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Identification of patients with 
and without minimal hepatic 
encephalopathy based on gray 
matter volumetry using a support 
vector machine learning algorithm
Qiu-Feng Chen1, Tian-Xiu Zou2, Zhe-Ting Yang2 & Hua-Jun Chen2*

Minimal hepatic encephalopathy (MHE) is characterized by diffuse abnormalities in cerebral structure, 
such as reduced cortical thickness and altered brain parenchymal volume. This study tested the 
potential of gray matter (GM) volumetry to differentiate between cirrhotic patients with and without 
MHE using a support vector machine (SVM) learning method. High-resolution, T1-weighted magnetic 
resonance images were acquired from 24 cirrhotic patients with MHE and 29 cirrhotic patients without 
MHE (NHE). Voxel-based morphometry was conducted to evaluate the GM volume (GMV) for each 
subject. An SVM classifier was employed to explore the ability of the GMV measurement to diagnose 
MHE, and the leave-one-out cross-validation method was used to assess classification accuracy. The 
SVM algorithm based on GM volumetry achieved a classification accuracy of 83.02%, with a sensitivity 
of 83.33% and a specificity of 82.76%. The majority of the most discriminative GMVs were located in 
the bilateral frontal lobe, bilateral lentiform nucleus, bilateral thalamus, bilateral sensorimotor areas, 
bilateral visual regions, bilateral temporal lobe, bilateral cerebellum, left inferior parietal lobe, and right 
precuneus/posterior cingulate gyrus. Our results suggest that SVM analysis based on GM volumetry has 
the potential to help diagnose MHE in cirrhotic patients.

Cirrhotic patients with liver dysfunction often exhibit alterations in brain structure. Neuronal cell loss was shown 
to be associated with liver failure and is likely induced by chronic portosystemic shunting and ammonia expo-
sure1. Many neuropathological studies have reported that cirrhosis involves a loss of brain parenchyma2. Previous 
findings from in vivo computed tomography studies also revealed brain atrophy in alcoholic and non-alcoholic 
cirrhosis3,4. In addition, Zeneroli and colleagues5 showed compelling evidence of brain atrophy in cirrhotic 
patients with hepatic encephalopathy (HE) using magnetic resonance imaging (MRI). Quite recently, reductions 
in the density of gray matter and white matter in cirrhotic patients without overt HE were reported6. From the 
findings above, we see that the literature has repeatedly documented a decline in brain mass that accompanied 
advanced liver disease3,6. Additionally, it was implied that brain structural impairments may increase suscepti-
bility to various neurotoxic substances derived from hepatic dysfunction-associated metabolic disorders, such 
as ammonia and manganese7. More importantly, these structural alterations were suggested to be associated 
with abnormal brain electrophysiological activity and poor psychometric performance in cirrhotic patients8. 
Therefore, measurement of structural alterations in the brain may be helpful to assess potential brain dysfunction 
in cirrhotic patients.

As an early stage of HE, minimal HE (MHE) represents the mildest form of neuropsychological dysfunction 
related to cirrhosis. The symptoms of MHE include an array of mild neurocognitive impairments, such as psy-
chomotor retardation, memory impairments, attention deficits, and diminished executive function9. There is 
increasing evidence showing that MHE negatively affects quality of life10, impairs driving capabilities11, predicts 
the development of overt HE12, and heightens the risk of death13,14. The clinical manifestations of MHE are too 
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mild to be identified by routine physical and neurological examinations. MHE patients are often misdiagnosed 
or left untreated because their subtle neurocognitive impairments require specific neuropsychological and neu-
rophysiological tests to be detected15.

Notably, the structural abnormalities occurring in the gray matter (GM) are considered to contribute to the 
neuropsychological dysfunction in MHE and have been associated with the progression of HE6,16,17. Several stud-
ies even proposed that regional GM morphometry (such as regional volume and cortical thickness measure-
ments) could help to predict the existence of MHE18,19. Given these findings, we used a support vector machine 
(SVM) learning method to test the extent to which GM volumetry can distinguish between cirrhotic patients with 
and without MHE. Additionally, this study aimed to identify the specific GM regions that contributed the most to 
differentiating between the two patient groups.

Subjects and Methods
Subjects.  This study was approved by the Research Ethics Committee of Fujian Medical University Union 
Hospital and was conducted in accordance with the Declaration of Helsinki. Written informed consent was 
obtained from all the study subjects: cirrhotic patients with MHE (n = 24) and those without MHE (NHE, 
n = 29). Table 1 lists the demographic and clinical characteristics of the study participants. Exclusion criteria 
included a current diagnosis of overt HE or other neuropsychiatric disorders, the use of psychotropic medi-
cations, the presence of uncontrolled endocrine diseases and metabolic diseases such as thyroid dysfunction, 
or recent alcohol abuse (less than six months prior to the study). The diagnosis of OHE was based on the West 
Haven criteria15. MHE was diagnosed using the Psychometric Hepatic Encephalopathy Score (PHES), which is 
comprised of a battery of neuropsychological assessments including the digit symbol test, number connection 
test A, number connection test B, serial dotting test, and line tracing test. The patient with PHES score ≤ 5 was 
diagnosed as MHE. Details about the PHES examination and MHE diagnosis have been described previously20,21.

MRI acquisition.  A 3-T MR scanner (Siemens, Verio, Germany) was used to acquire high-resolution 
T1-weighted images with a magnetization-prepared rapid gradient echo (MPRAGE) sequence. Image acquisition 
parameters were as follows: time to repetition (TR) = 1900 ms, time to echo (TE) = 2.48 ms, flip angle = 9 °, field of 
view (FOV) = 256 mm × 256 mm, matrix = 256 × 256, number of sagittal slices = 176, and slice thickness = 1 mm.

MRI processing.  Image processing was performed using Statistical Parametric Mapping software (SPM8) 
(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). In brief, the standard unified segmentation model in SPM8 
was used to separate the structural MRI images into gray matter, white matter, and cerebrospinal fluid. Then, the 
Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra (DARTEL) approach was employed 
to generate a GM template from all the images22 and the template was spatially registered to the tissue probability 
map in standard Montreal Neurological Institute space. Following this affine registration, each gray matter MR 
image was non-linearly warped to the above GM template with a 1.5-mm cubic resolution. The GM volume 
of a single voxel was calculated by multiplying the GM map by the non-linear determinants derived from the 
spatial normalization step. Finally, the resulting images were refined by smoothing with an 8 mm3 full-width at 
half-maximum (FWHM) kernel.

Support vector machine analysis.  Compared to other classification algorithms, SVMs have good perfor-
mance and generalization capability when processing small-sample data23,24. Through the kernel transformation, 
SVMs can map the input objects into a higher dimension space. In order to make the classification accuracy as 
high as possible, a hyperplane needs to be selected to maximize the margin of separation between distinct classes. 
The key problem for SVMs is how to construct the optimal hyperplane.

Characteristics
NHE patients 
(n = 29)

MHE patients 
(n = 24) P-value

Age (years) 52.6 ± 9.7 50.6 ± 8.9 0.46

Sex (male/female) 24/5 20/4 0.96 (χ2-test)

Education (years) 8.3 ± 3.2 8.7 ± 2.7 0.64

Etiology of cirrhosis (HBV/alcoholism/
HBV + alcoholism/other) 21/3/2/3 14/5/2/3 —

Child–Pugh stage (A/B/C) 19/8/2 4/14/6 0.001

Previous episode of overt hepatic 
encephalopathy (no/yes) 19/10 10/14 0.08 (χ2-test)

PHES test

Final PHES (score) −0.6 ± 2.2 −7.8 ± 3.3 <0.001

Number connection test A (seconds) 39.3 ± 10.8 55.7 ± 17.6 <0.001

Number connection test B (seconds) 74.6 ± 26.9 127.8 ± 63.1 <0.001

Serial dotting test (seconds) 46.7 ± 9.6 64.0 ± 18.2 <0.001

Digit symbol test (raw score) 41.1 ± 12.8 28.2 ± 9.5 <0.001

Line tracing test (raw score) 141.4 ± 34.0 192.5 ± 46.6 <0.001

Table 1.  Demographic and clinical features of the study cohort (cirrhotic patients with and without minimal 
hepatic encephalopathy, MHE and NHE).
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Assuming a binary classification problem, the input training data has m samples in the form of < >x y,i i , where 
xi is an n-dimensional vector and yi is the class label. The optimal hyperplane that separates the given data is then 
defined as

= = Φ + .x w xy f b( ) ( ) , (1 1)i i
T

i

where w is the “normal vector” perpendicular to the hyperplane, b is the offset parameter, Φ is the function of 
nonlinear transformation, and T represents the matrix transpose. Through mathematical derivation, the SVM 
classifier with the maximum margin can be obtained by optimizing the following function:
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where ξi is the “slack variable” representing the amount by which each data point deviates from the separation 
margin, and C is a predetermined constant that controls the balance between the training errors and the misclas-
sification tolerance. Once the “normal vector” w and the offset parameter b in Eq. (1.2) are calculated, the classi-
fication (class label yi) can be predicted for a new sample based on Eq. (1.1). Accordingly, as shownin Fig. 1, when 
the parameters w and b were calculated, the decision boundary could be described by the equations wTx + b = +1 
and wTx + b = −1. These decision boundaries were chosen in order to achieve the maximum margin separating 
the two classes. The data points lying on the decision boundaries are called “support vectors”.

In this study, the SVM algorithm was carried out using the PRoNTo software (Pattern Recognition for 
Neuroimaging Toolbox, version 2.1, http://www.mlnl.cs.ucl.ac.uk/pronto/prtsoftware.html)25. Each T1-weighted 
structural image was considered one data point in a high-dimensional space defined by the GM volume (GMV) 
value. In this high dimensional space, the linear decision boundaries classified the brain scans based on their class 
label (i.e., the NHE and MHE groups). Specifically, the classifier was trained by providing the samples in the form 
of x y,i i  to find the optimal hyperplane, where xi represented the input GMV feature and yi was the class label 
(NHE and MHE). The optimal hyperplane was computed based on the varying patterns of GMV values across 
each T1-weighted image.

We chose a linear kernel over a non-linear kernel for several reasons. Firstly, non-linear kernels do not 
improve prediction accuracy in the high-dimensional space26,27. More importantly, a linear kernel reduces the 
risk of over-fitting, can greatly increase computational efficiency, and permits whole-brain classification without 
dimensionality reduction28. The similarity matrix was pre-computed using the linear kernel in the PRoNTo soft-
ware and was then provided to the SVM classifier. The elements in the similarity matrix were calculated as the 
“dot product” of the input GMV features in the high-dimensional space. Then, the SVM classifier can extract the 
weight vector (i.e. the “normal vector” w) as an SVM discrimination map. The weight metric (Wi in Table 2) indi-
cates the strength of the contribution of the GMV feature to the SVM classifier. In our study, we set the parameter 
C = 1 according to previous neuroimaging studies29,30. It is noted that the several factors (i.e. individual age, sex, 
and education level), were included as covariates and regressed out using PRoNTo software, before building the 
SVM model.

The “leave-one-out” cross-validation strategy was adopted in accordance with previous studies31,32, which 
excludes a single subject for testing and uses the remaining subjects for training. Every subject was excluded once 
to evaluate classification performance. This procedure was applied to all subjects in order to assess the overall 

Figure 1.  A schematic diagram demonstrating the SVM concept with a linear kernel. The optimal hyperplane is 
defined by + =w x b 0T . The sample whose feature x satisfies the condition + ≥ +w x b 1T  was classified as 
NHE, while the sample whose feature x satisfies the condition + ≤ −w x b 1T  was classified as MHE.
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accuracy of the SVM23. A permutation test (permutations = 1000 times) was applied to determine the statistical 
significance of the classification accuracy33,34.

We analyzed the correlation between the test margin and the PHES results using Pearson correlation analysis. 
The test margin was computed by projecting the input GMV feature onto the “normal vector” of the hyper-
plane. Accordingly, a larger absolute value of the test margin meant that the subject lay further away from the 
hyperplane.

Results
MHE patients performed significantly worse in all five subtests of the PHES assessment (resulting in a lower final 
score), indicating significant cognitive deficits compared to the NHE subjects.

Figure 2 shows the SVM classification performance based on GMV between the 29 NHE subjects and the 24 
MHE patients. The overall accuracy rate was 83.02% (P = 0.001), with a sensitivity of 83.33% and a specificity of 
82.76%. As shown in Fig. 3, the area under the receiver operating characteristic (ROC) curve was 0.94, indicating 
a high possibility of correctly discriminating between the NHE and MHE individuals. Pearson correlation analy-
sis indicated a positive correlation between the test margin and the PHES results (r = 0.647, P = 1.6 × 10−7). Taken 
together, these results suggested that when the PHES score is far from diagnostic criteria, the subject is unlikely 
to be misclassified.

We identified the GM regions that were more associated with MHE or more associated with NHE by setting 
the threshold to ≥30% of the maximum weight vector scores, as per previous studies30,35. Those GM regions with 
a high absolute value of Wi had a higher discriminant power between groups. Specifically, GM regions with pos-
itive weight values were stronger contributors to recognizing individuals in the NHE group and those with neg-
ative weight values were stronger contributors to recognizing individuals in the MHE group (Table 2). Figure 4 
uses a color map to indicate the GM regions with positive values (warm colors) and negative values (cold colors) 
in the discrimination map. The regions that contributed to identifying NHE included the bilateral frontal lobe, 
bilateral putamen and pallidum, bilateral middle and superior occipital gyrus, bilateral cerebellum posterior lobe, 
left middle and superior temporal gyrus, left middle and inferior temporal gyrus, left inferior parietal lobule, left 
supramarginal gyrus, right precuneus and posterior cingulate gyrus, right fusiform gyrus, and the right calcarine. 
GM regions that identified the MHE group included the bilateral thalamus, bilateral precentral and postcentral 
gyrus, bilateral inferior temporal gyrus, bilateral rectus, left lingual gyrus, left insula, left cerebellum posterior and 
anterior lobe, left occipital-temporal junction area, left parietal-temporal junction area, right middle and inferior 
occipital gyrus, right cuneus and precuneus, and the right cerebellum posterior lobe.

Discussion
In this study, SVM classification analysis with regional GMV as the indicator yielded 83.02% accuracy (83.33% 
sensitivity and 82.76% specificity) in classifying the MHE and NHE groups, suggesting the usefulness of gray 
matter volumetry in identifying early-stage hepatic encephalopathy among cirrhotic patients. Given that GM 
structural abnormalities exacerbate in stages as HE progresses in cirrhotic patients, and the changes of GM vol-
ume and thickness are correlated with cognitive impairments in cirrhosis, it is not unanticipated that gray matter 
volumetry is successful in differentiating between MHE and NHE diagnoses6,18,19. The PHES was designated 
as the current “gold standard” for MHE diagnosis15,36, although its disadvantages are also noted37, such as the 
reliance on the considerable motor activity and the existence of learning effect across the multiple tests. The GM 
volumetry may be helpful to overcome these disadvantages and play the important role in the assisted diagnosis. 
In terms of GMV data, the most informative regions were the bilateral frontal lobe, bilateral lentiform nucleus, 
bilateral thalamus, bilateral sensorimotor areas, bilateral visual regions, bilateral temporal lobe, bilateral cerebel-
lum, left inferior parietal lobe, right precuneus, and the right posterior cingulate gyrus. All of these areas have 
been frequently reported to be affected by liver dysfunction that often induces energy metabolism disorders and 
deposition of neurotoxic substances in the brain38–41.

The GM regions that contributed to the identification of NHE patients had significantly higher GMV values 
in control NHE subjects than in the MHE subjects. This reduction of GMV that we observed in the MHE group 
reflected the previously reported regional atrophy in MHE6,17,18,42. For example, cirrhotic patients with MHE 
have consistently shown a loss of gray matter in both cortical and subcortical structures, such as the frontal and 
parietal lobes, limbic areas, and striatum6,42, and all of these regions were identified in the discrimination map 
obtained by our SVM procedure. Additionally, this decreased GMV occurred in several brain networks such as 
the frontoparietal network, the default mode network, and the primary and secondary visual networks. Therefore, 
network-oriented, regional GM atrophy may also be able to predict the relevant neurological dysfunctions that 
are common in MHE, such as executive dysfunction, attention deficits, and impaired visuospatial ability9,43–45. 
Similarly, MHE-associated neuronal loss in the basal ganglia and frontal lobe may induce the disintegration of 
cortico-striatal circuits subserving motor and cognitive processes46, and the reduction in cerebellar volume can 
affect sensorimotor processing in cirrhotic patients with MHE.

The brain regions that contributed to the identification of MHE subjects showed significantly higher GMV in 
MHE patients compared with NHE subjects. In agreement with this result, previous studies also revealed similar 
enlargements in these specific GM regions in cirrhotic patients. For example, cirrhotic patients with cognitive 
impairment have demonstrated a significant increase in cortical thickness in the bilateral lingual and parahip-
pocampal gyrus, right posterior cingulate cortex, precuneus, peri-calcarine sulcus, and the fusiform gyrus47. In 
addition, cirrhosis is often accompanied by an increase in thalamic volume19,42,48, so much so that increased GMV 
in the thalamus has been regarded as an additional characteristic of MHE. Accordingly, it was not unexpected to 
find that GM regions, such as the bilateral thalamus, bilateral precentral and postcentral gyrus, bilateral inferior 
temporal gyrus, bilateral occipital lobe, bilateral cerebellum, left insula, and right precuneus, were identified in 
our study by SVM classification in the discrimination map.
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It is important to note that the mechanisms underlying increased GMV in MHE are not well understood. 
One possible reason may be the diffuse, low-grade, cerebral edema related to Alzheimer’s type II astrocytes dur-
ing chronic liver disease47,49. The existence of both decreases and increases in GMV in MHE may reflect brain 
structural reorganization due to chronic liver failure. This MHE-associated neural plasticity possibly represents a 
compensatory mechanism to balance the negative influences of neural metabolic abnormalities.

Despite the compelling results of our study, its limitations are three-fold. 1) The relatively small sample size 
restricts the statistical power of the results. Accordingly, we encourage future studies to validate the classification 
potential of GMV using a larger number of study subjects. 2) The MHE patients in our study exhibited mild het-
erogeneity in terms of the etiology of their cirrhosis and their history of overt HE. This may introduce bias in the 
classification results since these factors can induce varying degrees of structural and functional impairments in 
the brain6,48,50. 3) While we only examined the discriminative potential of gray matter changes in MHE, mapping 
abnormal white matter alterations may also be useful to diagnose MHE51, which should be investigated in future 
studies.

Cluster 
size (voxel 
number) Gray matter region

Brodmann 
area

MNI coordinates
Wi 
(×10−3)x y z

NHE group > MHE group

1115 Left Inferior Parietal Lobule 40/7 −30 −49.5 42 9.998

369 Left Middle and Superior Occipital Gyrus 19/18 −27 −81 19.5 5.695

795 Left Middle and Inferior Temporal Gyrus 38/20 −34.5 0 −45 5.679

622 Left Middle and Superior Temporal Gyrus 22/21 −52.5 −40.5 0 5.580

936 Left Inferior Frontal Gyrus 9/6 −55.5 −4.5 22.5 5.508

259 Right Superior and Middle Occipital Gyrus 18/19 24 −85.5 21 5.007

265 Left Middle Frontal Gyrus 6 −24 −4.5 51 5.001

261 Right Fusiform Gyrus 20/36 43.5 −30 −22.5 4.856

331 Right Cerebellum Posterior Lobe 21 −66 −49.5 4.797

246 Left Middle Frontal Gyrus 9 −34.5 31.5 30 4.659

255 Right Inferior and Middle Frontal Gyrus 9/6 39 4.5 33 4.655

349 Right Putamen and Pallidum 21 10.5 −4.5 4.564

259 Right Middle Frontal Gyrus 9 34.5 33 28.5 4.548

616 Left Superior and Middle Frontal Gyrus 11/10 −25.5 48 −15 4.350

306 Right Precuneus and Posterior Cingulate Gyrus 7/31 4.5 −55.5 34.5 4.220

213 Left Supramarginal Gyrus 40 −55.5 −43.5 30 4.095

218 Right Calcarine 30 24 −63 7.5 4.053

316 Right Middle and Superior Frontal Gyrus 10/11 39 54 −3 4.031

208 Left Putamen and Pallidum −22.5 7.5 −1.5 4.023

296 Right Cerebellum Posterior Lobe 24 −82.5 −34.5 3.755

302 Left Cerebellum Posterior Lobe −28.5 −79.5 −28.5 3.597

NHE group < MHE group

3159 Left Precentral and Postcentral Gyrus 4/6/3 −25.5 −19.5 70.5 −8.455

1837 Bilateral Thalamus −7.5 −27 4.5 −7.987

1943 Left Lingual Gyrus 18/17/19 0 −90 −18 −6.352

841 Right Precentral and Postcentral Gyrus 4/5/3 27 −33 70.5 −5.644

376 Left Supramarginal Gyrus and Superior Temporal Gyrus 39/22 −46.5 −54 19.5 −5.563

972 Left Cerebellum Posterior Lobe −25.5 −43.5 −49.5 −5.342

548 Right Cuneus and Precuneus 31/7 18 −64.5 28.5 −5.026

244 Right Cerebellum Posterior Lobe 24 −42 −49.5 −5.019

827 Right Middle and Inferior Occipital Gyrus 19/18 43.5 −69 −13.5 −4.910

440 Left Middle Occipital Gyrus and Middle Temporal Gyrus 39/19 −42 −76.5 16.5 −4.865

716 Left Insula 13 −37.5 −3 −4.5 −4.776

333 Bilateral Rectus 25 1.5 22.5 −22.5 −4.448

274 Left Postcentral Gyrus 2 −57 −30 31.5 −4.308

725 Left Cerebellum Anterior Lobe −24 −34.5 −27 −4.127

248 Left Inferior Temporal Gyrus 20 −51 −22.5 −30 −4.048

346 Right Inferior Temporal Gyrus 20 43.5 −10.5 −39 −4.001

Table 2.  Brain regions contributing to the identification of MHE vs. NHE. Note: The above brain regions were 
identified by setting the classification threshold to ≥30% of the maximum weight vector scores. The first column 
lists only clusters larger than 200 voxels. Wi (reported in the last column) is the weight of each cluster centroid, 
i.e., the value that indicates the relative contribution of the GMV feature to the SVM-based classification.
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Figure 2.  A classification plot comparing NHE patients (n = 29) and MHE patients (n = 24) using the GMV-
based discrimination map generated from the T1-weighted MRI scans. The overall accuracy was 83.02% 
(P = 0.001), with a sensitivity of 83.33% and a specificity of 82.76%.

Figure 3.  Receiver operating characteristic (ROC) curve showing the classification performance.

Figure 4.  Brain regions classified as MHE and NHE based on gray matter volumetry. The threshold was set to 
≥30% of the maximum weight vector scores, and only clusters larger than 200 voxels are shown. The color bar 
indicates the weight value from the SVM classification, with warm colors (positive weights) representing higher 
parameter values in NHE subjects and cold colors (negative weights) representing higher parameter values in 
MHE subjects.
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In summary, we successfully differentiated between cirrhotic patients with and without MHE using gray mat-
ter volumetry and an SVM classification system. The brain regions with the highest discriminant power included 
both cortical and subcortical structures. Therefore, our findings suggest that regional changes in GMV can be 
employed as a biomarker to detect MHE in cirrhotic patients.
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