex Bis{2-[(2-pyridyl)iminomethyl]-phenolato}copper(II), has been prepared by (Miao *et al.*, 2009), who reported that to a green solution of salicylaldehyde (0.19 mmol) and Cu(OAc)₂.H₂O (0.05 mmol) in ethanol they added slowly an enthanolic solution of 2-aminopyridine (0.22 mmol). The resulting mixture was allowed to stand and brown crystalline needles were obtained after 1 day. The same compound was prepared by an electrochemical method (Castineiras *et al.*, 1989) and by a solution method (Parashar *et al.*, 1988). We have used same procedure as (Miao *et al.*, 2009), but using a 1:1:1 molar ratio that produced the yellow crystals of the title compound, whose crystal structure we report on herein.

In the title complex, Fig. 1, the copper atom has a slightly distorted tetahedral geometry. It coordinates to the phenolic atom O1 and the azomethine atom N4 of the Schiff base liagnd *N*-salicylidene 2-aminopyridine, and to the 2-aminopyridine atom N1 and a chlorine atom, Cl1. The Cu—O1 and Cu—N4 bond lengths are similar to those reported in related structures (Miao *et al.*, 2009; Castineiras *et al.*, 1989). The structure of the molecule is stablized by an intramolecular N-H..Cl hydrogen bond (Table 1).

In the crystal, the intermolecular N-H···Cl hydrogen bond (Fig. 2 and Table 1) plays an important role in linking the molecules to form chains propagating along the c axis, as shown in Fig. 3.

Experimental

A methanolic solution of 2-(((4-methyl-pyridine-2-yl)imino)methyl)phenol (0.01 moles) and 4-methylpyridin-2-amine (0.01 moles) was added slowly to a methanolic solution of copper chloride (0.01 moles). The resulting mixture was allowed to stand and yellow plate-like crystals were obtained after ca. 7 days.

Refinement

The NH₂ H-atoms were located in a difference Fourier map and refined with distances restraints: N-H = 0.86 (2) Å. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93 and 0.96 Å, for CH and CH₃ H atoms, respectively; $U_{iso} = k \times U_{eq}(N,C)$, where k = 1.5 for CH₃ H atoms, and = 1.2 for other H atoms.

Computing details

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO* (Oxford Diffraction, 2010); data reduction: *CrysAlis PRO* (Oxford Diffraction, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009) and *PLATON* (Spek, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

Figure 1

The molecular structure of title compound, showing the atom numbering. The displacement ellipsoids are drawn at the 50% probability level. The intramolecular N-H…Cl bond is shown as a dashed line (see Table 1 for details).

Figure 2

A view along b axis of the crystal packing of the title compound.

Figure 3

A view of the N-H…Cl hydrogen bonded chain structure propagating along the c axis direction (dashed line; see Table 1 for details).

Chlorido(4-methylpyridin-2-amine- κN^1)(2-{[(4-methylpyridin-2- yl)imino- κN]methyl}phenolato- κO)copper(II)

Crystal data	
$[Cu(C_{13}H_{11}N_2O)Cl(C_6H_8N_2)]$	V = 1846.1 (6) Å ³
$M_r = 418.37$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 860
Hall symbol: -P 2ybc	$D_{\rm x} = 1.505 {\rm ~Mg} {\rm ~m}^{-3}$
a = 17.443 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71070$ Å
b = 11.2197 (19) Å	Cell parameters from 2251 reflections
c = 9.4435 (19) Å	$\theta = 2.8 - 29.4^{\circ}$
$\beta = 92.67 \ (2)^{\circ}$	$\mu = 1.34 \mathrm{~mm^{-1}}$

T = 300 KPlate, yellow

Data collection

Data collection	
Oxford Diffraction Xcalibur, Eos diffractometer	7213 measured reflections 3339 independent reflections
Radiation source: Enhance (Mo) X-ray Source	2017 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.063$
ω scans	$\theta_{\rm max} = 25.3^\circ, \ \theta_{\rm min} = 2.8^\circ$
Absorption correction: multi-scan	$h = -14 \rightarrow 20$
(CrysAlis PRO; Oxford Diffraction, 2010)	$k = -13 \rightarrow 10$
$T_{\min} = 0.565, T_{\max} = 1.000$	$l = -11 \rightarrow 11$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.114$	neighbouring sites
S = 0.94	H atoms treated by a mixture of independent
3339 reflections	and constrained refinement
243 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0352P)^2]$
2 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.40$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.45 \text{ e} \text{ Å}^{-3}$

 $0.4 \times 0.4 \times 0.06 \text{ mm}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.23453 (3)	0.51797 (4)	0.79066 (6)	0.0389 (2)	
Cl1	0.13907 (8)	0.44704 (11)	0.91654 (15)	0.0642 (5)	
01	0.30823 (19)	0.6041 (3)	0.9125 (3)	0.0528 (13)	
N1	0.3004 (2)	0.3846 (3)	0.7218 (4)	0.0385 (12)	
N2	0.2006 (3)	0.2818 (4)	0.6107 (6)	0.079 (2)	
N3	0.1439 (2)	0.5299 (3)	0.5301 (5)	0.0526 (16)	
N4	0.2022 (2)	0.6618 (3)	0.6805 (4)	0.0367 (12)	
C1	0.2746 (3)	0.2872 (4)	0.6490 (5)	0.0436 (17)	
C2	0.3246 (3)	0.1932 (4)	0.6186 (5)	0.0432 (17)	
C3	0.3996 (3)	0.1993 (4)	0.6589 (5)	0.0420 (17)	
C4	0.4263 (3)	0.3013 (4)	0.7295 (5)	0.0476 (17)	
C5	0.3758 (3)	0.3887 (4)	0.7583 (5)	0.0433 (17)	
C6	0.4539 (3)	0.0991 (4)	0.6281 (5)	0.061 (2)	
C7	0.1478 (3)	0.6438 (4)	0.5666 (5)	0.0389 (17)	
C8	0.1030 (3)	0.7309 (4)	0.5036 (5)	0.0424 (17)	

C90.0524 (3)0.7024 (4)0.3933 (5)0.0476 (17)C100.0505 (3)0.5841 (4)0.3494 (6)0.067 (2)C110.0968 (4)0.5026 (5)0.4217 (7)0.077 (3)C120.0006 (3)0.7932 (5)0.3246 (6)0.0666 (2)C130.3222 (3)0.7167 (4)0.9098 (5)0.0421 (17)C140.2837 (3)0.7994 (4)0.8159 (5)0.0406 (17)C150.3030 (3)0.9213 (4)0.8254 (5)0.0577 (19)C160.3574 (4)0.9616 (5)0.9200 (6)0.072 (3)C170.3958 (3)0.8815 (5)1.1012 (6)0.066 (2)C180.3778 (3)0.7637 (4)0.0900 (5)0.0428 (17)H2NA0.184 (3)0.223 (3)0.559 (5)0.9950*H20.305700.126300.570400.0520*H2NB0.177 (3)0.348 (3)0.618 (6)0.0950*H40.478000.309300.756300.0570*H50.394400.455800.806500.520*H6A0.42500.037500.576400.920*H6B0.475200.067200.715600.0920*H6B0.108600.560400.392100.0930*H110.094800.423600.395100.0990*H12A-0.029008.30800.395100.0990*H12B-0.033200.755100.255500.0990*H12B-0.033200.755100.278800.0990*H12A0.02900 <t< th=""><th></th><th></th><th></th><th></th><th></th></t<>					
C100.0505 (3)0.5841 (4)0.3494 (6)0.067 (2)C110.0968 (4)0.5026 (5)0.4217 (7)0.077 (3)C120.0006 (3)0.7932 (5)0.3246 (6)0.066 (2)C130.3222 (3)0.7167 (4)0.9098 (5)0.0421 (17)C140.2837 (3)0.7994 (4)0.8159 (5)0.0406 (17)C150.3030 (3)0.9213 (4)0.8254 (5)0.0577 (19)C160.3574 (4)0.9616 (5)0.9200 (6)0.072 (3)C170.3958 (3)0.7637 (4)1.0062 (5)0.053 (2)C190.2287 (3)0.7673 (4)0.7090 (5)0.0428 (17)H2NA0.184 (3)0.223 (3)0.559 (5)0.0950*H20.305700.126300.570400.0520*H2NB0.177 (3)0.348 (3)0.618 (6)0.0950*H40.478000.309300.756300.0570*H50.394400.45500.576400.0920*H6A0.426500.037500.576400.0920*H6A0.45500.128700.572600.0920*H6B0.06800.809200.535600.0510*H110.094800.423600.392100.0930*H12A-0.029008.30800.395100.0990*H12B-0.033200.755100.255500.0990*H12A0.277700.975300.765000.0700*H140.434200.908701.073800.0780*H150.277700.97530<	С9	0.0524 (3)	0.7024 (4)	0.3933 (5)	0.0476 (17)
C110.0968 (4)0.5026 (5)0.4217 (7)0.077 (3)C120.0006 (3)0.7932 (5)0.3246 (6)0.066 (2)C130.3222 (3)0.7167 (4)0.9098 (5)0.0421 (17)C140.2837 (3)0.7994 (4)0.8159 (5)0.0406 (17)C150.3030 (3)0.9213 (4)0.8254 (5)0.0577 (19)C160.3574 (4)0.9616 (5)0.9200 (6)0.072 (3)C170.3958 (3)0.8815 (5)1.0102 (6)0.066 (2)C180.3778 (3)0.7637 (4)1.0062 (5)0.053 (2)C190.2287 (3)0.7673 (4)0.7090 (5)0.0428 (17)H2NA0.184 (3)0.223 (3)0.559 (5)0.0950*H20.305700.126300.570400.0520*H2NB0.177 (3)0.348 (3)0.618 (6)0.0950*H40.478000.309300.756300.0570*H50.394400.455800.806500.0520*H6A0.426500.037500.576400.0920*H6B0.475200.067200.715600.0920*H6B0.108600.50400.272900.8080*H100.018600.50400.272900.0800*H110.094800.423600.395100.0990*H12A-0.033200.755100.255500.0990*H12B-0.033200.755100.278800.0990*H12C0.30800.80500.765000.0700*H160.369001.04250<	C10	0.0505 (3)	0.5841 (4)	0.3494 (6)	0.067 (2)
C120.0006 (3)0.7932 (5)0.3246 (6)0.066 (2)C130.3222 (3)0.7167 (4)0.9098 (5)0.0421 (17)C140.2837 (3)0.7994 (4)0.8159 (5)0.0406 (17)C150.3030 (3)0.9213 (4)0.8254 (5)0.0577 (19)C160.3574 (4)0.9616 (5)0.9200 (6)0.072 (3)C170.3958 (3)0.7673 (4)1.0062 (5)0.053 (2)C180.3778 (3)0.7673 (4)0.7090 (5)0.0428 (17)H2NA0.184 (3)0.223 (3)0.559 (5)0.0950*H20.305700.126300.570400.0520*H2NB0.177 (3)0.348 (3)0.618 (6)0.0950*H40.478000.309300.756300.0520*H50.394400.455800.806500.0520*H6A0.426500.037500.576400.0920*H6B0.475200.067200.715600.0920*H6C0.949500.128700.572600.0920*H100.018600.560400.272900.8080*H110.094800.423600.392100.0930*H12A-0.029000.830800.395100.0990*H12A-0.033200.755100.255500.0990*H150.277700.975300.765000.0900*H150.277700.975100.278800.0990*H150.277000.908701.073800.0780*H160.369001.042500.92470	C11	0.0968 (4)	0.5026 (5)	0.4217 (7)	0.077 (3)
C130.3222 (3)0.7167 (4)0.9098 (5)0.0421 (17)C140.2837 (3)0.7994 (4)0.8159 (5)0.0406 (17)C150.3030 (3)0.9213 (4)0.8254 (5)0.0577 (19)C160.3574 (4)0.9616 (5)0.9200 (6)0.072 (3)C170.3958 (3)0.8815 (5)1.0102 (6)0.066 (2)C180.3778 (3)0.7637 (4)1.0062 (5)0.053 (2)C190.2287 (3)0.7673 (4)0.7090 (5)0.0428 (17)H2NA0.184 (3)0.223 (3)0.559 (5)0.0950*H20.305700.126300.570400.0520*H40.478000.309300.756300.0570*H50.394400.455800.806500.0520*H6A0.426500.037500.576400.0920*H6C0.494500.128700.572600.0920*H6C0.494500.128700.572600.0920*H100.018600.560400.272900.800*H110.094800.423600.392100.0930*H12A-0.029000.830800.395100.0990*H12B-0.033200.755100.257800.0990*H12C0.30800.852100.278800.0990*H150.277700.975300.765000.0700*H160.369001.042500.924700.8505*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*<	C12	0.0006 (3)	0.7932 (5)	0.3246 (6)	0.066 (2)
C140.2837 (3)0.7994 (4)0.8159 (5)0.0406 (17)C150.3030 (3)0.9213 (4)0.8254 (5)0.0577 (19)C160.3574 (4)0.9616 (5)0.9200 (6)0.072 (3)C170.3958 (3)0.8815 (5)1.0102 (6)0.066 (2)C180.3778 (3)0.7637 (4)1.0062 (5)0.0533 (2)C190.2287 (3)0.7673 (4)0.7090 (5)0.0428 (17)H2NA0.184 (3)0.223 (3)0.559 (5)0.0950*H20.305700.126300.570400.0520*H2NB0.177 (3)0.348 (3)0.618 (6)0.0950*H40.478000.309300.756300.0570*H50.394400.455800.806500.0520*H6A0.426500.037500.576400.0920*H6E0.475200.067200.715600.0920*H6E0.106800.809200.535600.0510*H100.018600.560400.272900.800*H110.094800.423600.392100.0930*H12A-0.029000.830800.395100.0990*H12B-0.033200.755100.255500.0990*H12C0.30800.852100.278800.0900*H12C0.30800.852100.278800.0900*H12A-0.029000.852100.278800.0700*H12A-0.033200.755100.257500.0900*H12A0.277700.975300.765000.0700*<	C13	0.3222 (3)	0.7167 (4)	0.9098 (5)	0.0421 (17)
C150.3030 (3)0.9213 (4)0.8254 (5)0.0577 (19)C160.3574 (4)0.9616 (5)0.9200 (6)0.072 (3)C170.3958 (3)0.8815 (5)1.0102 (6)0.066 (2)C180.3778 (3)0.7637 (4)1.0062 (5)0.0353 (2)C190.2287 (3)0.7673 (4)0.7090 (5)0.0428 (17)H2NA0.184 (3)0.223 (3)0.559 (5)0.0950*H20.305700.126300.570400.0520*H2NB0.177 (3)0.348 (3)0.618 (6)0.0950*H40.478000.309300.756300.0570*H50.394400.455800.806500.0520*H6A0.426500.037500.576400.0920*H6B0.475200.067200.715600.0920*H6C0.494500.128700.572600.0920*H80.106800.809200.535600.0510*H100.018600.560400.272900.8000*H110.094800.423600.392100.0990*H12A-0.029000.830800.395100.0990*H12B-0.033200.755100.255500.0990*H12C0.30800.852100.278800.0900*H12C0.369001.042500.924700.0850*H12A-0.029000.852100.278800.0700*H12A0.277700.975300.765000.0700*H12B0.209100.908701.073800.0780* <tr<< td=""><td>C14</td><td>0.2837 (3)</td><td>0.7994 (4)</td><td>0.8159 (5)</td><td>0.0406 (17)</td></tr<<>	C14	0.2837 (3)	0.7994 (4)	0.8159 (5)	0.0406 (17)
C160.3574 (4)0.9616 (5)0.9200 (6)0.072 (3)C170.3958 (3)0.8815 (5)1.0102 (6)0.066 (2)C180.3778 (3)0.7637 (4)1.0062 (5)0.053 (2)C190.2287 (3)0.7673 (4)0.7090 (5)0.0428 (17)H2NA0.184 (3)0.223 (3)0.559 (5)0.0950*H20.305700.126300.570400.0520*H40.478000.309300.756300.0570*H50.394400.455800.806500.0520*H6A0.426500.037500.576400.0920*H6B0.475200.067200.716600.0920*H80.106800.809200.535600.0510*H100.018600.560400.272900.0800*H110.094800.423600.395100.0990*H12A-0.029000.830800.395100.0990*H12A-0.33200.755100.278800.0990*H12A0.30800.852100.278800.0990*H150.277700.975300.765000.0700*H160.369001.042500.924700.850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*	C15	0.3030 (3)	0.9213 (4)	0.8254 (5)	0.0577 (19)
C170.3958 (3)0.8815 (5)1.0102 (6)0.066 (2)C180.3778 (3)0.7637 (4)1.0062 (5)0.053 (2)C190.2287 (3)0.7673 (4)0.7090 (5)0.0428 (17)H2NA0.184 (3)0.223 (3)0.559 (5)0.0950*H20.305700.126300.570400.0520*H2NB0.177 (3)0.348 (3)0.618 (6)0.0950*H40.478000.309300.756300.0570*H50.394400.455800.806500.0520*H6A0.426500.037500.576400.0920*H6B0.475200.067200.715600.0920*H6C0.494500.128700.572600.0920*H80.106800.809200.535600.0510*H110.094800.426600.392100.0930*H12A-0.029000.830800.395100.0990*H12B-0.033200.755100.278800.0990*H12C0.30800.852100.278800.0990*H150.277700.975300.765000.0700*H160.369001.042500.924700.8850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	C16	0.3574 (4)	0.9616 (5)	0.9200 (6)	0.072 (3)
C180.3778 (3)0.7637 (4)1.0062 (5)0.053 (2)C190.2287 (3)0.7673 (4)0.7090 (5)0.0428 (17)H2NA0.184 (3)0.223 (3)0.559 (5)0.0950*H20.305700.126300.570400.0520*H2NB0.177 (3)0.348 (3)0.618 (6)0.0950*H40.478000.309300.756300.0570*H50.394400.455800.806500.0520*H6A0.426500.037500.576400.0920*H6B0.475200.067200.715600.0920*H6C0.494500.128700.572600.0920*H80.106800.809200.535600.0510*H100.018600.560400.272900.8800*H110.094800.423600.395100.0990*H12A-0.029000.830800.395100.0990*H12B-0.033200.755100.278800.0990*H150.277700.975300.765000.0700*H160.369001.042500.924700.850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	C17	0.3958 (3)	0.8815 (5)	1.0102 (6)	0.066 (2)
C190.2287 (3)0.7673 (4)0.7090 (5)0.0428 (17)H2NA0.184 (3)0.223 (3)0.559 (5)0.0950*H20.305700.126300.570400.0520*H2NB0.177 (3)0.348 (3)0.618 (6)0.0950*H40.478000.309300.756300.0570*H50.394400.455800.806500.0520*H6A0.426500.037500.576400.0920*H6B0.475200.067200.715600.0920*H6C0.494500.128700.572600.0920*H80.106800.809200.535600.0510*H100.018600.560400.272900.800*H110.094800.423600.392100.0990*H12A-0.029000.830800.395100.0990*H12B-0.033200.755100.278800.0990*H150.277700.975300.765000.070*H160.369001.042500.924700.850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	C18	0.3778 (3)	0.7637 (4)	1.0062 (5)	0.053 (2)
H2NA0.184 (3)0.223 (3)0.559 (5)0.0950*H20.305700.126300.570400.0520*H2NB0.177 (3)0.348 (3)0.618 (6)0.0950*H40.478000.309300.756300.0570*H50.394400.455800.806500.0520*H6A0.426500.037500.576400.0920*H6B0.475200.067200.715600.0920*H6C0.494500.128700.572600.0510*H100.018600.560400.272900.0800*H110.094800.423600.392100.0930*H12A-0.029000.830800.395100.0990*H12B-0.033200.755100.255500.0990*H150.277700.975300.765000.0700*H160.369001.042500.924700.0850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	C19	0.2287 (3)	0.7673 (4)	0.7090 (5)	0.0428 (17)
H20.305700.126300.570400.0520*H2NB0.177 (3)0.348 (3)0.618 (6)0.0950*H40.478000.309300.756300.0570*H50.394400.455800.806500.0520*H6A0.426500.037500.576400.0920*H6B0.475200.067200.715600.0920*H6C0.494500.128700.572600.0920*H80.106800.809200.535600.0510*H100.018600.560400.272900.0800*H110.094800.423600.392100.0930*H12A-0.029000.830800.395100.0990*H12B-0.033200.755100.255500.0990*H150.277700.975300.765000.0700*H160.369001.042500.924700.0850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	H2NA	0.184 (3)	0.223 (3)	0.559 (5)	0.0950*
H2NB0.177 (3)0.348 (3)0.618 (6)0.0950*H40.478000.309300.756300.0570*H50.394400.455800.806500.0520*H6A0.426500.037500.576400.0920*H6B0.475200.067200.715600.0920*H6C0.494500.128700.572600.0920*H80.106800.809200.535600.0510*H100.018600.560400.272900.0800*H110.094800.423600.392100.0930*H12A-0.029000.830800.395100.0990*H12B-0.033200.755100.255500.0990*H150.277700.975300.765000.0700*H160.369001.042500.924700.0850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	H2	0.30570	0.12630	0.57040	0.0520*
H40.478000.309300.756300.0570*H50.394400.455800.806500.0520*H6A0.426500.037500.576400.0920*H6B0.475200.067200.715600.0920*H6C0.494500.128700.572600.0920*H80.106800.809200.535600.0510*H100.018600.560400.272900.0800*H110.094800.423600.392100.0930*H12A-0.029000.830800.395100.0990*H12B-0.033200.755100.255500.0990*H150.277700.975300.765000.0700*H160.369001.042500.924700.850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	H2NB	0.177 (3)	0.348 (3)	0.618 (6)	0.0950*
H50.394400.455800.806500.0520*H6A0.426500.037500.576400.0920*H6B0.475200.067200.715600.0920*H6C0.494500.128700.572600.0920*H80.106800.809200.535600.0510*H100.018600.560400.272900.0800*H110.094800.423600.392100.0930*H12A-0.029000.830800.395100.0990*H12B-0.033200.755100.255500.0990*H150.277700.975300.765000.0700*H160.369001.042500.924700.0850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	H4	0.47800	0.30930	0.75630	0.0570*
H6A0.426500.037500.576400.0920*H6B0.475200.067200.715600.0920*H6C0.494500.128700.572600.0920*H80.106800.809200.535600.0510*H100.018600.560400.272900.0800*H110.094800.423600.392100.0930*H12A-0.029000.830800.395100.0990*H12B-0.033200.755100.255500.0990*H150.277700.975300.765000.0700*H160.369001.042500.924700.0850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	Н5	0.39440	0.45580	0.80650	0.0520*
H6B0.475200.067200.715600.0920*H6C0.494500.128700.572600.0920*H80.106800.809200.535600.0510*H100.018600.560400.272900.0800*H110.094800.423600.392100.0930*H12A-0.029000.830800.395100.0990*H12B-0.033200.755100.255500.0990*H150.277700.975300.765000.0700*H160.369001.042500.924700.0850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	H6A	0.42650	0.03750	0.57640	0.0920*
H6C0.494500.128700.572600.0920*H80.106800.809200.535600.0510*H100.018600.560400.272900.0800*H110.094800.423600.392100.0930*H12A-0.029000.830800.395100.0990*H12B-0.033200.755100.255500.0990*H12C0.30800.852100.278800.0990*H150.277700.975300.765000.0700*H160.369001.042500.924700.0850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	H6B	0.47520	0.06720	0.71560	0.0920*
H80.106800.809200.535600.0510*H100.018600.560400.272900.0800*H110.094800.423600.392100.0930*H12A-0.029000.830800.395100.0990*H12B-0.033200.755100.255500.0990*H12C0.030800.852100.278800.0990*H150.277700.975300.765000.0700*H160.369001.042500.924700.0850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	H6C	0.49450	0.12870	0.57260	0.0920*
H100.018600.560400.272900.0800*H110.094800.423600.392100.0930*H12A-0.029000.830800.395100.0990*H12B-0.033200.755100.255500.0990*H12C0.030800.852100.278800.0990*H150.277700.975300.765000.0700*H160.369001.042500.924700.0850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	H8	0.10680	0.80920	0.53560	0.0510*
H110.094800.423600.392100.0930*H12A-0.029000.830800.395100.0990*H12B-0.033200.755100.255500.0990*H12C0.030800.852100.278800.0990*H150.277700.975300.765000.0700*H160.369001.042500.924700.0850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	H10	0.01860	0.56040	0.27290	0.0800*
H12A-0.029000.830800.395100.0990*H12B-0.033200.755100.255500.0990*H12C0.030800.852100.278800.0990*H150.277700.975300.765000.0700*H160.369001.042500.924700.0850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	H11	0.09480	0.42360	0.39210	0.0930*
H12B-0.033200.755100.255500.0990*H12C0.030800.852100.278800.0990*H150.277700.975300.765000.0700*H160.369001.042500.924700.0850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	H12A	-0.02900	0.83080	0.39510	0.0990*
H12C0.030800.852100.278800.0990*H150.277700.975300.765000.0700*H160.369001.042500.924700.0850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	H12B	-0.03320	0.75510	0.25550	0.0990*
H150.277700.975300.765000.0700*H160.369001.042500.924700.0850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	H12C	0.03080	0.85210	0.27880	0.0990*
H160.369001.042500.924700.0850*H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	H15	0.27770	0.97530	0.76500	0.0700*
H170.434200.908701.073800.0780*H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	H16	0.36900	1.04250	0.92470	0.0850*
H180.403300.712301.069700.0640*H190.209100.829000.652300.0520*	H17	0.43420	0.90870	1.07380	0.0780*
<u>H19 0.20910 0.82900 0.65230 0.0520*</u>	H18	0.40330	0.71230	1.06970	0.0640*
	H19	0.20910	0.82900	0.65230	0.0520*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0416 (4)	0.0315 (3)	0.0429 (4)	0.0040 (3)	-0.0052 (3)	-0.0010 (3)
0.0576 (10)	0.0592 (8)	0.0768 (10)	0.0139 (7)	0.0154 (8)	0.0244 (8)
0.067 (3)	0.0363 (18)	0.053 (2)	0.0006 (16)	-0.0208 (19)	-0.0021 (17)
0.035 (2)	0.034 (2)	0.046 (2)	-0.0017 (18)	-0.004 (2)	-0.0007 (19)
0.043 (3)	0.052 (3)	0.139 (5)	0.006 (2)	-0.026 (3)	-0.049 (3)
0.053 (3)	0.041 (2)	0.062 (3)	-0.003 (2)	-0.016 (2)	-0.006 (2)
0.034 (2)	0.040 (2)	0.036 (2)	-0.0026 (18)	0.0004 (19)	0.0008 (19)
0.037 (3)	0.040 (3)	0.053 (3)	-0.001 (2)	-0.005 (3)	-0.003 (3)
0.045 (3)	0.040 (3)	0.044 (3)	0.003 (2)	-0.003 (3)	-0.005 (2)
0.046 (3)	0.039 (3)	0.041 (3)	0.008 (2)	0.003 (3)	-0.001 (2)
0.033 (3)	0.060 (3)	0.049 (3)	0.008 (3)	-0.006 (3)	0.000 (3)
0.042 (3)	0.041 (3)	0.046 (3)	-0.008 (2)	-0.009 (3)	-0.003 (2)
0.060 (4)	0.061 (3)	0.063 (4)	0.021 (3)	0.008 (3)	0.001 (3)
0.038 (3)	0.042 (3)	0.037 (3)	-0.004 (2)	0.006 (2)	-0.004 (2)
0.045 (3)	0.037 (3)	0.045 (3)	0.001 (2)	-0.001 (3)	0.005 (2)
0.037 (3)	0.055 (3)	0.051 (3)	-0.003 (3)	0.004 (3)	0.015 (3)
	U^{11} 0.0416 (4) 0.0576 (10) 0.067 (3) 0.035 (2) 0.043 (3) 0.053 (3) 0.034 (2) 0.037 (3) 0.045 (3) 0.045 (3) 0.042 (3) 0.042 (3) 0.045 (3) 0.045 (3) 0.045 (3) 0.045 (3) 0.045 (3)	$\begin{array}{cccc} U^{11} & U^{22} \\ \hline 0.0416 (4) & 0.0315 (3) \\ \hline 0.0576 (10) & 0.0592 (8) \\ \hline 0.067 (3) & 0.0363 (18) \\ \hline 0.035 (2) & 0.034 (2) \\ \hline 0.043 (3) & 0.052 (3) \\ \hline 0.053 (3) & 0.041 (2) \\ \hline 0.034 (2) & 0.040 (2) \\ \hline 0.037 (3) & 0.040 (3) \\ \hline 0.045 (3) & 0.040 (3) \\ \hline 0.046 (3) & 0.039 (3) \\ \hline 0.042 (3) & 0.041 (3) \\ \hline 0.060 (4) & 0.061 (3) \\ \hline 0.038 (3) & 0.042 (3) \\ \hline 0.037 (3) & 0.055 (3) \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

supplementary materials

C10	0.062 (4)	0.059 (4)	0.077 (4)	-0.010 (3)	-0.026 (3)	-0.006 (3)
C11	0.084 (5)	0.053 (3)	0.092 (5)	-0.005 (3)	-0.027 (4)	-0.015 (3)
C12	0.053 (4)	0.086 (4)	0.058 (4)	0.008 (3)	-0.011 (3)	0.013 (3)
C13	0.038 (3)	0.051 (3)	0.038 (3)	-0.005 (2)	0.008 (3)	-0.009 (3)
C14	0.048 (3)	0.037 (3)	0.037 (3)	-0.006 (2)	0.004 (3)	-0.009 (2)
C15	0.069 (4)	0.051 (3)	0.053 (3)	-0.014 (3)	0.002 (3)	-0.003 (3)
C16	0.084 (5)	0.068 (4)	0.062 (4)	-0.030 (4)	-0.001 (4)	-0.011 (3)
C17	0.065 (4)	0.083 (4)	0.049 (4)	-0.019 (3)	0.001 (3)	-0.026 (3)
C18	0.049 (4)	0.067 (4)	0.043 (3)	0.002 (3)	-0.008 (3)	-0.014 (3)
C19	0.041 (3)	0.046 (3)	0.042 (3)	0.001 (2)	0.007 (3)	0.005 (3)

Geometric parameters (Å, °)

Cu1—Cl1	2.2368 (16)	C13—C18	1.402 (7)
Cu1—O1	1.942 (3)	C13—C14	1.429 (7)
Cu1—N1	2.013 (4)	C14—C19	1.407 (7)
Cu1—N3	2.865 (5)	C14—C15	1.410 (6)
Cu1—N4	1.987 (4)	C15—C16	1.351 (8)
O1—C13	1.287 (6)	C16—C17	1.389 (8)
N1—C1	1.357 (6)	C17—C18	1.359 (7)
N1—C5	1.345 (6)	С2—Н2	0.9300
N2—C1	1.326 (7)	C4—H4	0.9300
N3—C7	1.325 (6)	С5—Н5	0.9300
N3—C11	1.319 (8)	С6—Н6А	0.9600
N4—C7	1.415 (6)	C6—H6B	0.9600
N4—C19	1.295 (6)	С6—Н6С	0.9600
N2—H2NB	0.85 (4)	C8—H8	0.9300
N2—H2NA	0.86 (4)	C10—H10	0.9300
C1—C2	1.407 (7)	C11—H11	0.9300
C2—C3	1.347 (7)	C12—H12A	0.9600
C3—C6	1.507 (7)	C12—H12B	0.9600
C3—C4	1.394 (7)	C12—H12C	0.9600
C4—C5	1.354 (7)	C15—H15	0.9300
C7—C8	1.370 (7)	C16—H16	0.9300
C8—C9	1.371 (7)	C17—H17	0.9300
C9—C10	1.391 (6)	C18—H18	0.9300
C9—C12	1.490 (7)	С19—Н19	0.9300
C10—C11	1.380 (8)		
C11_Cu1_01	110 53 (10)	C14—C13—C18	1167(4)
C_{11} C_{11} N_{1}	110.94 (11)	C_{13} C_{14} C_{15} C_{15}	110.7 (4)
C_{11} C_{11} N_{1} N_{3}	94 50 (9)	C_{13} C_{14} C_{19}	119.1 (4) 124 3 (4)
C_{11} C_{11} N_{4}	111 53 (11)	C_{15} C_{14} C_{19}	116 5 (4)
O1 - Cu1 - N1	100.91 (14)	C_{14} C_{15} C_{16}	121.7(5)
O1 - Cu1 - N3	$144\ 00\ (12)$	C_{15} C_{16} C_{17}	119 5 (5)
O1 - Cu1 - N4	94 01 (14)	$C_{16} - C_{17} - C_{18}$	120.6 (5)
N1—Cu1—N3	93 31 (13)	C_{13} $-C_{18}$ $-C_{17}$	120.0(5) 122.4(5)
N1—Cu1—N4	125.93 (15)	N4-C19-C14	127.5 (4)
N3—Cu1—N4	51 74 (13)	C1-C2-H2	120.00
Cu1 - 01 - C13	1267(3)	C_{3} C_{2} H_{2}	120.00

Cu1—N1—C1	125.6 (3)	C3—C4—H4	121.00
Cu1—N1—C5	117.3 (3)	C5—C4—H4	120.00
C1—N1—C5	117.1 (4)	N1—C5—H5	118.00
Cu1—N3—C7	78.6 (3)	C4—C5—H5	118.00
Cu1—N3—C11	162.7 (3)	С3—С6—Н6А	109.00
C7—N3—C11	116.7 (4)	С3—С6—Н6В	109.00
Cu1—N4—C7	116.5 (3)	С3—С6—Н6С	109.00
Cu1—N4—C19	122.9 (3)	H6A—C6—H6B	109.00
C7—N4—C19	120.6 (4)	H6A—C6—H6C	109.00
H2NA—N2—H2NB	124 (5)	H6B—C6—H6C	109.00
C1—N2—H2NB	114 (3)	C7—C8—H8	120.00
C1—N2—H2NA	119 (3)	C9—C8—H8	120.00
N2—C1—C2	121.0 (4)	C9—C10—H10	121.00
N1—C1—N2	118.1 (4)	C11—C10—H10	121.00
N1—C1—C2	120.9 (5)	N3—C11—H11	118.00
C1—C2—C3	120.5 (4)	C10-C11-H11	118.00
C2—C3—C4	118.4 (4)	C9—C12—H12A	109.00
C2—C3—C6	121.2 (4)	C9—C12—H12B	109.00
C4—C3—C6	120.4 (5)	C9—C12—H12C	109.00
C3—C4—C5	119.0 (5)	H12A—C12—H12B	110.00
N1—C5—C4	124.2 (4)	H12A—C12—H12C	110.00
N3—C7—C8	123.6 (5)	H12B—C12—H12C	109.00
N3—C7—N4	111.1 (4)	C14—C15—H15	119.00
N4—C7—C8	125.2 (4)	C16—C15—H15	119.00
С7—С8—С9	119.8 (4)	C15—C16—H16	120.00
C8—C9—C10	117.0 (4)	C17—C16—H16	120.00
C10—C9—C12	121.2 (5)	C16—C17—H17	120.00
C8—C9—C12	121.8 (4)	C18—C17—H17	120.00
C9—C10—C11	118.7 (5)	C13—C18—H18	119.00
N3-C11-C10	124.0 (5)	C17—C18—H18	119.00
O1—C13—C14	124.4 (4)	N4—C19—H19	116.00
O1—C13—C18	118.8 (4)	C14—C19—H19	116.00
Cl1—Cu1—O1—C13	-113.3 (4)	C11—N3—C7—C8	3.8 (8)
N1—Cu1—O1—C13	129.3 (4)	C7—N3—C11—C10	-2.4 (9)
N3—Cu1—O1—C13	17.9 (5)	Cu1—N4—C7—N3	-17.2 (5)
N4—Cu1—O1—C13	1.5 (4)	Cu1—N4—C7—C8	161.1 (4)
Cl1—Cu1—N1—C1	52.5 (4)	C19—N4—C7—N3	162.7 (4)
Cl1—Cu1—N1—C5	-123.3 (3)	C19—N4—C7—C8	-19.0 (7)
O1—Cu1—N1—C1	169.6 (4)	Cu1—N4—C19—C14	1.3 (7)
O1—Cu1—N1—C5	-6.1 (3)	C7—N4—C19—C14	-178.6 (5)
N3—Cu1—N1—C1	-43.6 (4)	N1—C1—C2—C3	-1.3 (7)
N3—Cu1—N1—C5	140.6 (3)	N2—C1—C2—C3	-179.5 (5)
N4—Cu1—N1—C1	-87.2 (4)	C1—C2—C3—C4	-0.8 (7)
N4—Cu1—N1—C5	97.0 (4)	C1—C2—C3—C6	179.6 (4)
Cl1—Cu1—N3—C7	104.9 (3)	C2—C3—C4—C5	1.8 (7)
O1—Cu1—N3—C7	-30.1 (4)	C6—C3—C4—C5	-178.6 (4)
N1—Cu1—N3—C7	-143.8 (3)	C3—C4—C5—N1	-0.7 (7)
N4—Cu1—N3—C7	-9.1 (3)	N3—C7—C8—C9	-2.2 (8)

Cl1—Cu1—N4—C7	-68.9 (3)	N4—C7—C8—C9	179.8 (5)
Cl1—Cu1—N4—C19	111.2 (4)	C7—C8—C9—C10	-1.1 (7)
O1—Cu1—N4—C7	177.2 (3)	C7—C8—C9—C12	177.9 (5)
O1—Cu1—N4—C19	-2.7 (4)	C8—C9—C10—C11	2.4 (8)
N1—Cu1—N4—C7	70.6 (4)	C12—C9—C10—C11	-176.6 (5)
N1—Cu1—N4—C19	-109.3 (4)	C9—C10—C11—N3	-0.7 (9)
N3—Cu1—N4—C7	9.4 (3)	O1—C13—C14—C15	178.6 (5)
N3—Cu1—N4—C19	-170.5 (4)	O1—C13—C14—C19	-3.8 (8)
Cu1—O1—C13—C14	1.3 (7)	C18—C13—C14—C15	-0.3 (7)
Cu1—O1—C13—C18	-179.9 (3)	C18—C13—C14—C19	177.3 (5)
Cu1—N1—C1—N2	4.9 (6)	O1—C13—C18—C17	-179.9 (5)
Cu1—N1—C1—C2	-173.4 (3)	C14—C13—C18—C17	-1.0 (8)
C5—N1—C1—N2	-179.4 (5)	C13—C14—C15—C16	0.6 (8)
C5—N1—C1—C2	2.4 (6)	C19—C14—C15—C16	-177.2 (5)
Cu1—N1—C5—C4	174.7 (4)	C13—C14—C19—N4	2.4 (9)
C1—N1—C5—C4	-1.4 (7)	C15—C14—C19—N4	-179.9 (5)
Cu1—N3—C7—N4	10.8 (3)	C14—C15—C16—C17	0.3 (9)
Cu1—N3—C7—C8	-167.5 (5)	C15—C16—C17—C18	-1.6 (9)
C11—N3—C7—N4	-177.9 (5)	C16—C17—C18—C13	2.0 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A	
N2—H2 <i>NB</i> …N3	0.85 (4)	2.27 (4)	3.039 (6)	150 (5)	
N2—H2NA····Cl1 ⁱ	0.86 (4)	2.44 (4)	3.305 (5)	179 (7)	

Symmetry code: (i) x, -y+1/2, z-1/2.