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Classification of malignant 
tumours in breast ultrasound using 
unsupervised machine learning 
approaches
Wei‑Chung Shia1,4, Li‑Sheng Lin2,4 & Dar‑Ren Chen3*

Traditional computer‑aided diagnosis (CAD) processes include feature extraction, selection, and 
classification. Effective feature extraction in CAD is important in improving the classification’s 
performance. We introduce a machine‑learning method and have designed an analysis procedure 
of benign and malignant breast tumour classification in ultrasound (US) images without a need 
for a priori tumour region‑selection processing, thereby decreasing clinical diagnosis efforts while 
maintaining high classification performance. Our dataset constituted 677 US images (benign: 
312, malignant: 365). Regarding two‑dimensional US images, the oriented gradient descriptors’ 
histogram pyramid was extracted and utilised to obtain feature vectors. The correlation‑based feature 
selection method was used to evaluate and select significant feature sets for further classification. 
Sequential minimal optimisation—combining local weight learning—was utilised for classification 
and performance enhancement. The image dataset’s classification performance showed an 81.64% 
sensitivity and 87.76% specificity for malignant images (area under the curve = 0.847). The positive and 
negative predictive values were 84.1 and 85.8%, respectively. Here, a new workflow, utilising machine 
learning to recognise malignant US images was proposed. Comparison of physician diagnoses and the 
automatic classifications made using machine learning yielded similar outcomes. This indicates the 
potential applicability of machine learning in clinical diagnoses.

Breast ultrasound (US) is an important non-radiation imaging method used to detect and classify breast tumours. 
It is well tolerated by patients and can be easily integrated into interventional procedures for patient  treatments1. 
However, the accuracy of breast US is limited and depends on the experience and technical ability of the operator. 
Thus, US assessments show the inherent limitations associated with operator-dependent outcomes. Differences 
between operators, especially the divergence in their skill, knowledge, and understanding of various breast US 
techniques can lead to observer variations in the diagnosis.

For the improvement of risk assessment and quality of care, the Breast Imaging Reporting and Data System 
(BI-RADS)2 provides standardised terms for describing breast mass features and assessments in radiology, includ-
ing mammography, magnetic resonance imaging (MRI), and US. This approach has been proven to be effective 
to distinguish between benign and malignant  masses3. However, many US features in BI-RADS are associated 
with both malignant and benign masses. For category 4 breast masses, it is common to have both malignant and 
benign features in the report at the same time. Due to the wide range of malignancy risks in category 4 breast 
lesions (3–94%), the reproducibility among radiologists in the classification of subcategories 4A, 4B, and 4C is 
 poor4.

Computer-aided diagnosis (CAD) uses a computerised program to assist the radiologist with image inter-
pretation and diagnosis by providing a second objective  opinion5. To improve diagnostic accuracy and reduce 
differences among observers, CAD systems have been used to distinguish between malignant and benign masses 
in ultrasound images of breast  cancers6,7. Previous studies showed that the various CAD systems used in breast 
US imaging exhibited good diagnostic performance and decreased variability among  observers7.

Traditional CAD processes include feature extraction, selection, and  classification8,9. Having an effective strat-
egy in feature extraction can improve overall  performance10. However, the selection and extraction of meaningful 
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image features from a dataset is a complicated and time-consuming task, which requires many pre-processing 
procedures and is usually heavily dependent on human effort. The inherent noise and speckle in ultrasound 
imaging and the use of various algorithms make fine-tuning of the overall performance of traditional CAD 
more difficult.

Thus, the aims of this study were to (a) increase the diagnostic performance associated with the classification 
of malignant tumours belonging to BI-RADS category 4 in US images, and (b) achieve comparable performance 
to those reported for deep learning techniques that are based on the cooperation of several machine learning 
algorithms.

Methods
Participants and data acquisition. This cross-sectional retrospective study was approved by the Insti-
tutional Review Board of Changhua Christian Hospital, Changhua, Taiwan (No. 181235). The requirement for 
informed consent was waived by the ethics committee because of the study’s retrospective nature. All experi-
mental methods were supervised by the IRB and conducted in accordance with relevant guidelines and the 
Declaration of Helsinki (DOH).

The images were collected from 1 January 2017 to 31 December 2018. In total, 370 benign and 418 malignant 
masses were screened, and 677 patients were enrolled in this study. The exclusion criteria for patients with benign 
tumours included tissue types that were associated with the following conditions: inflammation (including 
autoinflammation, chronic inflammation, and xanthogranulomatous inflammation), abscesses, and spongiotic 
dermatitis. For patients with malignant tumours, the exclusion criteria included cases with unknown tissue 
types (or incomplete recordings), unknown BI-RADS category classification (undocumented), or incomplete US 
image reports. The patients’ ages ranged from 35 to 75 years. The US images captured the full-view of the screen 
(but did not include the text title, indicators, and relevant marks, etc.) with no markers of preselected tumour 
regions. This minimised the human effort required for image analysis and also provided detailed information to 
the image processing application. For each participant, at least two different scan planes of the tumour or solid 
masses were acquired in the US images. The diameter of the tumour was measured as the largest diameter of the 
tumour. The sonograms were acquired using GE Voluson 700 (GE Healthcare, Zipf, Austria) and Toshiba Aplio 
500 (Toshiba Medical Systems Corporation, Otawara, Japan) ultrasound systems. During image acquisition, the 
patients were in a supine position with their arms extended over their heads. No acoustic stand-off pad was used.

The corresponding pathological and image reports for each US image of the participants were also collected. 
The image reports were used to obtain the BI-RADS category, and the pathology report was used as the gold 
standard for classifying all enrolled patients into benign or malignant categories. The identification of all solid 
masses on US images and the determination of the category they belonged to were based in the American 
College of Radiology (ACR) BI-RADS category criteria and were checked by experienced surgeons (> 10 years 
experienced in breast ultrasound). The sensitivity and specificity values associated with the physician diagnoses 
were also estimated and used for comparisons. A flowchart of the enrolment and data analysis procedure used 
in this study is shown in Fig. 1.

Image feature extraction. The shape, edges, and corner points are important features in image classi-
fication. Among them, the corner points are generally considered the points with sharp change in grey level, 
or the high curvature points at the edge of the image. A possible strategy for image classification is to build 
a method that can represent the shape using the spatial distribution to facilitate recognition. Here, we used a 
traditional feature presentation describer method, named histogram of oriented gradients (HOG)11, to visualise 
this concept. The features from the accelerated segment test (FAST)12, which was based on HOG, were utilised 
to determine if important classification features could be extracted from preliminary US images. FAST is a 
corner detection method, and it was used to extract feature points and then track and map interesting objects 
on an image. The benefit of FAST is its performance, since it is faster than many other methods. The HOG was 
the feature descriptor; it was used to extract useful information and discard redundant information to simplify 
the subsequent image classification by calculating and counting gradient histograms of local areas of images. 
Figure 2 demonstrates how FAST based on HOG can be used in feature extraction to obtain appearance and 
shape descriptions from sample US images. The extracted features are shown as corner points. Figure 2a is a 
hypoechoic tumour US image that belongs to BI-RADS category 3 (the fibroadenoma was confirmed after core 
needle biopsy), and Fig. 3a is a US image of an irregular and vascularised mass that belongs to BI-RADS category 
4B (the infiltrating ductal carcinoma was confirmed after a partial mastectomy, size: 2.2 × 1.6 × 0.9 cm). Two 
presentation US images were randomly selected from the dataset, and their BI-RADS categories were confirmed 
by an experienced physician. After FAST was applied to the probably benign (Fig. 2b) and moderate suspicion 
for malignancy (Fig. 3b) US images, it can be seen that the corner point in the malignant US image was located 
in the vicinity of the lesion. Thus, a comparison of the distribution of the corner points could help distinguish 
probably benign tumours from malignant tumours. This experiment confirmed that HOG may have the ability 
to allow preliminary discrimination between benign and malignant US images.

To improve the performance of image classification, a newer method named the pyramid histogram of 
oriented gradients (PHOG)13 descriptor was used for the representation of shapes using the spatial distribu-
tion of US images in this study. This descriptor consists of HOGs associated with each image subregion at each 
resolution level and uses image pyramid  representation14 to represent the local shape and the spatial layout of 
the image shape simultaneously. In comparison with HOG, it captures the spatial distribution of edges and is 
formulated as a vector representation. The distance between two PHOG image descriptors reflects the extent to 
which the images contain similar shapes and corresponds to their spatial layouts. Figure 4a, b show the histogram 
representing the distributions of the vector in the PHOG descriptor for two US images of benign and malignant 
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tumours. To achieve better performance and avoid some of the disadvantages of HOG, canny edge  detection15 
was also applied to facilitate edge detection in the PHOG descriptor calculation for US images. The PHOG 
descriptor calculation and canny edge detection were implemented by calling the external library of the PHOG 
descriptor library from the lucene image retrieval (LIRE)  project16,17 and integrated into MATLAB 2019a (The 
Math Works, Natick, MA, USA) for further use.

Feature selection. The PHOG descriptor calculated the image level that contained similar shapes and 
exhibited similar spatial layouts. It may have hundreds of feature vectors according to the different parameters 
selected. Irrelevant and redundant feature vectors decrease the accuracy of the predictions and classifications, 
and selection of features that contain information important for classification and ruling out nonmeaningful 
descriptors were useful for further analyses and for speeding up the computation. In this study, a strategy named 
correlation-based feature selection (CFS)18 was used to evaluate the important attributes, and a subset was cre-
ated while considering the predictive abilities along with the degree of redundancy. The evaluation function was 
utilised to evaluate subsets that contained features that were highly correlated with the class and uncorrelated 
with each other. Irrelevant features were ignored, and redundant features were screened out. For each subset, 
the best-first search  method19 moves through the search space by making local changes to the current feature 
subset and selects useful subsets by backtracking along the search path. If the path being explored begins to look 
less promising, it can backtrack to the last subset that was more promising and continue the search. The search 
direction is bidirectional, and the search will be terminated when non-improving nodes are greater than four.

Classification. In this study, the classification method was a combination of locally weighted learning 
(LWL)20 and sequential minimal optimisation (SMO)21. The LWL method is nonparametric, and the current 
predictions are obtained using local functions that employ subsets of data. LWL does not construct a global 
model of the entire functional space, but it instead creates a local model for each point of interest (POI) based 
on the data around a neighboring point. In this study, the K-nearest neighborhood (KNN) weighting function 
was utilised as the kernel function in LWL. Thus, identification of the K-nearest neighborhood in the training 
set based on the identification of the classified/regressive points of the test samples was achieved by (a) weighting 
their k-nearest neighbors in the training set and (b) weighting the contribution of each training point based on 
certain functions (kernels) of the distance between the test points and the training. For determining the opti-

Figure 1.  Flowchart of patient enrolment and the data analysis procedure.
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mum parameter for KNN, the SMO was used to solve the quadratic programming problem in optimisation by 
dividing the overall problem into several solvable sub-problems and ensuring  convergence22.

Diagnostic performance estimate of physicians. Owing to the nature of the retrospective study, 
images and corresponding reports of all enrolled patients were collected in advance. We did not repeat the 
human readout procedure for the estimation of diagnosis performance. After referring to the study design of 
recent related  studies23,24, we modified the study design of the diagnostic performance estimate of physicians 
to fit this study. The image report of all participants was read and completed by four physicians (including one 
of the authors). Since these four physicians were all senior and having over 10 years of experience in breast US 
and diagnosis, and the acquisition procedure of breast US was also highly standardised in the institute, the cor-
relation coefficient of the readout performance among these physicians was not estimated and considered as 
the total performance. All images were rated as benign or malignant according to the BI-RADS category (BI-
RADS < 3: benign, BI-RADS > 4: malignant). this was similar to the traditional 3-point or 5-point Likert-type 
scale for malignancy of human readout in related studies (roughly corresponding to the BI-RADS classification 
with 5 meaning > 98% probability of breast cancer). It needs to be noted that the performance presented here 
does not represent the absolute ‘benign’ or ‘malignant’ classification of US images by human readout; it repre-
sents the judgement of biopsy that the physicians need to make during diagnosis.

Computation platform. All computations were performed on an HP Z420 workstation equipped with an 
Intel Xeon E5 1620 CPU (Quad-Cores, the clock up to 3.6 GHz), 20 GB DDR3 ECC RAM, SanDisk 1 TB SATA 
6 GB/s solid-state drives, Windows 10 professional edition, and a Nvidia Quadro K600 graphics processing unit 
(GPU) (equipped with 1 GB video memory). The whole computation did not rely on the accelerated graphics 
processing unit hardware because the intermediate data generated during computation were over the size of the 
internal video memory.

Classification performance evaluation and statistical analyses. Ten-fold cross-validation was used 
to determine the error percentage, mean, standard deviation, and 95% level confidence interval for the baseline 
algorithms. The diagnostic accuracy was estimated using the area under the receiver operating characteristics 
(ROC) curve (AUC) and was compared with DeLong’s nonparametric test. Youden’s  index25 was utilised to 
determine the optimal cut-off and the resulting specificity, sensitivity, positive predictive value (PPV), and nega-
tive predictive value (NPV). McNemar’s  test26 was used to compare the sensitivities and specificities on a clas-

Figure 2.  Visualised extracted feature vector from a benign US image by Histogram of Oriented Gradient 
(HOG). The probably benign (BI-RADS category 3) case: female, age 78 years, a left breast hypoechoic tumour 
was found and reported by ultrasound imaging, size: 11.7 × 6 mm, location: 2 o’clock from the nipple, distance: 
2 cm from the nipple to the lesion. The fibroadenoma lesion was confirmed after a core needle biopsy, size: 
1.2 × 0.1 × 0.1 cm. The extracted feature vectors through the HOG descriptor from the image are shown as 
corner points. (a) The US image of this case. (b) Green marks represent the positions of corner points obtained 
from the accelerated segment test (FAST).
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sification table. The statistical analyses were performed using MedCalc for Windows (Version 19.2.1, MedCalc 
Software, Ostend, Belgium). A p-value < 0.05 was considered indicative of significant differences.

Results
Characteristics of the image set. Table 1 presents the basic characteristics of all enrolled patients. In 
this study, after applying the exclusion criteria, there were 312 patients with solid masses, including fibroadeno-
mas, and 365 patients with malignant tumours. All the enrolled patients also underwent pathological confirma-
tion (either by fine-needle cytology, core-needle biopsy, or open biopsy), and 1354 US images were acquired. 
The mean age, mean lesion size, proportion of each BI-RADS category, and the tissue types in patients with 
benign and malignant masses are also listed. In benign cases, the most common tissue types of solid masses 
were fibroadenomas (78/312, 25.0%) and fibrocystic changes (105/312, 33.65%), and the incidences of lobular 
carcinoma in situ (LCIS) and fibroepithelial lesions were 4.49% (14/312) and 23.08% (72/312), respectively. For 
malignant tissue types, the incidence of ductal carcinoma in situ (DCIS) was 20.82% (76/365), and the most 
common tissue type was invasive ductal carcinoma (IDC) (76.25%, 289/365). After applying the PHOG descrip-
tor calculation to extract the feature vectors, 630 attributes were extracted from each US image of the dataset, 
and 60 attributes were preserved after applying the feature selection. These filtered attributes were then sent to 
the classifier for classification.

Diagnosis performance. In this study, the AUC of malignant and benign classifications by using unsu-
pervised machine learning was 0.847 (SE = 0.819 to 0.872). The sensitivity was 81.64% and the specificity was 
87.76% (p < 1 × 10–5). The PPV and NPV were 84.1 and 85.8%, respectively. The ROC curve and the AUC are 
shown in Fig. 5(a). Compared to the diagnostic performance of physicians, the AUC associated with the diag-
noses by the physicians was 0.574 (SE 0.532 to 0.615); the sensitivity and specificity were 95.28 and 19.50%, 
respectively (p < 1.01 × 10–8), while the PPV and NPV were 48.2 and 84.0%, respectively. The ROC curve and the 
AUC are shown in Fig. 5(b).

Discussion
This study proposes a new process flow that integrates existing machine learning algorithms in malignant/benign 
classification of US images. The whole image produces the features used in classification; therefore, the regions-
of-interest (ROIs, i.e. tumour region) of each US image in the dataset do not require preselection. This makes data 
processing and implementation more concise while ensuring similar or improved performance. This outcome 

Figure 3.  Visualised extracted feature vector from a malignancy US image by Histogram of Oriented Gradient 
(HOG). The moderate suspicion for malignancy (BI-RADS category 4B) case: female, age 51 years, an irregular 
and vascularised mass was found at the left breast and reported by ultrasound imaging, size: 1.2 × 0.9 cm, 
location: 1–2 o’clock from the nipple, distance: 6 cm from the nipple. A Core needle biopsy was performed and 
confirmed ductal carcinoma in situ. The infiltrating ductal carcinoma was confirmed after a partial mastectomy, 
size: 2.2 × 1.6 × 0.9 cm. The sentinel lymph node dissection was negative for malignancy at the left (0/2), and the 
immunohistochemical study of cytokeratin shows no metastatic carcinoma cells. The extracted feature vectors 
through the HOG descriptor from the image are shown as corner points. (a) The US image of this case. (b) 
Green marks represent the corner point positions obtained from the accelerated segment test (FAST).
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is preliminary— yet indicative—of machine-learning performance. It also achieves unsupervised learning and 
presents potential applicability regarding clinical diagnoses.

Recently published articles and utilised approaches related to this topic were also discussed and compared, to 
confirm that this study contributes to this field. We compared 11 articles related to this topic published during 
2015–2020, based on a similar premise. Owing to the different methodology utilised and some common issues 
in these studies, the classification performance cannot be compared with our study directly: (1) In the present 
study, the full scan plane of breast US was utilized as input, and no tumour labelling procedure before classifica-
tion (include labelling tumour region or tumour contour). In previous studies, the selection of the ROIs (i.e., the 
tumour regions) was defined manually by physicians. (2) Less number of cases in benign and malignant lesions 
in some studies (usually less than 200 cases). (3) the image dataset was based on the public dataset, or lack tissue-
proof for benign masses or malignant lesions in some studies. Table 2 lists these references and related issues. 
The greatest limitation of these studies was that they required the ROI pre-selection before the classification, 
and the correct image feature generation was heavily dependent on this step. Thus, differences in ROI selection 
affected the outcome of CAD, resulting in variability among observers when physicians joined the process. Large 
datasets require a considerable amount of work, leading to biases among observers, which is to be avoided. In 
this study, this process flow omits complex tumour segmentation procedures or artificial ROI selection and the 
features utilised to recognise benign or malignant US images were generated and selected automatically. This 
decreased the human effort significantly and made automated CAD possible.

Some studies in Table 2 also present higher sensitivity/specificity or AUC than our study. The area under the 
curve (AUC) of the ROC regarding the distinction between benign and malignant tumours was approximately 
0.86–0.927–30. However, due to quality defects of image dataset (i.e. fewer participants, unspecific ultrasound 
system/model or using open data and lack the tissue-proof of masses or lesions, etc.) in these studies, it makes 
these results may lack of representative. The common point of these studies was using the various feature-
detection to simultaneously pre-select ROIs and shows that one or two features in these detections were useful 
in malignant classification after experimentation; however, when processing diverse variations of US images in a 
considerably large dataset, it is uncertain which one—or which combination—of the features should be utilised to 

Figure 4.  Histograms of PHOG Descriptors for Benign and Malignant Tumours in US Images. The histograms 
of PHOG descriptors that extracted local shape and the spatial layout from images and quantified them as 
vectors for (a) a probably benign US image (Fig. 2a, level = 2, bin = 30, total 630 features) and (b) a moderate 
suspicion for malignancy US image (Fig. 3a, level = 2, bin = 30, total 630 features).
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promote classification in different situations. Singh et al.30 and Silva et al.29 combined the neural network/back-
propagation artificial neural network or SVM for the fuzzy classification from various extracted image features 
and showed good classification performance in preliminary studies. This method will potentially improve this 
study’s performance in the future.

Preventing the disadvantage of manual pre-selection of ROIs (i.e. considerable human effort) still relies on 
the analysis of tumour region/contour to the extraction features; automatic segmentation is a possible method to 
overcome this problem; however, an error-free tumour region selection is difficult and limited by image quality. 
Even an effective automated segmentation algorithm would require multiple rounds of fine-tuning, increasing 
implementation complexity. Zhou et al.31 used disk expansion segmentation by detecting the variant of posterior 
acoustic shadowing to implement the automatic segmentation of the ROI from the full scan plane of a US image, 
and then complete the classification of malignant lesions. The classification’s sensitivity and specificity were 
72% and 76%, respectively. The developments and advances in deep convolutional neural networks also raised 
the expectations for fully automatic feature extraction for breast lesion classification in ultrasound images. The 
average performance of classification in recent publications regarding sensitivity and specificity were 0.86 and 
0.85,  respectively23,32–34.

Regarding the comparison of the diagnostic performance between machine learning and physicians, the 
estimation of diagnostic performance by the human readout procedure was omitted in this study, but the per-
formance was calculated from the reported image and the pathology report, according to the BI-RADS category 
for direct judgment. Although the diagnostic performance of using unsupervised machine learning approaches 
in this study is better than that of physicians, we still lack the human readout performance as a comparative 
criterion. Here, recently published articles can provide this information and be used for reference. A published 
article reported that the AUC of malignancy detection by B-mode US was only 0.698 in differentiating BI-RADS 
4 breast  lesions35. For the human readout performance of malignant lesions classification in US image, the AUC 
from several previous studies and using similar estimated methods was between 0.6 and 0.91, and PPV (from 

Table 1.  Characteristics of all enrolled patients. Basic characteristics of all enrolled patients and the 
proportions of benign (n = 312) and malignant (n = 365) cases include the age of patients (mean ± SD), size of 
lesions in the US and the BI-RADS category / benign and malignant tissue of patients. US: ultrasound; DCIS: 
ductal carcinoma in situ; LCIS: lobular carcinoma in situ; IDC: invasive ductal carcinoma; Morphological 
features of carcinoma: it showing morphological features of carcinoma in the US image, and confirmed to be 
benign tissue after a biopsy.

Characteristics Benign Malignant

Age of patients (years in mean ± SD) 43.70 (42.23–45.18) 55.88 (54.39–57.38)

Lesion size of US (cm in mean ± SD) 1.56 (1.44–1.73) 2.28 (2.14–2.42)

BI-RADS category: patients in percentage (%)

1 – –

2 7 (2.24%) –

3 63 (20.19%) 11 (3.01%)

4A 222 (71.15%) 130 (35.62%)

4B 14 (4.49%) 46 (12.60%)

4C 3 (0.96%) 43 (11.78%)

5 1 (0.32%) 106 (29.04%)

6 1 (0.32%) 29 (7.95%)

Malignant tissue: patients in percentage (%)

DCIS – 76 (20.82%)

IDC – 289 (79.18%)

Benign tumour: patients in percentage (%)

LCIS 14 (4.49%) –

Fibroadenoma 78 (25.00%) –

Fibrocystic change 105 (33.65%) –

Intraductal papilloma 14 (4.49%) –

Stromal fibrosis 5 (1.60%) –

Fibroadenomatoid mastopathy 1 (0.32%) –

Adenosis 6 (1.92%) –

Fibroepithelial lesion 72 (23.08%) –

Morphological features of carcinoma 17 (5.45%) –
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0.46 to 0.81) and sensitivity (47–85%) varied widely. The wide ranges in the concordance correlation coefficient 
between readers (from 0.21 to 0.71)23,36,37 also presents the inconsistent and bias between intra-observers. In this 
study, the performance of this unsupervised classification was similar and even better than that of the participat-
ing physicians. Even though the entire process did not involve physicians, the classification performance was not 
inferior to those reported in previous studies.

The main limitation of this study was the variability in the expertise levels of the participating physicians. 
Therefore, biases associated with the observers cannot be ruled out. The extracted malignant features were 
obtained by the PHOG descriptor, which is not synonymous and does not map to the BI-RADS lexicons. This 
also represents a clinical limitation of the application. Moreover, classification training could be improved if there 
were more enrolled patients and larger US image datasets since this would increase classification accuracy and 
lead to fewer false-positive and more true-negative outcomes.

Concluding, the method and procedure presented in this study used machine learning to predict whether 
tumours were benign or malignant based on US images. The findings showed that the performance outcomes 
were similar to those obtained with assessments by physicians. The use of machine learning in the analysis of 
US images may help improve the diagnostic capacity of radiologists by providing “second opinions” on the clas-
sification of unknown benign and malignant breast tumours in US images. This ultimately minimises the effort 
expended by physicians to make diagnoses based on image analysis.

Figure 5.  ROC Curves and the Classification AUCs Based on Machine Learning and Physician Diagnoses. (a) 
Classification using machine learning and (b) classification based on physician diagnoses.
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institutional restrictions, but are available from the corresponding author on reasonable request.
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2, 3

Moon et al. 40

The adaptive computer-aided 
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