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Primary Sjögren’s syndrome (pSS) is a chronic systemic autoimmune disease
characterized by exocrine gland damage and extraglandular involvements. To identify
potential biomarkers for the early detection of pSS and to further investigate the
potential roles of the biomarkers in the progression of pSS, our previous RNA
sequencing data and four microarray data of salivary glands (SGs) were combined
for integrative transcriptome analysis between pSS and non-pSS. Differential gene
expression analysis, gene co-expression network analysis, and pathway analysis were
conducted to detect hub genes, which were subsequently investigated in peripheral
blood mononuclear cell (PBMC) and plasma. Correlation analysis, single-gene Gene Set
Enrichment Analysis, and receiver operating characteristic (ROC) curve were applied
to investigate the potential function of the hub genes and their classification capacity
for pSS. A total of 51 common up-regulated genes were identified among different
pSS cohorts. A key module was found to be the most closely linked to pSS, which
was significantly associated with inflammation-related pathways. Seven overlapped hub
genes (ICOS, SELL, CR2, BANK1, MS4A1, ZC3H12D, and CCR7) were identified,
among which ICOS was demonstrated to be involved in most crucial immune pathways.
ICOS was up-regulated not only in SGs but also in PBMC and plasma in pSS, and
the expression of ICOS was closely associated with lymphocytic infiltration in SGs and
disease activity of pSS patients. It showed a strong classification capacity with classic
clinical index in SGs (ROC curve 0.9821) and significant distinct discrimination in PBMC
(ROC curve 0.9107). These findings are expected to gain a further insight into the
pathogenesis of pSS and provide a promising candidate for the early detection of pSS.

Keywords: primary Sjögren’s syndrome, single gene GSEA, WGCNA, RT-qPCRl, ICOS, ELISA

INTRODUCTION

Primary Sjögren’s syndrome (pSS) is a chronic systemic autoimmune disorder characterized by
exocrine gland damage caused by focal lymphocytic infiltration especially presenting as xerostomia
and xerophthalmia in nearly 90% patients (Seror et al., 2010; Manuel et al., 2017). The disease affects
females more frequently than males, with a ratio of incidence close to 10:1, particularly middle-aged
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women between 30 and 50 years (Ramos-Casals et al.,
2015; Brito-Zeron et al., 2016). Besides the dysfunction of
exocrine glands, extraglandular involvements are widely varied,
ranging from mild non-specific symptoms including arthralgia,
fatigue, and rash to severe systemic involvement, such as
interstitial pneumonia, tubulointerstitial nephritis, neuropathy,
and lymphoma, leading to poor prognosis and increased social
burden (Ramos-Casals et al., 2012). Hence, there is an unmet
need for in-depth investigation of the pathogenesis and a
novel improved diagnostic marker for early intervention of
the process of pSS.

The identification of biomarkers of pSS by high-throughput
technologies may contribute to elucidating the molecular
mechanism, improving on current classification criteria, and
providing insight into any possible therapeutic targets (Aqrawi
et al., 2017; Baldini et al., 2018). Zhang et al. (2019) found
a series of distinct gene expression signatures in pSS and
identified 19 hub genes, with some of them correlated with
inflammatory response or interferon pathways. The RNA-seq
analysis of salivary glands (SGs) also revealed that the expressions
of CCR7 and CCL21 were markedly increased, which may assist
in the recruitment of diverse immune cells to the SGs (Tandon
et al., 2017). Moreover, in vitro experiments demonstrated
that interleukin 17 (IL-17)-producing helper T cells (Th17)-
like [CD4(+) CXCR5(+) CCR6(+)] T cells in circulation were
found to be significantly higher in pSS than that in controls, and
activated TH17-like cells could regulate follicular helper T cell
(Tfh cell) differentiation and facilitate naïve B cells producing
immunoglobulin (Li et al., 2012).

Weighted gene co-expression network analysis (WGCNA) is
a method frequently used to explore functional pathways and
candidate biomarkers through integrating gene expression and
clinical data effectively (Langfelder and Horvath, 2008; Presson
et al., 2008). In addition, WGCNA has been applied to construct
gene co-expression network modules and identify hub genes
in several autoimmune diseases, including rheumatoid arthritis
(RA) (Ma et al., 2017), inflammatory bowel disease (IBD) (Li
et al., 2016), and autoimmune thyroid disease (ATD) (Shao et al.,
2018). Moreover, the gene expression profiles of more than 200
PBMC samples of pSS have been investigated, and WGCNA
analysis was applied to explore the gene–network signature and
potential functions of hub genes based on Gene Expression
Omnibus (GEO) public database (Yao et al., 2019). Recently,
Inamo et al. (2020) also identified LINC00487 and SOX4 as key
genes associated with the dysregulation of B cells in pSS patients
using WGCNA algorithm. These studies provided a convincing
possibility that WGCNA can be effectively applied to identify hub
genes as biomarkers for the early detection of pSS and facilitate a
deep understanding of its pathogenesis.

However, most previous studies mainly focused on different
gene expression patterns between the pSS and healthy subgroups,
and there are less studies applying WGCNA to investigate the
gene expression signature of pSS. In our study, we first combined
WGCNA analysis with the conjoint analysis of different gene
expression patterns, based on RNA sequencing and microarray
datasets, to explore hub genes in SGs of pSS. The integrative
study was followed by clinical validation. We were convinced that

the study would help in the identification of biomarkers of pSS
for early diagnosis, thus improving the prognosis and facilitating
understanding of the underlying mechanisms of the disease.

MATERIALS AND METHODS

Patients and Data Preparation
A total of 16 pSS patients and 13 patients in the non-pSS
subgroup were recruited from the First Affiliated Hospital
of Wenzhou Medical University to conduct RNA sequencing
with salivary glands. For further validation of candidate gene
expression in peripheral bloods, the peripheral blood samples
of different groups (including 35 pSS, 20 non-pSS, 30 RA, and
23 systemic lupus erythematosus (SLE) subgroups) were also
recruited from this hospital to perform quantitative reverse
transcription polymerase chain reaction (RT-qPCR) experiments.
In addition, another 58 pSS were recruited in our study, and
the expression levels of the hub genes in their SGs were
investigated by RT-qPCR to explore their relation with disease
activity. The pSS patients fulfilled the 2016 American College
of Rheumatology (ACR)/European League Against Rheumatism
(EULAR) classification criteria (Shiboski et al., 2017) or 2012
ACR criteria (Shiboski et al., 2012). The RA patients fulfilled the
2010 ACR/ELUAR criteria (Aletaha et al., 2010), and the SLE
patients were in accord with the 2019 ELUAR/ACR classification
criteria (Aringer et al., 2019). The non-pSS subgroups were those
who experienced subjective clinical symptoms of xerostomia
or xerophthalmia but did not meet the classification criteria
of pSS. All SG samples were conserved in RNAlater R© within
−80◦C for subsequent RNA sequencing, and the peripheral
blood samples were also kept in −80◦C after centrifuging at
1,000 revolutions/min for 10 min, prepared for subsequent
quantitative reverse transcription polymerase chain reaction
(RT-qPCR) analysis and enzyme-linked immunosorbent assay
(ELISA) experiments. This study was approved by the Ethics
Committee of the First Affiliated Hospital of Wenzhou Medical
University, and written informed consent was received from all
participants for their enrollment.

To increase the accuracy and reliability of the findings, we also
downloaded four eligible microarray datasets from GEO with the
following selection criteria: (a) inclusion of gene expression data
of pSS, non-pSS, or healthy donors, excluding Sjogren syndrome
cases which were associated with other autoimmune diseases
such as RA, SLE, and so on, (b) using SG samples for microarray
analysis rather than blood samples, and the patients had not
received pSS systemic treatment before the salivary gland biopsy,
and (c) inclusion of > 5,000 genes in every GEO platform.

RNA Sequencing and Data
Preprocessing
Total RNA from frozen SG samples were isolated using
TRIzol R© Reagent (Invitrogen), and RNA purity was checked
using the Nano Photometer R© spectrophotometer (IMPLEN, CA,
United States). The high-quality of RNA [RNA integrity numbers
(RIN) > 9] for cDNA library preparations was assessed by
Bioanalyzer 2100 system using the Agilent RNA 6000 Nano kit
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(Agilent Technologies, CA, United States). Sequencing libraries
were constructed using NEBNext UltraTM RNA Library Prep Kit
for Illumina (NEB, United States), with the input material of 3 µg
of RNA per sample, and the prepared libraries were subsequently
sequenced on an Illumina HiSeq platform. Then, raw reads
were trimmed using Cutadapt adapters, and low-quality reads
were filtered using Trim Galore. Quality control reports of
sequence reads were obtained through FastQC software1. Finally,
the sequencing data wee aligned to the human reference
genome hg38 using STAR software. The read count files were
filtered with low expression and normalized by DEseq2 package
(Love et al., 2014).

Four gene expression profiles were downloaded from GEO,
and the k-nearest neighboring (KNN) imputation algorithm
was conducted to impute the few missing values through the
impute package (Hastie et al., 2001). Then, probes with zero
(the lowest expression) were eliminated by a filtering process,
and the ComBat method of R package sva (Leek et al., 2012)
was used to remove known batch effects from microarray
data. Finally, quantile normalization was conducted using
normalizeWithinArrays and normalizeBetweenArrays functions,
and the probe IDs were converted into gene symbols based on the
annotation file for probes of the platform.

Identification of Differentially Expressed
Genes
We used princomp function to conduct a two-dimensional
principal component analysis (PCA) and hierarchical clustering
to visualize the similarities and the differences between the pSS
and the non-pSS subgroups. Subsequently, the limma (Ritchie
et al., 2015) and DEseq2 packages were used to screen the
differentially expressed genes (DEGs) of microarray and RNA-
seq data. The DEGs were identified based on the following
criteria: adjusted p < 0.05 and absolute value of log2 fold change
(FC) > 1. All the DEGs were visualized in three volcano plots
using EnhancedVolcano package2, and the common DEGs were
exhibited by clustering heat map and Venn diagram.

Weighted Gene Co-expression Network
Analysis
We extracted the top 25% genes with highest variance in
ANOVA to construct the co-expression network using RNA-
seq data with complete clinical information by the R package
WGCNA (Langfelder and Horvath, 2008). Subsequently, the
adjacency matrix was transformed into topological overlap
matrix (TOM), and different gene modules were identified based
on hierarchically clustering genes through TOM. Here the soft-
thresholding power was set as 24 when 0.8 was used as the
scale-free R2 threshold, and the minimum number of genes in the
modules was set as 30. Moreover, the cut height threshold was set
as 0.25 to merge possibly similar modules. The module that highly
correlated with clinical phenotype was identified to conduct
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
2https://github.com/kevinblighe/EnhancedVolcano

analysis, and hub genes were defined with gene significance
(GS) > 0.5 and module membership (MM) > 0.9. Combined with
the previously found common DEGs, common hub genes were
ultimately identified for validation.

Visualization of Chromosome Locations
and Function Enrichment Analyses
To acquire detailed chromosome position information of the
common DEGs, we downloaded gtf annotation of human (hg38)
RefSeq transcripts from UCSC Genome Browser dataset3. Circos
plots were created with function of RCircos.Gene.Connector.Plot
and RCircos.Heatmap.Plot in RCircos package (Zhang et al.,
2013). Correlation among the common DEGs was calculated
by Pearson’s test through ggcorrplot package. For function
enrichment analyses, Gene Ontology (GO) and KEGG pathway
analyses were conducted by using ClusterProfiler package (Yu
et al., 2012). The top two GO and all KEGG terms with
adjusted p < 0.05 were visualized graphically by GOplot
package (Walter et al., 2015) and “ClueGO” plugin in Cytoscape
software, respectively (Bindea et al., 2009). The protein–
protein interaction (PPI) networks of the common DEGs were
downloaded from STRING database (Szklarczyk et al., 2011) and
structured by Cytoscape.

Single-Gene GSEA
To validate the function of ICOS in pSS, we divided the pSS
subgroups into two groups with high or low expression levels
of ICOS based on candidate gene scores, calculated as described
in other studies (Kirou et al., 2004, 2005). The mean and SD
level of ICOS in the non-pSS [mean (control) and SD (control)]
were calculated to standardize the expression of ICOS for each
sample. Then, the standardized expression levels of each patient
were reckoned as per the following calculation formula:

Candidate− Gene Sscores (ICOS) i =

ICOS i pss−Mean (control)
SD (control)

,

where i = number of the patients and ICOS i pss = expression
levels of ICOS in each pSS patient. Subsequently, the threshold
of candidate gene scores was identified through double normal
distribution model using mixtools package. The software of
GESA v4.0 was used for GSEA of ICOS in pSS.

Immune Infiltration Analysis
To further evaluate the immune cell infiltration features of
SGs in pSS, we applied the Immune Cell Abundance Identifier
(ImmuCellAI) to transform the gene expression profiles into
immune infiltration files based on the abundance of 24 immune
cell types4 (Miao et al., 2020). The heat map of immune
infiltration was constructed using “pheatmap” R package, and
the comparison of different immune cells among subgroups with
different extents of immune infiltration scores was performed
using Wilcoxon test. Moreover, the correction between the

3http://genome.ucsc.edu
4http://bioinfo.life.hust.edu.cn/web/ImmuCellAI
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expression of ICOS and the infiltration scores of immune cells
was conducted using “Spearman” methods.

Phenotype Analysis of ICOS and
Diagnostic Model for pSS
To understand the expression of ICOS in SGs and peripheral
bloods of healthy cohorts, we downloaded RNA-seq data of
ICOS in various tissues from GTEX database (GTEx Consortium,
2013), and the expression levels of ICOS were shown in
violin plots. In addition, we divided the pSS and the non-pSS
into opposing groups based on clinical phenotype to further
evaluate the expression of ICOS with Wilcoxon test. Moreover,
to further explore the correlation between the expression of
ICOS and systematic involvements of pSS, we used EULAR
Sjogren’s Syndrome Disease Activity Index (ESSDAI) scores
to reflect the disease activity and systemic involvement of
the participant (Seror et al., 2010) and then performed the
correlation analysis between the expression of ICOS and clinical
features. The randomForest package was applied to conduct
random forest (RF) models with 100 runs of cross-validation,
which predicted pSS based on ICOS gene expression and other
clinical features, including focus score, anti-SSA/Ro positivity,
and hypergammaglobulinemia. The ROCR package (Sing et al.,
2005) was used to compute receiver operating characteristic
(ROC) curves, and the ggplot2 package was applied to present
the mean decrease accuracy and the mean decrease Gini to assess
the impact of each variable in RF.

RT-qPCR Analysis and ELISA Experiment
Validation
Total RNA was isolated from peripheral blood samples using
TRIzol R© reagent (Invitrogen) according to protocol, and 1 µg of
total RNA was used for the reverse transcription and qPCR using
the GoTaq R© 2-Step RT-qPCR System (Promega). ICOS gene of
pSS was, respectively, assayed by qPCR on Applied Biosystems
Real Time PCR Instrument (ABI) with three steps. For each
PCR detection, after enzyme activation at 95◦C for 2 min,
amplification of 95◦C was performed for 40 cycles and completed
after 60◦C for 60 s. For each example, the PCR was repeated three
times, and the gene expression of ICOS was measured according
to comparative 1Ct (11Ct) method.

Fresh plasma was gained from peripheral blood samples of pSS
after centrifugation at 2,400 rpm for 20 min using a centrifuge
5810 R© (Eppendorf, Germany), and ELISA 96-well plate kits of
six proteins (ICOS, IL-17A, IFN-, TGFβ1, IL-6, and IL-4) were
used as the carrier with prepackaged enzyme-labeled antibody.
Subsequently, 150 µl stock solution was serially diluted into
standard dilutions with different concentrations (120, 60, 30, 15,
and 7.5 ng/ml) to draw standard curves. Then, 50 µl plasma and
50 µl biotinylated antigen working solution were, respectively,
added into each well and incubated at 37◦C for 60 min. Following
washing for five times, 50 µl avidin-HRP was added into the
wells and incubated again at 37◦C for 30 min. After reduplicated
washing, 50 µl of chromogenic reagents A and B was used to
develop the stain for 10 min, and 50 µl stop buffer was employed
to stop the reaction. Finally, the absorbance of each well was

measured at 450 nm using a Varioskan Flash (Thermo Fisher
Scientific, United States), and the concentration of samples was
calculated via “ELISAcalc” software with logistic model based on
the standard curve.

Statistical Analysis
The relative expression levels of the hub genes detected by RT-
qPCR and the concentrations of these proteins in plasma detected
by ELISA were presented as mean ± standard deviation, and a
comparison among groups was performed using Wilcoxon test.
P < 0.05 was considered as statistically significant.

RESULTS

The Identification of DEGs in Subgroups
of pSS
Figure 1 shows the workflow of the whole process of our study.
In accordance with the selection criteria, five eligible microarray
datasets were chosen to preprocess and merge for subsequent
variation analysis. The main characteristics of datasets are
shown in Supplementary Table 1, and quality control showed
that the gene expression distribution of each sample from the
different resources were homogeneous and comparable after
adjusting the batch effect (Supplementary Figures 1A,B). PCA
analysis revealed that the pSS samples and the controls were
generally separated into two distinct clusters (Supplementary
Figures 1D,E), indicating the discriminative gene expression
pattern of pSS. Based on the cutoff criteria [adjusted p < 0.05 and
(log2 FC) > 1], a total of 127 DEGs were identified, including 120
up-regulated and seven down-regulated genes from microarray
datasets (Figures 2A,C).

To further identify the changes of gene expression in the
progress of pSS, we investigated the gene expression profiles
of labial glands from 16 clinically definite pSS patients and
13 non-pSS patients by using RNA sequencing. The clinical
characteristics of study cohorts are shown in Table 1, and the
results displayed that the cohorts of pSS were homogeneous
with low disease activity and rare systematic involvements
(Supplementary Table 2). The PCA analysis revealed that the
pSS and the non-pSS groups were clearly separated into two
distinct clusters with obvious spatial separation (Supplementary
Figure 1C). Subsequently, 180 up-regulated and 21 down-
regulated genes were identified (Figure 2B), and 51 up-regulated
common genes were chosen for subsequent analysis (Figure 2D).
A list of 51 common DEGs with adjusted p-value is presented in
Supplementary Table 3, and their gene expression pattern could
obviously separate pSS (Supplementary Figure 1F).

WGCNA and Identification of the Hub
Genes
To find the key modules most associated with pSS clinical
traits, we performed WGCNA on the data of RNA sequencing.
Clinical information of pSS including demographic (age and
disease duration), symptomatic (xerostomia and xerophthalmia),
serological [immunoglobulin G (IgG), complement 3 (C3),
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FIGURE 1 | Summary and description of the study workflow. (A) The workflow of identification of hub genes, correlation analysis and construction of diagnostic
model. (B) The workflow of special assessment of models and experimental validation for pSS.

ESR, anti-nuclear antibody (ANA), anti-SSA/Ro, and anti-
SSB/La], and histological features (focus score ≥ 1) are clustered
in Figure 3A. By setting the soft-thresholding power as 24

(scale-free R2 = 0.8) and cut height as 0.25, we eventually
identified five modules (Supplementary Figures 2A,B and
Figure 3C; non-clustering genes shown in gray). From the
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FIGURE 2 | Volcano plot showing all the gene expression changes in primary Sjögren’s syndrome (pSS): (A) Differentially expressed genes (DEGs) of pSS + non-pSS
vs. control in microarray data, (B) DEGs of pSS vs. non-pSS in RNA-seq data, (C) DEGs of pSS vs. non-pSS in microarray data, (D) Venn diagram showing the
common DEGs of the abovementioned three comparisons.

heat map of module–trait correlations, we identified that
the red module was most highly correlated with clinical
traits (Figure 3B), especially with anti-SSB/La (correlation
coefficient = 0.55, p = 0.002) and focus score ≥ 1 (correlation

TABLE 1 | Clinical information of 16 primary Sjögren’s syndrome (pSS) and 13
non-pSS patients.

Characteristic pSS
(n = 16)

Non-pSS
(n = 13)

p-value

Age (year) 50.31 ± 15.49 49.05 ± 11.96 0.630

Xerostomia, n (%) 8 (50%) 5 (38.46%) 0.710

Xerophthalmia, n (%) 5 (31.25%) 5 (38.46%) 0.714

IgG, g/L 19.27 ± 6.11 14.68 ± 4.15 0.025*

ESR, mm/H 28.88 ± 18.27 22.77 ± 20.51 0.150

ANA-positive (ANA > 1:100), n (%) 16 (100%) 9 (69.23%) 0.030*

Anti-SSA/Ro60-positive, n (%) 12 (75.00%) 5 (38.46%) 0.067

Anti-SSA/Ro52-positive, n (%) 12 (75.00%) 5 (38.46%) 0.067

Anti-La/SSB-positive, n (%) 12 (75.00%) 2 (15.38%) 0.003**

Focus score ≥ 1, n (%) 15 (93.75%) 1 (7.69%) 0.000***

ESSDAI score, median (Q1–Q3) 2 (1–4) – –

Note. IgG, Immunoglobulin G; ESR, erythrocyte sedimentation rate; *p < 0.05;
**p < 0.01; ***p < 0.001.

coefficient = 0.43, p = 0.02). To further investigate the correlation
between MM in red module and GS for focus score ≥ 1,
correlation analysis and clustering algorithm were performed.
The results manifested that the red module contained a total of
122 genes (correlation coefficient = 0.35, p = 7.8e–05, Figure 3D)
and the red module was highly associated with focus score ≥ 1
(Supplementary Figure 2C). In addition, the heat map of
random 1,000 genes also showed the interrelation and stability
of five modules (Supplementary Figure 2D), and KEGG analysis
indicated that the red module significantly enriched in biological
processes associated with inflammation including chemokine
signaling pathway, cytokine–cytokine receptor interaction, T
cell receptor signaling pathway, natural killer cell-mediated
cytotoxicity, and cell adhesion molecules (CAMs) (Figure 3E).
Moreover, 30 hub genes were chosen to manifest the module’s
characteristic according to the chosen criterion with high GS and
MM value. Combined with 51 common DEGs, seven hub genes
(ICOS, SELL, CR2, BANK1, MS4A1, ZC3H12D, and CCR7) were
identified for further analysis in Figure 5A.

Visualization of DEGs’ Chromosome
Locations and Characteristics
The 51 common DEGs were chosen to visualize their expression
characteristics and chromosomal locations from hg38 dataset
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FIGURE 3 | Identification of modules and hub genes closely associated with clinical traits of primary Sjögren’s syndrome (pSS) in RNA-seq data through weighted
gene co-expression network analysis. (A) Hierarchical clustering dendrograms of genes with clinical traits, (B) heat map of the correlation between module
eigenvalues and clinical traits of pSS containing the correlation coefficient and p-value, and (C) dendrogram of all genes showing the change of modules before and
after merging. (D) Scatter plot of modular genes in the red module. (E) The network of Kyoto Encyclopedia of Genes and Genomes pathway in the red module.
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FIGURE 4 | Functional enrichment analysis of 51 common differentially expressed genes (DEGs). (A) The common DEGs show strong associations with each other.
(B) The PPI network shows a close interaction of DEGs, and hub genes indicate important roles in the network. (C,D) Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes pathway analyses of the common DEGs.

of Ensemble (Supplementary Figure 3). The results revealed
that these DEGs were distributed in most chromosomes, except
for chromosome X and Y. In addition, chromosomes 1, 4, and
6 contained most DEGs, and the top five genes according to
adjusted p-value (CXCL9, CXCL10, TAP1, MS4A1, and CXCL13)
were distributed in chromosomes 4, 6, and 11. Interestingly, the
hub genes were mapped in chromosomes1, 2, 4, 6, 11, and 17.
Notably, ICOS was adjacent to the acknowledged virulence gene
STAT1, which participated in the pathway of activation of type I
interferon (IFN), and BANK1 was adjacent to the location of the
C-X-C motif chemokine family.

Functional Enrichment Analysis of DEGs
In order to further interpret biological processes associated
with the gene signature of pSS, the 51 common DEGs were

chosen to conduct GO function and KEGG pathway enrichment
analysis based on significant correlation with each other
(Figure 4A). It turned out 71 biological processes (BP), four cell
components (CC), and nine molecular functions (MF) GO terms
in Supplementary Table 4, and the DEGs were significantly
enriched in processes such as immune response in BP, CXCR
chemokine receptor binding in MF, and external side of plasma
membrane in CC (Figure 4C). As to KEGG pathway analysis,
five pathways (Supplementary Table 5) were identified, and
an interaction relationship network of pathways comprised of
DEGs is exhibited in Figure 4D. Interestingly, five hub genes
(ICOS, SELL, MS4A1, CR2, and CCR7) also participated in
those pathways, and ICOS was identified as a key molecule for
subsequent validation and analysis based on its central node role
in three pathways including CAMs, intestinal immune network
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FIGURE 5 | The results of single-gene Gene Set Enrichment Analysis based on the expression of ICOS and immune cell infiltration. (A) Venn diagram showing the
identification of seven hub genes combining common differentially expressed genes (DEGs) and the red module. (B–F) The elevated ICOS expression was enriched
in cytokine–cytokine receptor interaction (B), intestinal immune network for IgA production (C), hematopoietic cell lineage (D), cell adhesion molecules (E), and
chemokine signaling pathway (F). (G) Heat map showing the different infiltration degrees of 24 immune cells in primary Sjögren’s syndrome (pSS) and non-pSS with
infiltration scores. (H) Box plots showing the most significant difference of infiltration scores in B cells, CD8+ T cells, Tfh cells, and Th17 cells between pSS and
non-pSS. (I) Heat map displaying the correlation of ICOS’s expression and infiltration scores. *p < 0.05; **p < 0.01; ***p < 0.001.
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for IgA production, and primary immunodeficiency. In addition,
to evaluate the interaction of proteins of these DEGs, the PPI
analysis showed an interconnected network with 49 gene nodes
and 334 edges, of which the hub genes, especially SELL, CCR7,
and ICOS, demonstrate core positions with a high degree of
relatedness (Figure 4B).

Single-Gene GSEA Reveal a Close
Relationship Between ICOS and
Inflammation
To find out significant pathways between low expression and
high expression groups of ICOS and further investigate the
potential functions of ICOS in pSS, we divided pSS and non-pSS
patients into high and low subgroups based on double normal
distribution curve and performed single-gene GSEA analysis
using GSEA v4.0 software. Interestingly, the subsequent single-
gene GSEA analysis confirmed that a low expression of ICOS
was not enriched in any pathways, while a high expression
of ICOS was linked to pathways of immunological activation
including 20 inflammatory pathways (Supplementary Table 6).
The top five pathways, including cytokine–cytokine receptor
interaction, intestinal immune network for IgA production,
hematopoietic cell lineage, CAMs, and chemokine signaling
pathway, are exhibited in Figures 5B–F with significant q value
and a normalized enrichment score, which consisted of the above
preceding results.

Immune Cell Infiltration Characterization
in SGs of pSS
To present the features of immune cell infiltration in SGs in pSS,
we conducted ImmuCellAI algorithm to compare the infiltration
level of 24 immune cells in SGs using RNA-seq data. More
significant immune cell infiltration exhibited in pSS cohorts
compared with non-pSS group on the heat map (Figure 5G and
Supplementary Table 7) and massive immune cells were found
remarkably increased in pSS, including B cells, CD8+ T cells, Tfh
cells, and Th17 cells (Figure 5H). Moreover, a correlation analysis
between the expression of ICOS and the infiltration scores of
immune cells revealed that the expression of ICOS was positively
correlated to the infiltration scores of B cells, CD4+ T cells,
CD8+ T cells, Th17 cells, Tfh cells, and Tr1 cells while negatively
correlated to neutrophiles (Figure 5I).

Clinical Interactions and Diagnostic
Value of ICOS for pSS
To investigate the organizational expression specificity of ICOS
in healthy individuals, gene expression profiles were generated
based on the GTEx database. As shown in Supplementary
Figure 4, we found that ICOS was over-expressed in several
tissues such as spleen, lung, small intestine, and whole blood,
while poorly expressed in normal minor salivary glands. These
results suggested that the increased expression of ICOS in SGs
is probably accompanying the progress of pSS. To further
assess the interactions between ICOS and the clinical phenotype
in pSS, we separated pSS and non-pSS cases into different
groups according to the phenotypic terms and found that the

expression levels of ICOS were higher in xerostomia-positive
groups (p = 0.037), focus score ≥ 1 (p = 0.012), anti-SSA/Ro60-
positive groups (p = 0.039) and high serum IgG groups
(p = 0.039) than their corresponding groups (Supplementary
Figures 5A–D), while no significant correlation was found in
high serum ESR groups (p = 0.29), anti-SSA/Ro52-positive
groups (p = 0.2), and xerophthalmia-positive groups (p = 0.7)
(Supplementary Figures 5E–G). All these results showed that
ICOS was closely associated with typical manifestations of pSS,
indicating that ICOS might serve as potential biomarkers for the
classification of pSS.

To further evaluate the diagnostic value of ICOS in the
diagnosis of pSS, ROC curve analysis was performed based on
the expression levels of ICOS and typical characteristic indices
of pSS, including focus score ≥ 1, anti-SSA/Ro60 positivity, and
hypergammaglobulinemia. The combined model showed a high
discriminatory accuracy in distinguished pSS from non-pSS, with
a high mean AUC value of 0.9821 (Figure 6A). Moreover, the
discriminant capability of the model was greatly reduced (with
mean AUC value of 0.8571) if ICOS was excluded from the model,
and the discriminant capability increased (with mean AUC value
of 0.9286) when the pathology of SGs was replaced by the
expression levels of ICOS. To further estimate the contribution
of each index to the overall diagnostic value in pSS, RF were
conducted by using ranking methods. Notably, although the
mean decrease accuracy of up-regulated ICOS expression was
lower than that of positive pathology, the mean decrease accuracy
of ICOS in this model was more discriminatory than those of
other clinical features (Figure 6C). Moreover, on the aspect of
the mean decrease Gini, the contribution of ICOS was equal to
the positive pathology, with a higher discriminatory power than
others (Figure 6D).

To further investigate the correlation between grade of
lymphocytic infiltration and the expression level of ICOS, another
58 pSS patients were included in our study and then divided
into different groups based on lymphocytic infiltration in SGs.
Their clinical characteristics are shown in Table 2. The expression
of ICOS in SGs tested by RT-qPCR was found to be positively
related to ESSDAI scores and positively associated with the grade
of lymphocytic infiltration and hyperimmunoglobulin in pSS
(Figures 6E–G), while there was no significant association was
found with anti-SSA positivity, increased ESR, reduced C3, and
keratoconjunctivitis sicca (Supplementary Figures 5H–K).

Experimental Validation of ICOS and
Specificity for Diagnosis
To further validate ICOS mRNA expression profile in peripheral
blood and the specificity of ICOS in the diagnosis for pSS, we
performed RT-qPCR and ELISA using 35 pSS and 20 paired non-
pSS samples. It revealed dramatically increased ICOS gene and
protein expression in the whole blood of pSS than the non-pSS
(Figures 6H,I), and ICOS also showed a high discriminatory
accuracy for pSS in peripheral blood, with a high mean AUC value
of 0.9107 (Figure 6B), through RT-qPCR. More importantly,
the optimal cutoff value of ICOS expression was identified
as 4.697 in SGs and 1.208 in PBMC to better discriminate
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FIGURE 6 | ICOS combined with traditional clinical indices for the diagnosis of primary Sjögren’s syndrome (pSS), clinical interaction analysis of ICOS, and
experimental validation of ICOS. (A) Receiver operating characteristic curve of pSS prediction for the random forest (RF) model in salivary glands (SGs). The green
lines indicate the diagnostic capacity of clinical indices without ICOS [are under the curve (AUC) 0.8571], the red lines indicate the diagnostic capacity of the model
combining clinical indices and ICOS (AUC 0.9821), and the blue lines indicated the diagnostic capacity of the model clinical indices and ICOS without positive
pathology (focus score ≥ 1). (B) ROC curve of pSS prediction for the RF model in peripheral blood using RT-qPCR. The orange lines indicate the diagnostic capacity
of ICOS in peripheral blood for pSS vs. non-pSS with a high mean AUC value of 0.9107. The blue line and the green line, respectively, indicate the significant
diagnostic capacity of ICOS in peripheral blood of pSS from rheumatoid arthritis (RA) (AUC 0.9705) and systemic lupus erythematosus (SLE) (AUC 0.9349). (C,D)
Variable importance of ICOS and clinical variables of predicting pSS in salivary glands. Mean decrease accuracy represents the decrease of accuracy in the model
when one variable is excluded, and mean decrease Gini represents the specific diagnostic capabilities of variables in the construction of the predicting model. (E–G)
Violin plots showing the expression levels of ICOS in different subgroups based on ESSDAI scores (E), focus scores (F), and high IgG levels (G) in SGs. (H) The
expression of ICOS on the aspect of gene was validated via RT-qPCR in the peripheral blood samples of non-pSS, RA, SLE, and pSS. (I) The expression of ICOS on
the aspect of protein was validated via ELISA in peripheral blood samples of pSS. (J,K) Elevated IL-17A and decreased IFN-γ expressions in pSS were confirmed
through ELISA experiment. *p < 0.05; **p < 0.01; ***p < 0.001.

pSS patients from non-pSS subgroups with high sensitivity
and specificity (Table 3). Furthermore, to validate the special
expression of ICOS in pSS, the peripheral blood samples of 30
RA and 23 SLE patients were used to perform RT-qPCR and to
further conduct ROC analysis. The results demonstrated ICOS’s
significant discriminative capacity between pSS and RA or SLE,
with mean AUC values of 0.9705 and 0.9349 (Figure 6B), and
the expression levels of ICOS in RA and SLE were almost close
to that of non-pSS while significantly lower than that of pSS
(Figure 6H). These results implied that ICOS was over-expressed
in the PBMC of pSS and can serve as a potential biomarker for
the classification of pSS with adequate sensitivity and specificity.
To investigate the downstream protein regulated by ICOS in
the mechanism of pSS, we also performed ELISA to detect the
expression levels of inflammatory factors associated with ICOS,

including IL-6, IL-17A, TGFβ1, IL-4, and IFN-γ. Significantly,
the expression of IL-17A (p = 0.00012) distinctly increased and
that of IFN-γ (p = 0.02) decreased in peripheral blood of pSS
(Figures 6J,K), while there was no difference in TGFβ1, IL-6, and
IL-4 (Supplementary Figures 5L–N).

DISCUSSION

As a complex systemic autoimmune disease, the pathogenesis
of pSS remains largely unclear. Although substantial biological
molecule and genetic studies have been conducted to discover
novel biomarkers and therapeutic targets for pSS, there is
still a lack of explicit molecular mechanism and biological
diadynamic criteria for pSS. As far as we know, our study
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TABLE 2 | Clinical information of 58 primary Sjögren’s syndrome patients.

Characteristic Focus ≤ 1
(n = 31)

Focus ≥ 2
(n = 27)

p-value

Age (year) 51.87 ± 13.97 53.00 ± 13.74 0.920

Xerostomia, n (%) 15 (48.40%) 16 (59.30%) 0.408

Xerophthalmia, n (%) 20 (64.50%) 20 (74.10%) 0.433

IgG, g/L 16.63 ± 4.50 19.51 ± 6.30 0.011*

ESR, mm/H 25.52± 21.70 27.59± 24.10 0.810

ANA-positive (ANA > 1:100), n (%) 15 (48.40%) 18 (66.70%) 0.161

Anti-SSA/Ro60-positive, n (%) 22 (70.97%) 22 (81.48%) 0.351

Anti-SSA/Ro52-positive, n (%) 23 (74.20%) 23 (85.20%) 0.303

Anti-La/SSB-positive, n (%) 8 (25.80%) 10 (37.00%) 0.356

ESSDAI score, median (Q1–Q3) 4 (1–8) 9 (5–19) 0.017*

Note. IgG, Immunoglobulin G; ESR, erythrocyte sedimentation rate; *p < 0.05;
**p < 0.01; ***p < 0.001.

is the first to apply WGCNA in gene expression profiles of
pSS compared with non-pSS from GEO datasets and our
RNA-seq profiles. We identified a total of 51 common robust
DEGs, some of which, such as EPSTI1, MMP9, and CXCL9,
have been reported to be biomarkers and participate in the
pathogenesis of pSS (Song et al., 2014; Nezos et al., 2015). The
chromosomal locations of 51 DEGs indicated that chromosome
1 contained the most DEGs, and Brayer’s study found that alleles
on chromosome 1 and chromosome 3 may greatly influence
the susceptibility and resistance to development of Sjögren’s
syndrome-like autoimmune exocrinopathy in NOD mice models
(Brayer et al., 2000). In addition, Pérez’s study reported D1S3721
marker with significant differences in chromosome 1p34.2 with
candidate genes (LAPTM5, ZC3H12A, and NSAP) in labial gland
epithelial cell from pSS patients (Perez et al., 2009). Moreover,
STAT1 has been reported to be over-expressed in the labial
salivary glands of pSS and associated with the pathway of
activation of type I interferon (IFN) in pSS (Wakamatsu et al.,
2006; Mavragani and Crow, 2010). All results suggested that these
hub genes were located in key chromosomes with a potential
influence of the pathogenesis of pSS.

Consistent with previously published studies, the enrichment
of common DEGs in GO terms of our study, such as immune
response, immune system process, cytokine-mediated signaling
pathway, and cellular response to cytokine stimulus, further

ensured their involvement in the progress of pSS (Routsias and
Tzioufas, 2010; Song et al., 2014; Toro-Dominguez et al., 2014).
Moreover, the KEGG pathway enrichment analysis of common
DEGs also suggested their relevance in the pathogenesis of pSS.
Chemokine signaling pathway was essential for maintaining the
function and interaction of T lymphocytes (Ward and Westwick,
1998), and cytokine CCL19 was identified as a biomarker of
immunological activation in pSS with its chemokine receptor
CCR7 in our other study (Liu et al., 2019). It has been reported
that adhesion molecules, such as intercellular adhesion molecule-
1 and vascular cell adhesion molecule-1, were indispensable
factors for lymphocyte recruitment, glandular damage, and the
development of vasculitis in pSS, indicating the importance of
CAM pathway in the mechanism of pSS (Turkcapar et al., 2005).
Based on the results of GO and KEGG analyses, we confirm
that these DEGs are closely associated with immune infiltration-
related pathways and can serve as biomarkers for pSS.

In this study, co-expression network construction through
WGCNA analysis obtained a total of five co-expression modules,
and of them, the red module was the main one associated
with positive pathology for pSS, containing 122 genes. KEGG
pathway analysis of the red module was also enriched in the same
pathways including chemokine signaling pathway, cytokine–
cytokine receptor interaction, and CAMs, consisting of common
DEGs. Moreover, it has been reported that the dysregulation of
the NF-kB signaling pathway in B cell may alter the inflammatory
response through regulating the expression levels of BAFF in
pSS (Reksten et al., 2016), and the number and killing activity
of natural killer (NK) cells decreased through natural killer cell-
mediated cytotoxicity pathway in pSS (Izumi et al., 2006). All the
results confirmed that the red module was closely associated with
immune processes of pSS. After combining with the common
DEGs, we eventually obtained seven hub genes (ICOS, SELL,CR2,
BANK1, MS4A1, ZC3H12D, and CCR7) and identified ICOS to
demonstrate its correlation with the pathogenesis of pSS.

Notably, most hub genes have been considered related
to immunization and inflammation in autoimmune diseases.
L-Selectin (SELL/CD62L), one of the adhesion molecules, has
been extensively reported to be associated with lymphocytic
infiltration, Raynaud’s phenomenon, and rheumatoid factor in
pSS, but its concrete role in the mechanism of pSS remained
unclear (Garcia-Carrasco et al., 2000). Membrane spanning 4-
domains A1 (MS4A1), also called CD20, has been recognized as

TABLE 3 | Diagnostic value of ICOS in salivary glands (SGs) and peripheral blood mononuclear cells (PBMCs) for primary Sjögren’s syndrome (pSS).

Characteristic Optimal cutoff point Area under curve Sensitivity Specificity

pSS vs. non-pSS

ICOS + focus + IgG + SSA (n = 29) 0.225 0.9821 0.875 0.975

ICOS + IgG + SSA (n = 29) 0.705 0.9286 0.954 0.857

ICOS in SGs (n = 29) 4.697 0.9330 0.875 0.923

ICOS in PBMCs (n = 55) 1.208 0.9107 0.771 0.914

pSS vs. rheumatoid arthritis

ICOS in PBMCs (n = 65) 1.498 0.9705 0.974 0.743

pSS vs. systemic lupus erythematosus

ICOS in PBMCs (n = 58) 1.587 0.9349 0.957 0.746
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a significant marker of B cell. Lymphocytes involving B cells are
major types of immune cells infiltrating the salivary glands of SS
patients (Mariette and Criswell, 2018). In our study, massive B
cells were found to be significantly infiltrated in the SGs of pSS by
immune infiltration analysis, which is consistent with the high
expression levels of MS4A1. In addition, complement receptor
2 (CR2/CD21) was located at follicular dendritic cell networks
for the development of ectopic lymphoid structures in labial
gland biopsies of patients with SS (Bombardieri and Pitzalis,
2012; Kurshumliu et al., 2019). Similarly, the branchpoint-site
single-nucleotide polymorphisms rs17266594 and rs10516487 in
the B cell scaffold protein with ankyrin repeats 1 (BANK1) gene
have been testified to be associated with various autoimmune
diseases including SLE (Guan et al., 2011), RA (Orozco et al.,
2009), and SSc (Rueda et al., 2010). Moreover, in our other
study, we had found that elevated CCL19/CCR7 expression in
the salivary gland associated with anti-SSA/Ro antibody and IgG
levels in pSS patients could serve as markers of immunological
activation in pSS (Liu et al., 2019). Interestingly, although the
inducible costimulatory molecule (ICOS), as a member of the
CD28 family of coreceptor molecules, has been suggested to
induce the difference of interleukin 17 (IL-17)-producing helper
T cells (Th17 cells) and follicular helper T cells (Tfh cells), there
are rare studies reporting the relativity between ICOS and pSS
(Dong et al., 2001; Bauquet et al., 2009). Moreover, we also
discovered a significant infiltration of Th17 cells and Tfh cells
in SGs, and the expression of ICOS was significantly positively
associated with their infiltration degrees, suggesting that ICOS
might participate in the process of T cell activation in pSS.

In our study, clinical interactions analysis revealed that the
expression of ICOS was significantly positively correlated with
typical clinical characteristics of pSS, including lymphocytic
infiltration in SGs, ESSDAI score, and hyperimmunoglobulin
in pSS. The lymphocytic infiltration degree in SGs was placed
as one of the most important indexes in the EULAR/ACR
criteria for pSS (Shiboski et al., 2012, 2017). In addition, a
correlation analysis of verification cohorts further identified that
the expression of ICOS was highly positively associated with
ESSDAI score and the grade of focus score, implying that ICOS
might be associated with the disease activity of pSS. Furthermore,
ROC curves showed that ICOS gene could serve as a biomarker
to improve discrimination for pSS combined with traditional
pathological and serologic indices, with a high mean AUC value
of 0.9821 in SGs and 0.9107 in PBMC. Moreover, the results
of our analysis using a ranking method with an RF model
showed that ICOS gene was a significant index for the diagnosis
of pSS, with greater discriminator capacity than other clinical
and serologic features of pSS and without worse diagnostic
performance than pathological positivity in mean decrease Gini.
Besides significantly increasing in salivary glands, the expression
of ICOS was also verified to be extremely increased on the
aspect of gene and protein in peripheral blood samples by
ELISA experiments. Previous genome-wide association studies
had indicated common risk polymorphisms among RA, SLE,
and pSS (Graham et al., 2007; Remmers et al., 2007). To raise
the specificity of diagnosis for ICOS in pSS, the results of
ROC analysis of RT-qPCR datasets of RA and SLE patients
showed the expression of ICOS with preeminent discriminative

capacity between pSS and RA/SLE. Therefore, ICOS may serve
as an attractive target for the development of clinically useful
biomarkers of pSS.

To further explore the biological functions of ICOS in the
mechanism of pSS, we conducted GSEA using subgroups based
on the expression of ICOS. The results of GSEA indicated that
immune infiltration-related KEGG pathways such as CAMs,
chemokine signaling pathway, and T cell receptor signaling
pathway were enriched in the high-expression groups of ICOS,
suggesting ICOS’s contribution to immune reaction in pSS.
Moreover, ELISA experiments of inflammatory factors revealed
IL-17 with high expression and IFN-γ with low expression, while
others (IL-4, IL-6, and TGF-β) were without significant difference
in the peripheral blood of pSS in our study. Interestingly, Th17
cells have been considered as new CD4 helper T cell subsets
that are essential in the pathogenesis of plenty of autoimmune
diseases through animal models including RA, psoriasis, and
multiple sclerosis (Matusevicius et al., 1999; Lock et al., 2002).
Sakai et al. (2008) also found that salivary gland and acinar
cells expressed IL-18R and IL-17R on the cell surface and IL-
17 induced Th17 cells infiltrating in the salivary gland of pSS.
Similarly, Li et al. (2012) also found that CD4(+) CXCR5(+)
T cells (Th17-like subsets) played a significant role in pSS via
efficiently inducing naïve B cells to produce immunoglobulin.
More importantly, ICOS was found to regulate the differentiation
of Th17 and Tfh cells through producing IL-21, IL-17, and c-
Maf in Aurelie’s work, while Th17 cells have been identified to
play an important role in immune response and auto-immune
pathogenesis of pSS by zoopery (Lin et al., 2015; Matsui and
Sano, 2017). Moreover, higher fractions of ICOS(+) Tfh cells
were observed, and a positive association was found between
autoantibody levels and increased level of Tfh cells in pSS
compared to controls (Brokstad et al., 2018). Recent research
also highlighted Tfh and pathogenic peripheral-helper T-cells
(Tph), IL-21, and the ICOS costimulatory pathway as key
pathogenic players in SS immunopathology (Pontarini et al.,
2020). In addition, low IFN-γ levels and indifferent expression
levels of other factors (IL-6, IL-4, and TGFβ1) were found in
ELISA, and this controversial finding may be explained by low
disease activity in our pSS patients (Karabulut et al., 2018).
Previous studies also found just a minor high expression of
IFN-γ mRNA in salivary gland tissues in pSS, such as three
out of 12 in Boumba’s work (Boumba et al., 1995) and 31
out of 53 in Hall’s study (Hall et al., 2015). Overall, the
results suggested that ICOS may participate in the pathogenesis
of pSS through regulating Th17 cells to produce IL-17, and
IL-17 may serve as a promising therapeutic target for the
biotherapy of pSS.

However, there still are some limitations in our study. On
the one hand, although the study is the first one to conduct
gene expression profiles using WGCNA combing chips with
RNA-seq datasets, the small sample size is still limited, and thus
there is a need for further studies to support our study. On
the other hand, the diagnostic value of ICOS for pSS requires
more congeneric researches, even clinical practices, to test and
improve. In addition, the expression of ICOS in salivary gland
from other etiologies (such as lymphomas, sarcoidosis, chronic
sialadenitis, etc.) also needs to be tested to demonstrate its
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uniqueness in pSS. Furthermore, ICOS was found to be up-
regulated both in SGs and PBMC, while its detailed role in the
pathogenesis of pSS remains to be verified by in-depth in vivo
and in vitro studies on molecular mechanism.

CONCLUSION

In conclusion, we observed and validated a high prevalence of
ICOS in both labial glands and peripheral bloods on the aspect
of genes and proteins in pSS. Moreover, ICOS was found to
be involved with the development of pSS through promoting
immune infiltration such as regulating the differentiation of Th17
cells to produce IL-17. In addition, significantly elevated ICOS
expression in pSS, which was correlated with ESSDAI scores,
elevated IgG levels, and pathological infiltration levels in pSS,
implicates a distinct discrimination for pSS. The various gene
expression pattern analyses between pSS and non-pSS deepen our
understanding of the disease mechanisms and suggest that ICOS
is a promising biomarker for the detection of pSS.
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