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Background. Retinoic acid (RA), the bioactive derivative of Vitamin A, by epigenetically controlling transcription through the
RA-receptors (RARs), exerts a potent antiproliferative effect on human cells. However, a number of studies show that RA can
also promote cell survival and growth. In the course of one of our studies we observed that disruption of RA-receptor alpha,
RARa, abrogates the RA-mediated growth-inhibitory effects and unmasks the growth-promoting face of RA (Ren et al., Mol.
Cell. Biol., 2005, 25:10591). The objective of this study was to investigate whether RA can differentially govern cell growth, in
the presence and absence of RARa, through differential regulation of the ‘‘rheostat’’ comprising ceramide (CER), the
sphingolipid with growth-inhibitory activity, and sphingosine-1-phosphate (S1P), the sphingolipid with prosurvival activity.
Methodology/Principal Findings. We found that functional inhibition of endogenous RARa in breast cancer cells by using
either RARa specific antagonists or a dominant negative RARa mutant hampers on one hand the RA-induced upregulation of
neutral sphingomyelinase (nSMase)-mediated CER synthesis, and on the other hand the RA-induced downregulation of
sphingosine kinase 1, SK1, pivotal for S1P synthesis. In association with RA inability to regulate the sphingolipid rheostat, cells
not only survive, but also grow more in response to RA both in vitro and in vivo. By combining genetic, pharmacological and
biochemical approaches, we mechanistically demonstrated that RA-induced growth is, at least in part, due to non-RAR-
mediated activation of the SK1-S1P signaling. Conclusions/Significance. In the presence of functional RARa, RA inhibits cell
growth by concertedly, and inversely, modulating the CER and S1P synthetic pathways. In the absence of a functional RARa,
RA–in a non-RAR-mediated fashion–promotes cell growth by activating the prosurvival S1P signaling. These two distinct, yet
integrated processes apparently concur to the growth-promoter effects of RA.
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INTRODUCTION
Retinoic acid (RA), the bioactive derivative of dietary Vitamin A

and beta-carotene, is a powerful signaling molecule controlling cell

proliferation [1]. Normally, RA exerts an inhibitory action on cell

proliferation via specialized transcription factors, the nuclear RA

receptors, RARs [2]. Cells evolved an amazing apparatus to safely

control the RA antiproliferative action. First, cells finely regulate

the level of intracellular RA through a sophisticated metabolic/

homeostatic process [3]; second, they use specialized cellular

retinoic acid binding proteins (CRABPs) to chaperone RA from

the cytoplasm directly onto the RARs in the nucleus [4]; third,

they have evolved a two-tier RAR-regulated system to control the

downstream transcription of genes in response to RA [5]. RA,

after binding the nuclear receptor RARa, triggers the transcription

of other downstream RARs, including the RA-receptor and tumor

suppressor, RARb2 [6]. RARb2 autoregulates its own transcription

and, in turn, the transcription of a multitude of downstream RA-

responsive target genes [7,8].

Heterogeneous factors can lead to functional inhibition of RA-

RARa signaling. These factors include non-random genetic

mutations producing chimeric RARa receptors with dominant

negative function, such as the leukemia-associated PML-RARa
and PLZF-RARa [9 and references within], RARa epigenetic

silencing in epithelial cancer cells [10–13], and a defective

intracellular level of RA consequent to defects of the retinol/RA

metabolism/homeostasis [4,14–17].

According to several literature reports, RA and its dietary

precursors can also promote, rather than inhibit, cell survival and

growth [18–22]. In the course of a recent study, we observed that

disruption of RARa signaling in RA-sensitive breast cells not only

leads to RA-resistance, but unexpectedly unmasks the growth-

promoter face of RA [13,23–25].

Here we show that in RA-sensitive cells with a functional RARa
signaling RA leads to growth inhibition consequent to the

concerted upregulation of neutral sphingomyelinase (nSMase),

one of the enzymes leading to the synthesis of the antiprolifera-

tive/propaptotic ceramide (CER), and downregulation of sphin-

gosine kinase 1 (SK1), the enzyme leading to the synthesis of the

prosurvival sphingosine-1-phosphate (S1P). In contrast, disruption

of RARa signaling in the same cells results, in response to RA, into

increased proliferation associated with both loss of concerted

regulation of nSMase and SK1, and induction of intracellular S1P.

Altogether our findings indicate that the presence of RARa is

essential for the proper regulation of the sphingolipid rheostat by

RA. In the absence of RARa, RA no longer executes its growth-
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inhibitory action through its canonical receptors, but activates the

prosurvival SK1-S1P pathway through alternate non-RAR

receptor(s).

RESULTS

Cells with a functionally disrupted RARa signaling

become both RA-resistant and susceptible to

RA-induced cell growth in vitro and in vivo
By using different strategies to functionally inhibit RA-RARa
signaling in RA-sensitive breast cancer cells (T47D), we found

that–concomitant with heritable epigenetic gene silencing of the

downstream RARb2 receptor and tumor suppressor–cells not only

survive, but also proliferate significantly more in response to RA

([13] and Fig. 1A). Specifically, we observed that T47D-derived

clones, obtained by stably inhibiting the endogenous RARa
signaling with either the RARa-specific antagonist ER50891 (here

shown a prototypic clone, ER-C4) (Fig. 1B, top) or the dominant

negative DN RARa403 mutant (here shown a prototypic clone,

DNC8) (Fig.1B, bottom), were not only RA-resistant, but grew

significantly more in the presence of RA (1 mM, 72 h) as shown by

both colony formation assay and cell proliferation assay, while

their respective controls, T47D in the case of ER-C4, and LXC5

in the case of DNC8, were growth-inhibited by RA. We will

present hereafter only the results concerning the LXC5/DNC8

isogenic model, because the T47D/ER-C4 show an identical RA-

response for the different parameters that we analyzed in this

study.

The increased RA-induced growth is supported by the

observation that cells in the presence of RA (1 mM, 72 h)

transition more rapidly from the G1 to the S phase (Fig. 1C, left)

in agreement with an increased transcription of the cyclin D1

gene, encoding a protein pivotal for the G1-S phase transition

(Fig.1C, right).

RA, and its dietary precursor retinol, can apparently promote

DNC8 cell growth in vivo. DNC8 cells xenografted subcutaneously,

and bilaterally, in the dorsal flank of female nude mice (see

experimental scheme, Fig. 2A), were clearly growth-promoted by

chronic RA treatment (2.5 mg/kg) delivered by daily intraperito-

neal injection. Weekly assessment of tumor size showed that RA

clearly promoted the growth of DNC8 xenograft tumors up to the

sixth week (Fig. 2B, right); thereafter tumors stop growing (data

not shown). In contrast, the same RA treatment induced growth

inhibition of the control LXC5 xenograft tumors (Fig. 2B, left).

Immunocytochemistry of DNC8 tumor sections after six-week

RA-treatment showed a significantly (p,0.05) higher number of

cells positive for the proliferation marker Ki67 (Fig. 2C, left).

Significantly (p,0.01) higher was also the level of cyclin D1

transcription (Fig. 2C, right).

Based on the overall in vitro and in vivo observations, we

hypothesized that two distinct effects occur as a consequence of

disruption of RARa function. The first effect is the abrogation of

growth inhibition mediated by RA through RARa, and the second

effect is a non-RARa-mediated stimulation of cell growth by RA

itself. To identify these effects we focused our analysis on CER and

S1P signaling, two sphingolipid signaling pathways exerting

opposite action on cell growth.

RA fails to induce CER synthesis in cells with

functional RARa inhibition
The metabolism of both CER and S1P is tightly integrated

(Fig. 3A). CER can be generated either as a result of

sphingomyelin hydrolysis, catalyzed by either one of two

sphingomyelinases, the neutral sphingomyelinase (nSMase) and

the acid sphingomyelinase (aSMase), or by de novo synthesis as

a result of condensation of L-serine and palmitoyl CoA catalyzed

by serine palmitoyltransferase (SPT) (Fig. 3A). In preliminary cell

labeling experiments of T47D cells with either [3H] sphingosine or

[3H] palmitate, it was apparent that RA induces CER synthesis via

sphingomyelin hydrolysis, and not de novo synthesis in cells with

a functional RARa (Fig. 3B). Consistently, both the transcription

level of the two SPT subunits genes, LCB1 and LCB2, and the SPT

activity did not vary significantly between LXC5 and DNC8 cells

in response to RA (Fig. 3C, top). In contrast, both the transcription

level and activity of one of the sphingomyelinases, nSMase (Fig. 3C

middle), significantly (p,0.01) increased in response to RA in

LXC5, but not in DNC8 cells. Conversely, the transcription and

activity of aSMase remained unchanged (Fig. 3C bottom).

Moreover, a specific nSMase inhibitor, GW4869 [26] (5 mM,

48 h) significantly (p,0.05) counteracted RA-induced growth

inhibition (Fig. 3D, left) as well as RA-induced CER level in LXC5

cells (Fig. 3D, right).

To validate independently whether nSMase-driven CER

synthesis is under RARa regulation, we used two specific RARa
antagonists RO415253 [27] and ER50891 [28]. Both antagonists

effectively inhibit RA action at RARa, since they abrogate RA-

induced transcriptional upregulation of RARb2, a prototypic

direct RARa-target (Fig. 4C). Treatment of T47D cells with a 100-

fold concentration of either one of the RARa antagonists relative

to RA for 72 h, counteracted both the RA-induced antiprolifera-

tive activity (Fig. 4A) and the RA-induced CER synthesis in T47D

cells (Fig. 4B). Further, both RARa antagonists inhibited the RA-

induced transcriptional upregulation of nSMase (Fig. 4C). These

findings demonstrate a functional interference of both antagonists

with RA-induced, nSMase-mediated CER synthesis.

Thus, by using two independent approaches, we clearly

demonstrated that disruption of RARa function abrogates the

nSMase-mediated synthesis of CER in response to RA.

Fenretinide, a retinoid that works in an

RAR-independent fashion, can induce CER in cells

with functional RARa inhibition
Fenretinide (4-HPR) is a synthetic retinoid that was shown to be

effective for prevention and treatment of breast cancer [29,30].

Fenretinide was reported to induce CER accumulation in a non-

RAR-dependent fashion [31,32]. Consistently, DNC8 cells, while

unable of nSMase-induced CER synthesis in response to RA

(1 mM, 72 h) (Fig. 5A left), were capable of accumulating CER in

response to fenretinide (4 mM, 72h) (Fig. 5A, right). Fenretinide-

induced CER accumulation is paralleled both by a consistent

antiproliferative (Fig. 5B, left) and proapoptotic effect (Fig. 5B,

right).

These observations support the conclusion that the inability of

RA to induce CER synthesis in cells with functional disruption of

RARa is due to lack of upregulation of the specific nSMase-

mediated CER synthetic pathway, and not to an overall failure of

the entire CER synthetic apparatus.

RA fails to downregulate both SK1 transcription and

activity in cells with functional RARa inhibition
The metabolism of the antiproliferative CER is intrinsically linked

to the metabolism of the prosurvival S1P effector (Fig. 3A). For this

reason, we measured the SK activity in LXC5 and DNC8 cells

both at baseline (in the absence of RA) and in the presence of RA.

Apparently, LXC5 cells have a significantly (p,0.01) lower level of
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Figure 1. Cells with a functionally disrupted RARa signaling become both RA-resistant and susceptible to RA-induced cell growth. A) Differential
response to RA according to the integrity of the RARa signaling. B) Both the ER-C4 clone, in which RA signaling was impaired by treatment with the
RARa antagonist ER50891 (top), and the DNC8 clone, expressing the dominant negative RARa403 (bottom), were growth-stimulated by RA as shown
by both colony formation assay and cell proliferation assay, while their cognate controls (T47D and LXC5, respectively) were growth inhibited. C) RA
expedites the G1-S transition in DNC8 cells (left), and significantly induces cyclin D1 transcription (right).
doi:10.1371/journal.pone.0000836.g001
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SK1 activity than DNC8 cells already at baseline (Fig. 6A). Further,

RA (1 mM, 72 h) can induce a significant downregulation (p,0.05)

of SK1 activity in LXC5 but not in DNC8 cells (Fig. 6A, upper

inserts). The SK1 activity pattern in LXC5 and DNC8, at baseline

and after RA-treatment, mirrors the transcription pattern of the SK1

gene, one of the two SK genes (Fig. 6B, top left). The transcription of

sphingosine kinase 2 (SK2), sphingosine-1-phosphate lyase (S1P lyase),

and sphingosine-1-phosphate phosphatase (S1PP) is not significantly

different in LXC5 and DNC8 cells both at baseline and after RA-

treatment (Fig. 6B, top right, and bottom).

Apparently, only in cells with a functional RARa, RA

transcriptionally regulates in an opposite fashion the metabolic

pathways leading to either CER or S1P synthesis, by upregulating

on one hand nSMase transcription and by downregulating on the

other hand SK1 transcription, thus synergistically inhibiting cell

proliferation.

Evidence that RA fails to regulate in an opposite

fashion CER synthesis and SK activity in cells lacking

endogenous RARa
Next, we searched for evidence that RA fails to regulate in an

opposite fashion CER synthesis and SK activity also in cells that

lack endogenous RARa function. For this reason, we chose a breast

cancer cell line, MDA-MB-231, that does not express endogenous

RARa (Fig 7A, left) and the other downstream RA-regulated RAR

genes, including RARb2 (Fig. 7A, right). MDA-MB-231 are

modestly, yet significantly (p,0.05) growth-promoted by RA

(Fig. 7B). Interestingly, in these cells RA fails to: induce nSMase

transcription (Fig. 7C, left), increase CER synthesis (Fig 7C,

middle), and downregulate both SK transcription and activity

(Fig. 7C, middle and right).

Treatment with the SK inhibitor 2-(p-hydroxyanilino)-4-(p-

chlorophenyl) thiazole (2 mM, 72 h) led to significant inhibition

(p,0.01) of MDA-MB-231 proliferation both in the absence and

presence of RA (Fig. 7D), indicating that RA-promoted cell

proliferation of MDA-MB-231 cells might be due, at least in part,

to activation of the SK1-S1P signaling pathway. In addition,

MDA-MB-231 can accumulate CER (Fig. 7E, left) and undergo

apoptosis (Fig. 7E, right) in response to fenretinide, showing that

other non-RAR-regulated ceramide synthetic pathways are still

functional. Thus, in different cell contexts, both when we disrupted

functional RARa (DNC8) or there is no endogenous RARa
(MDA-MB-231) it is apparent that the CER/S1P rheostat is not

regulated by RA as it does in cells with an intact RARa. In

contrast, RA seems to activate, rather than downregulate, the SK

signaling.

SK1-S1P signaling: a candidate growth promoting

mechanism of non-RAR-mediated RA action
RA-induced cell survival and growth have been documented in

different cells and tissues [33–35]. RA-induced proliferation in the

absence of a functional RARa signaling is not breast cancer cell

context-specific and can occur both in transformed and un-

transformed cells (unpublished observations). Apparently, a few

non-RAR targets can mediate RA-action [34,36,37]. We gathered

preliminary evidence that in DNC8 cells the RA non-RAR-

Figure 2. RA promotes tumor growth in vivo. A) LXC5 and DNC8 cells were xenografted in nude mice, which were treated with RA according to the
experimental scheme. B) Weekly assessment of tumor size over six weeks showed that DNC8 xenograft tumors of mice that received RA treatment
grew significantly more than tumors of mice that did not received RA treatment (right). LXC5 xenograft tumors underwent growth inhibition in
response to RA (left). C) RA significantly promoted cell proliferation as demonstrated by a significantly higher number of Ki67-positive cells (left) and
increased cyclin D1 transcription (right) in RA-treated DNC8 cells.
doi:10.1371/journal.pone.0000836.g002
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mediated proliferation effect is due, at least in part, to activation of

the SK1-S1P signaling pathway because of the following

observations. First, in the presence of RA, cyclin D1 transcription

is upregulated in DNC8 cells transfected with wild-type SK1

(Fig. 8A, left). Second, exogenous expression of a dominant

negative SK1 mutant (DNSK) in DNC8 cells significantly

(p,0.05) reduced the level of cyclin D1 transcription compared

to the level of cyclin D1 transcription in cells transfected with the

cognate empty vector (Fig. 8A, right). Third, treatment with the

specific SK inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thi-

azole, (2 mM, 72 h), led to significant inhibition (p,0.01) of DNC8

proliferation both in the absence, and presence of RA (Fig. 8B) as

it did in MDA-MB-231 cells (Fig. 7). Finally, by labeling

experiment with [3-3H] D-erythro-sphingosine, we observed

a significant (p,0.05) increase of intracellular S1P in DNC8 cells

in response to RA (1 mM, 72 h) (Fig. 8C).

We conclude that when RA is not channeled through RARa
there is no longer concerted transcriptional upregulation of

nSMase-mediated CER and transcriptional downregulation of

SK1 activity. In contrast, RA, through alternate, non-RAR

Figure 3. RA fails to induce nSMase-mediated CER synthesis in cells with functional RARa inhibition. A) Scheme showing the metabolic pathways
leading to the synthesis of both CER and S1P, two bioactive sphingolipids known for exerting opposite effects on proliferation. B) [3H] palmitate or
[3H] sphingosine labelling, in the presence and absence of RA, showing that RA induces CER accumulation through a sphingomyelinase pathway
(fluorographic pattern of CER and sphingomyelin (SM), respectively, in the upper inserts). C) Quantitative analysis of transcription and activity for the
different enzymes leading to CER synthesis in both LXC5 cells and DNC8 cells clearly indicates that RA induces CER through the nSMase pathway
(middle) and not the SPT (top) and aSMase (bottom) pathways. D) The nSMase inhibitor GW4869 significantly counteracted both RA-induced growth
inhibition (left) and CER accumulation (right).
doi:10.1371/journal.pone.0000836.g003
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target(s), manages to activate the SK1-S1P signaling, thus

promoting cell survival and growth (Fig. 8D).

DISCUSSION
In this study we provide mechanistic evidence that RA can act as

a growth inhibitor or a growth promoter according to the

functional status of RARa. Moreover, we provide evidence that in

the presence of a functional RARa, RA inhibits cell growth by

concertedly, and inversely, regulating the synthesis of two

bioactive sphingolipids, CER and S1P. In contrast, we show that

in the absence of RARa, RA, in a non-RAR-mediated fashion,

promotes cell growth by activating the SK1-S1P-signaling.

Specifically, we found that RA, when channeled through RARa
in RA-sensitive cancer cells, concertedly upregulates on one hand

nSMase, thus leading to accumulation of CER, the antiprolifera-

tive and proapoptotic sphingolipid, and on the other hand

downregulates SK1, pivotal for the synthesis of the oncogenic

S1P, the prosurvival sphingolipid. This regulation is lost in cells

(T47D) where we stably inhibited RARa function with either

a RARa antagonist, or a dominant negative RARa mutant and in

cells (MDA-MB-231) that lack endogenous RARa function.

Lack of RA-RARa-mediated control of the sphingolipid

rheostat explains why cells survive in the presence of RA.

However, we found that cells not only survive, but actually grow

more in the presence of RA. Thus, RA exerts a distinct effect that

is non-RAR-mediated because lack of RARa determines the

downregulation/silencing of the other two RARs, RARb and

RARc (data not shown). The growth-promoting action of RA and

its dietary precursors has puzzled investigators for many years.

Beta-carotene was shown to increase, rather than reduce, the

incidence of lung cancer [19,22] and head and neck cancer [36].

Both retinol and RA were shown to promote tumor growth in

transgenic models of both breast and colon cancer [18,21,35].

Here we show that chronic treatment with RA stimulates the

growth of cells with an impaired RARa function not only in vitro

but also in vivo. Thus, RA-induced expansion of cells may represent

a discrete step of the tumor progression process once cells have lost

RAR function. In the absence of functional RARs, RA apparently

activates, through non-RAR targets, one or more pro-proliferative

mechanisms. We provide evidence that one of these mechanisms is

the SK1-S1P signaling. We do not know yet through which

alternate, non-RAR target RA accomplishes to activate the SK1-

Figure 4. RARa antagonists counteract both RA-induced growth inhibition and nSMase-mediated CER synthesis. A) RO415253 (RO) (left) and
ER50891 (ER) (right) rescued T47D cells from RA-induced growth-inhibition. B) Both RO and ER counteracted the RA-induced CER synthesis. C) Both
RO and ER significantly counteracted the transcription of nSMase as well as the transcription of the control downstream RARa direct target RARb2.
doi:10.1371/journal.pone.0000836.g004
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S1P signaling. A potential non-RAR candidate target is protein

kinase alpha (PKCa). PKCa can physically bind RA [37], can

activate the SK signaling [38], and promote cell growth and tumor

progression [39]. Another non-RAR candidate target is PPARb/

d, an orphan nuclear receptor that binds with high affinity RA,

recently implicated in RA-induced survival [35]. PKCa and

PPARb/d are both expressed in our cell model with functionally

disrupted RARa (data not shown).

Our study indicates that drugs such as fenretinide that can

increase CER through pathways different from the RA-RARa-

regulated nSMase pathway, or SK inhibitors can overcome the

biological sequelae associated with the loss of RARa function and

counteract RA-induced growth by targeting the sphingolipid

rheostat. The identification of both non-RAR targets and mech-

anisms implicated in RA-mediated prosurvival/proliferation effects

might bring us a step closer to the solution of the RA-paradox.

MATERIALS AND METHODS

Cell cultures and biological assays
The T47D breast cancer cell line (ATCC, Manassas, VA) was

cultured in DMEM medium (Invitrogen, Carlsbad, CA) plus 5%

charcoal-dextran-stripped fetal bovine serum (Hyclone, Logan,

UT). The T47D-derived clones, DNC8 and LXC5, carrying

either a retroviral vector containing the human dominant-negative

RARa403 mutant [40], or the cognate empty vector were

developed as previously described [13]. The T47D-derived clone

ER-C4 was developed by isolating and expanding single colonies

that grew after treatment with RA 1 mM in combination with the

RARa antagonist ER50891 as previously described [13]. Treat-

ment with all-trans retinoic acid (RA) (Sigma, St Louis, MI), N-(4-

hydroxyphenyl) retinamide (4-HPR) (Sigma), the RARa antago-

nists ER50891 (provided by Dr. Kouichi Kikuchi, Discovery

Research Laboratories, Ibaraki, Japan) and RO415253 (provided

by Dr. Salvatore Toma, Genoa, Italy), the sphingosine kinase

inhibitor, 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole (Cal-

biochem, San Diego, CA), and the neutral sphingomyelinase

inhibitor (GW4869) (Sigma) are described in detail in the Results.

Cell proliferation was evaluated by either the 3-(4,5-dimethylthia-

zol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay [41] or the

Figure 5. Fenretinide can induce CER also in cells without a functional
RARa. A) DGK analysis of CER (autoradiography of CER species in the
upper inserts) showing that RA induces CER only in cells with
a functional RARa signaling (left), while fenretinide, a retinoid whose
action is RAR-independent, can induce CER also in cells without
a functional RARa signaling (right). B) Fenretinide-induced CER
accumulation has an antiproliferative and proapoptotic effect, as
shown by cell proliferation assay (left) and the presence of cleaved
PARP (right), respectively.
doi:10.1371/journal.pone.0000836.g005

Figure 6. RA fails to downregulate both SK1 transcription and activity in cells with functional RARa inhibition. A) Downregulation of SK1 activity
(S1P spots in the upper insert) in response to RA occurs in LXC5 cells but not DNC8 cells. B) SK1 transcription (but not the transcription of SK2, S1PP,
S1P lyase) is downregulated in response to RA in LXC5 cells but not in DNC8 cells.
doi:10.1371/journal.pone.0000836.g006
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Live/Dead Cell Viability assay (Invitrogen). For the colony

formation assay, exponentially growing cells were seeded at

56102 cells/well in 6-well plates in triplicate and allowed to

attach to the substrate. Cells were treated with or without RA

1 mM for 24 hours, and then the medium was replaced with drug-

free medium and the cells grown for 14–21 days. Colonies were

fixed with methanol and stained with Giemsa (Sigma). The total

area of the colonies was assessed by using Image J (NIH). For flow

cytometric cell cycle analysis, cells were trypsinized, washed with

cold phosphate buffered saline (PBS), fixed in 70% ethanol at 4uC

for 30 minutes, washed with cold 0.5% bovine serum albumin

(BSA), resuspended in 1 ml Krishan Buffer containing 0.1%

sodium citrate, 0.02 mg/ml RNase A (Qiagen, Valencia, CA),

0.20% NP40 (Sigma), 0.05 mg/ml propidium iodide (Sigma), kept

at 4uC for 30 minutes, and analyzed with a Fluorescence-

Activated Cell Sorter (FACS) (Becton Dickinson Biosciences,

San Jose, CA) equipped with Cellquest software. The data were

analyzed with ModFit LT software (Verity Software House, Inc.

Topsham, ME). Transient transfection was performed by

transfecting 56105 cells attached to the plastic substrate with

Figure 7. Evidence that RA fails to regulate in an opposite fashion CER synthesis and SK activity in cells lacking endogenous RARa. A) Lack of
endogenous RARa signaling (left) is demonstrated by lack of RA-induced transcription of the RARa target RARb2 (right). B) MDA-MB-231 are modestly,
but significantly, growth-promoted by RA. C) RA fails to induce nSMase transcription (left), CER synthesis (middle), SK1 transcription downregulation
(middle), and decrease of SK activity (right) in MDA-MB-231 cells. D) RA-induced MDA-MB-231 proliferation is significantly decreased by treatment
with a SK inhibitor. E) Fenretinide can effectively induce both CER synthesis (left) and apoptosis (right) in MDA-MB-231 cells.
doi:10.1371/journal.pone.0000836.g007
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either a vector carrying the dominant negative SK1 (pcDNA3-

hSKG82D) (provided by Dr. Stuart M. Pitson, Hanson Institute,

Adelaide, Australia) [42], or the cognate empty vector (pcDNA3,

Invitrogen), using LipofectAmine Plus (Invitrogen).

Animal studies and tumor analysis
Female athymic NCr-nu/nu mice (6–8 weeks old) were bought

from NCI-Frederick Animal Production Program (NCI, Frederick,

MD). All mice were kept in a temperature-controlled room on

Figure 8. SK1-S1P signaling: a candidate growth promoting mechanism of non-RAR-mediated RA action. A) Transient exogenous expression of
SK1 in DNC8 cells leads to upregulation of cyclin D1 transcription relative to cells expressing the cognate empty vector (left). Conversely, transient
exogenous expression of a dominant negative SK mutant in DNC8 cells negatively affects RA-induced cyclin D1 transcription (right). B) RA-induced
DNC8 proliferation is significantly decreased by treatment with a SK inhibitor. C) RA upregulates the S1P level (spots in the upper insert) in DNC8 cells.
D) Scheme showing that RA action mediated through RARa results in upregulation of nSMase-generated CER sythesis, concomitant with
downregulation of SK1 transcription/activity. These concerted antiproliferative metabolic changes concur to inhibit cell proliferation. Consequent to
an impaired RA-RARa signaling, these concerted antiproliferative metabolic changes do not occur, thus cells survive in the presence of RA. Moreover,
RA, through alternate, non-RAR (genomic or non-genomic) target(s), activates pro-survival signaling pathways, including the SK signaling pathway,
thus leading to the expansion of the RA-resistant cell pool.
doi:10.1371/journal.pone.0000836.g008
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a 12/12-h light/dark schedule, with food and water ad libitum.

Mice were estrogenized by intramuscular injection of Depo-

estradiol (Florida Infusion Co, Palm Harbor, FL) at 1.5 mg/kg

body weight. Two days after, mice were subcutaneously inoculated

in the flank region (bilaterally) with either 56106 DNC8 cells (16

mice) or 56106 LXC5 cells (16 mice) in 0.2 ml of a mixture of

serum-free DMEM (Invitrogen) and Matrigel (BD Biosciences,

Bedford, MA) (1:1, by vol). Mice inoculated with either LXC5 or

DNC8 cells were randomly divided into two groups of 8 mice

each. When mice developed palpable tumors (approximate tumor

size of 20 mm3), they were treated with either the vehicle,

dimethylsufoxide (DMSO), or RA (2.5 mg/kg body weight) by

intraperitoneal (i.p.) injection five times a week, up to six weeks.

Tumors size was measured with a digital caliper twice a week, and

tumor volumes were calculated as described [43]. Mice were

monitored and weighed weekly. At the end of the sixth week, mice

were euthanized. Data were analyzed by one-way ANOVA,

followed by multiple comparison tests (STATISTICA program,

Tulsa, OK, USA). All statistical tests were two-sided. The level of

significance was set at p,0.05.

Three tumors (right side) randomly selected from each group of

mice were removed and cut in half. One half was snap-frozen in

liquid nitrogen and used for evaluating cyclin D1 transcription by

quantitative real time RT-PCR. The other half was fixed in 10%

neutral-buffered formalin and used for immunohistochemical

analysis of the Ki67, a parameter of cell proliferation. Fixed

tissues embedded in paraffin were sectioned. 5 mm-sections were

reacted with either a rabbit anti-Ki67 human antibody (Dako,

Carpinteria, CA) or horse serum as a control, followed by

a biotinylated horse anti-rabbit antibody (BioGenex, San Ramon,

CA), and visualized by using streptavidin horseradish peroxidase/

diaminobenzidine. Sections were counterstained with hematoxylin

and mounted. Ki67-positive cells were quantified as described

[44]. The differences between two-pair samples were analyzed by

the two-tailed Student’s t test.

Quantitative real-time RT-PCR
Total RNA isolated by Trizol (Invitrogen) followed by DNase I

(Qiagen) treatment, and retrotranscribed into cDNA with

a SuperScript First-Strand Synthesis System (Invitrogen) was

amplified with iQ SYBR Green Supermix kit (BioRad, Hercules,

CA) in combination with specific primers using a MyiQ Real-

Time PCR Detection System (BioRad). The primer sequences

were as follows: cyclin D1 (sense: 59-CTG TGC TGC GAA GTG

GAA ACC AT-39; antisense: 59-TGG AGT TGT CGG TGT

AGA TGC ACA-39), nSMase (sense: 59-CAA CAA GTG TAA

CGA CGA TGC C-39; antisense: 59-CGA TTC TTT GGT CCT

GAG GTG T-39), SK1 (sense: 59-CTG GCA GCT TCC TTG

AAC CAT-39; antisense: 59-TGT GCA GAG ACA GCA GGT

TCA-39); LCB1 (sense, 59-TTA ACT CAG GCG CGC TAC

TTG-39 and antisense, 59-TGT TGT TCC ACC GTG ACC A-

39); LCB2 (sense, 59-GCC ACC CCA ATT ATT GAG TCC-39

and antisense, 59-TGC AAT AGG TCC CCA ACT TCA-39);

SK2 (sense, 59-CCA GTG TTG GAG AGC TGA AGG T-39 and

antisense, 59-GTC CAT TCA TCT GCT GGT CCT C-39);

aSMase (sense, 59-TGG CTC TAT GAA GCG ATG GC-39 and

antisense, 59-TTG AGA GAG ATG AGG CGG AGA C-39); S1P

phosphatase (sense, 59-TGA GTA CAG CAT GCC CTC CA-39

and antisense, 59-GGC AAA CTA GAG AAC ACC AGC A-39);

S1P lyase (sense, 59-GAG CAC CCA TTT GAT TTC CG-39 and

antisense, 59-CAC CAA TGA TGA GCC TTT TGG-39); GAPDH

(sense: 59-GAA GGT GAA GGT CGG AGT C-39; antisense: 59-

GAA GAT GGT GAT GGG ATT TC-39). The level of the

different transcripts was normalized to the level of the GAPDH

transcript, and quantified by the threshold cycle Ct method.

Diacylglycerolkinase (DGK) assay
Lipids were extracted according to the method of Bligh and Dyer

[45]. CER was quantitated with the DGK assay [46]. Briefly,

30 nmol of lipids, quantitated as inorganic phosphate [47], were

incubated in the presence of 20 ml b-octylglucoside/dioleoylpho-

sphatidylglycerol micelles [48], 2 mM dithiothreitol, 6 mg of

Escherichia coli DGK (Calbiochem), 1 mM ATP, 1.3 mCi of

[c32-P] ATP (3 Ci/mmol) (Perkin Elmer Life Sciences Inc., Boston,

MA) in a final volume of 100 ml at 25uC for 45 minutes.

Radioactive lipids were separated, along with reference lipid

standards (Avanti Polar Lipids, Alabaster, AL), by thin layer

chromatography (TLC), with chloroform/acetone/methanol/

acetic acid/water (10/4/3/2/1, by vol). Radioactive CER

phosphate spots were visualized by autoradiography, scraped,

and counted by liquid scintillation.

Quantitation of de-novo generated ceramide by [3H]

palmitate labeling
66105 cells were labeled with 4 mCi of [9,10(n)-3H] palmitate (55

Ci/mmol) (Amersham Biosciences Italy, Italy) in the presence of

either RA (1 mM) or ethanol (vehicle) at 37uC for 10 h. Lipids,

extracted as described previously, were subjected to mild alkaline

hydrolysis (0.1 N NaOH in methanol, at 55uC for 1 h), 48 h-dialysis

against distilled water, lyophilized, resuspended in 50 ml chloro-

form/methanol (2/1, by vol) and separated along with reference

standards by TLC using chloroform/methanol/2N NH4OH (40/

7.5/1, by vol). Radioactive CER spots were visualized by

fluorography, scraped, and counted by liquid scintillation.

Quantitation of SMase-generated ceramide by [3H]

sphingosine labeling

66105 cells were labeled with 0.4 mCi [3-3H]D-erythro-sphingo-

sine (23 Ci/mmoles) (Perkin Elmer) at 37uC for 72 h, before

adding RA (1 mM) or ethanol (vehicle) for additional 72 h. Lipids

were extracted as described above. Radioactive lipids and

reference standards were resolved by TLC using either chloro-

form/methanol/2N NH4OH (40/7.5/1, by vol) for CER

separation or chloroform/methanol/formic acid/water (65/25/

8.9/1.1, by vol) for sphingomyelin separation. Radioactive CER

and sphingomyelin spots, visualized by fluorography and recog-

nized by comparison with reference standards, were scraped and

counted by liquid scintillation.

Acid sphingomyelinase (aSMase) activity assay
aSMase activity was determined essentially as described [49].

Briefly, cells were lysed by three freeze-thawing cycles in 200 ml of

a lysis buffer containing 50 mM Tris-HCl (pH 7.4), 1 mM EDTA,

0.1% Triton X-100, 5 mM dithiothreitol, 1 mM phenylmethyl-

sulfonyl fluoride, and 2 ml of a protease inhibitor cocktail (Sigma).

The lysate was centrifuged at 10006g for 15 min. The

supernatant was collected, and protein content determined by

Comassie Plus assay (Pierce Biotechnology, Inc, Rockford, IL).

The protein concentration was adjusted at 1 mg/ml with lysis

buffer. 50 mg proteins were added to 50 ml solution, which was

previously sonicated for 30 sec, containing 200 mM sodium

acetate, pH 5.0, 0.1% Triton X-100, 0.5 mCi [N-methyl-14C]

sphingomyelin (54.0 mCi/mmol) (Amersham Biosciences) and

100 mM sphingomyelin (Sigma) and incubated at 37uC for

60 min. The reaction was stopped by adding 1.5 ml chloro-
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form/methanol (2/1, by vol) and 0.2 ml distilled water. Phases

were separated by centrifugation at 20006g for 5 min. Upper

aqueous phase aliquots were counted by liquid scintillation.

Neutral sphingomyelinase (nSMase) activity assay
nSMase activity was determined essentially as described [49].

Briefly, 96106 cells were lysed by three freeze-thawing cycles in

200 ml of a lysis buffer containing 50 mM Tris-HCl (pH 7.4),

1 mM EDTA, 0.1% Triton X-100, 5 mM dithiothreitol, 1 mM

phenylmethylsulfonyl fluoride, and 2 ml of a protease inhibitor

cocktail (Sigma). The cell lysate was centrifuged at 10006g for

15 min. The supernatant was collected for protein content

determination by the Comassie Plus assay (Pierce Biotechnology,

Inc.). The protein concentration was adjusted to 1 mg/ml with the

lysis buffer. 50 mg proteins were added to 50 ml of a solution,

which was previously sonicated for 30 sec, containing 100 mM

Tris-HCl (pH 7.4), 10 mM MgCl2, 0.2% Triton X-100, 10 mM

dithiothreitol, 0.5 mCi [N-methyl-14C] sphingomyelin (54 mCi/

mmol) (Amersham Biosciences, Buckingamshire, UK), and

100 mM sphingomyelin (Sigma), and incubated for 60 min at

37uC. The reaction was stopped by adding 1.5 ml chloroform/

methanol (2/1, by vol) and 0.2 ml distilled water. Phases were

separated by centrifugation at 20006g for 5 min. Upper aqueous

phase aliquots were counted by liquid scintillation.

Serine palmitoyltransferase (SPT) activity assay
The activity of SPT was determined essentially as described [50].

Briefly, 16107cells were lysed by three freeze-thawing cycles in

300 ml of a lysis buffer containing 25 mM Hepes (pH 7.4), 5 mM

EGTA, 50 mM NaF, 3 ml of a protease inhibitor cocktail (Sigma).

The cell lysate was centrifuged at 10006g for 15 min. The

supernatant was collected and protein content determined by

Comassie Plus assay (Pierce Biotechnology, Inc.). The protein

concentration was adjusted to 5 mg/ml with lysis buffer. 200 mg

proteins were added to 160 ml solution containing 100 mM Hepes

(pH 8.3), 2.5 mM EDTA, pH 7.4, 50 mM pyridoxalphosphate,

5 mM dithiothreitol, 1 mM L-serine (200 ml final volume). After

a pre-incubation at 37uC for 5 min, 1 mCi L-[3H(G)]serine (26.0 Ci/

mmol) (Perkin Elmer) and 20 ml 2 mM palmitoyl CoA were added.

Incubation was allowed to proceed for 20 min at 37uC and stopped

by adding 1.5 ml of chloroform/methanol (1/2, by vol), 25 mg D-

erythro-sphingosine (Avanti Polar), 1.5 ml chloroform and 2 ml 0.5

N NH4OH. Phases were separated by centrifugation at 20006g for

5 min. The lower organic phase was washed twice with 2 ml distilled

water. Aliquots were dried and counted by liquid scintillation.

Sphingosine kinase (SK) activity assay
SK activity was determined essentially as described [51]. Briefly,

96106 cells were lysed by three freeze-thawing cycles in 200 ml of

a lysis buffer containing 20 mM Tris-HCl (pH 7.4), 10% glycerol,

1 mM b-mercaptoethanol, 1 mM EDTA, 1 mM sodium ortho-

vanadate, 15 mM NaF, 40 mM b-glycerophosphate, 0.5 mM

deoxypiridoxine, 0.1% Triton X-100, 2 ml of a protease inhibitor

cocktail (Sigma). The cell lysate was centrifuged at 13,0006g for

30 min. The supernatant was collected for protein content

determination by the Comassie Plus assay (Pierce Biotechnology,

Inc.). The protein concentration was adjusted to 1 mg/ml by

adding lysis buffer. 100 mg (100 ml) protein were added to 10 ml of

1 mM D-erythro-sphingosine (Avanti Polar) dissolved in 0.1%

Triton X-100 and 10 ml of a solution containing 10 mCi [c32P]

ATP (3 Ci/mmol) (Perkin Elmer), 20 mM MgCl2, 2 mM ATP,

and incubated at 37uC for 30 min. The reaction was stopped by

adding 20 ml 1 N HCl and 0.8 ml chloroform/methanol/37%

HCl (100/200/1, by vol ) followed after 10 min by the addition of

250 ml chloroform and 250 ml 2 M KCl. Phases were separated by

centrifugation at 20006g for 5 min. The lower organic phase was

collected, dried and redissolved in 50 ml of chloroform/methanol/

37% HCl (100/200/0.2, by vol). Radioactive lipids were resolved

by TLC using n-butanol/acetic acid/water (3/1/1, by vol).

Labeled S1P, visualized by autoradiography and recognized by

comparison with a reference standard, was scraped and counted

by liquid scintillation.

Intracellular S1P assay
Intracellular S1P was determined essentially as described [52].

66105 cells were labeled with 0.8 mCi of [3-3H]D-erythro-

sphingosine (23 Ci/mmoles) (Perkin Elmer) and 50 pmoles of

sphingosine (Avanti Polar) in 100 ml DMEM, for 2 h at 37uC.

Lipids were extracted by addition of 1.9 ml chloroform/

methanol/37% HCl (100/200/1, by vol), 625 ml chloroform and

625 ml 2 M KCl. Phases were separated by centrifugation at

20006g for 5 min. The lower organic phase was collected, dried,

and dissolved in 30 ml of chloroform/methanol (2/1, by vol).

Radioactive lipids were resolved by TLC using n-butanol/acetic

acid/water (3/1/1, by vol). Labeled S1P, visualized by fluorog-

raphy and recognized by comparison with a reference standard,

was scraped and counted by liquid scintillation.

Statistical analysis
Unless specifically stated, data represent the mean of three

independent experiments6standard deviation (SD). The signifi-

cance of differences between groups was obtained by the Student’s

t-test. In the Figures one asterisk correspond to p,0.05, two

asterisks to p,0.01 and three asterisks to p,0.001.
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