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Abstract: Different species belonging to the genus Nephthea (Acyonaceae) are a rich resource for bioac-
tive secondary metabolites. The literature reveals that the gastroprotective effects of marine secondary
metabolites have not been comprehensively studied in vivo. Hence, the present investigation aimed
to examine and determine the anti-ulcer activity of 4α,24-dimethyl-5α-cholest-8β,18-dihydroxy,22E-
en-3β-ol (ST-1) isolated from samples of a Nephthea species. This in vivo study was supported by
in silico molecular docking and protein–protein interaction techniques. Oral administration of ST-1
reduced rat stomach ulcers with a concurrent increase in gastric mucosa. Molecular docking cal-
culations against the H+/K+-ATPase transporter showed a higher binding affinity of ST-1, with a
docking score value of −9.9 kcal/mol and a pKi value of 59.7 nM, compared to ranitidine (a com-
mercial proton pump inhibitor, which gave values of −6.2 kcal/mol and 27.9 µM, respectively).
The combined PEA-reactome analysis results revealed promising evidence of ST-1 potency as an
anti-ulcer compound through significant modulation of the gene set controlling the PI3K signaling
pathway, which subsequently plays a crucial role in signaling regarding epithelialization and tissue
regeneration, tissue repairing and tissue remodeling. These results indicate a probable protective role
for ST-1 against ethanol-induced gastric ulcers.

Keywords: Nephthea species; soft corals; anti-ulcer activity; molecular docking; reactome analysis

1. Introduction

Gastric ulcers are an erosion of the stomach lining caused by disruptions of the gastric
mucosal defense and/or repair systems [1]. While such ulcers are one of the most prevalent
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gastrointestinal disorders, available treatments usually focus on reducing gastric acid
production and re-enforcing gastric mucosal defenses. Gastric H+/K+-ATPases underlie
the establishment of the highly acidic environment in the stomach (pH ≈ 1), which is
necessary to promote the indispensable digestion of proteins in food [2]. The enzyme
further plays an essential repression of this proton/potassium pump, as it limits acids
produced by the stomach. Therefore, such repressors can be categorized as anti-ulcer
drugs [3]. While peptic ulcer-healing drugs for gastric ulcers act as inhibitors of proton
pumps and enhance the integrity of the mucosal barrier [4], some lack selectivity and/or
produce side effects [5,6].

Galectin-3 (Gal3) is a biomarker highly represented by activating macrophages and
several cell types constitutively, such as gastrointestinal epithelial cells [7–9]. In patients
with gastric cancer, serum levels of galectin-3 are significantly increased, in contrast with
both patients with benign disease and healthy control subjects. Serum galectin-3 level may
serve as a therapeutic target for this disease [10]. A second biomarker monitored in this
study is tumour necrosis factor alpha (TNF alpha), which acts as an inflammatory cytokine
generated by macrophages/monocytes throughout acute inflammation and is liable for a
wide range of signaling functions within cells, driving either apoptosis or necrosis. This
protein was also found to play an integral role in resistance to infection and cancers [11].

Currently, there is a resurging interest in plant and marine-derived products being
used as natural medicines. Indeed, a considerable number of medicinal plants and dietary
nutrients have been shown to possess gastroprotective effects [12–16]. Natural compound
research studies and coral reef communities are regarded as the best reservoirs of potential
novel chemical entities that may benefit from their biological properties [17–21]. Soft
corals belonging to Nephthea genus (Acyonaceae) are a wide-spreading species in the
Red Sea and are a rich resource of steroids, terpenoids and ceramides [22]. Different
species of this genus have been described as promising sources of natural compounds
with diverse pharmacological and biological activities, comprising anti-inflammatory,
anticancer [18,22–24], and anti-microbial potentialities [25]. A previous investigation
of Nephthea species revealed the identification of several biologically active and drug
development leads [2,19,22,23], such as cytotoxic potentiality towards several tumor cell
lines [22,26–29]. Recently, pathway enrichment analysis (PEA) and reactome analysis were
developed to helps scientists and researchers gain biological-wide insights through gene
lists generated from omics-scale experiments. These methods recognize the biological
pathways, discover any unexpected functional relationships, and finally deliver the results
in interactive networks with highly enhanced diagrams of drug-target interactions [25].
The molecular docking technique is a widely used in silico tool for predicting the binding
affinities and modes of inhibitors/drug candidates with biological targets.

Since the biological importance of marine secondary metabolites is well-recognized,
we isolated secondary metabolite (4α,24-dimethyl-5α-cholest-8β,18-dihydroxy,22E-en-3β-ol,
ST-1) from Nephthea species to continue our search for bioactive products for the treatment
of gastric disorders utilizing natural resources. Herein, the gastroprotective activity of the
isolated steroid, 4α,24-dimethyl-5α-cholest-8β,18-dihydroxy,22E-en-3β-ol (Figure 1), from
Red Sea Nephthea sp. was evaluated against ethanol-induced rats based upon biochemical
and histopathological analyses compared with ranitidine as the reference drug. Moreover,
the molecular docking technique was utilized to predict the binding mode and evaluate
the potentiality of the isolated steroid against the H+/K+-ATPase transporter.
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Figure 1. Chemical structure of 4α,24-dimethyl-5α-cholest-8β,18-dihydroxy,22E-en-3β-ol (ST-1).

2. Materials and Methods
2.1. Soft Coral Material, Extraction, Isolation, Purification and NMR Spectroscopy

The Egyptian Red Sea soft coral Nephthea sp. (voucher specimen: 399RS-9100-X19)
was collected and authenticated by Dr. Montaser A. Alhammady, National Institute
of Oceanography and Fisheries, Marine Biological Station, Hurghada, Egypt, from the
Hurghada coast in May 2019. Four kilograms of the frozen soft coral were cut, extracted via
6 L of a mixture of 1:1 (MeOH–CH2Cl2), filtered, and dried under vacuum-afforded dark
brown gum (167.8 g) using a rotary evaporator. The extract was further fractionated over
silica gel column chromatography (6 × 120 cm) using n-hexane (100%), a step gradient of
n-hexane–CH2Cl2, CH2Cl2 (100%), and CH2Cl2–MeOH until CH2Cl2–MeOH (1:1) afforded
seven main fractions (NP-I to NP-VII). Fraction NP-4 (3.1 g) was subjected to silica gel
column chromatography and generated three sub-fractions (NP-4A-C). The sub-fraction
NP-4B (673.4 mg) was eluted by CHCl3-MeOH (1:1) over a glass column packed with
Sephadex LH-20 (3 × 120 cm) to afford compound ST-1 (181.7 mg). Compound ST-1
was analyzed via (i) NMR spectroscopic analysis (600 MHz Bruker NMR spectrometer,
USA) in CD3OD and (ii) mass spectroscopy (JEOL JMS-600 instrument (Tokyo, Japan)
(Supplementary Materials Figures S1–S4). The chemical structure of ST-1 was constructed
by comparison of its NMR with previously published data (Figures S1–S4) [22].

2.2. Experimental Animals, Ethical Statement, Ulcer Induction, and Grouping

This study was performed on healthy female Wistar rats of 12–16 weeks (150–180 g)
that were obtained from the animal lab at the National Research Centre, Dokki, Cairo,
Egypt. Rats were held in polypropylene cages under standardized rearing conditions
(room temperature: 22 ± 2 ◦C, 55 ± 5% humidity with 12 h dark/light cycles). Rodents
were fed a pellet-based diet and allowed free access to water. Rats were divided into five
groups with six animals each as follows: group 1: control rats; group 2: ethanol ulcerated
group; group 3: ulcerated rats pretreated with 30 mg/kg ranitidine (as a reference drug);
group 4: ulcerated rats pretreated with 50 mg/kg of ST-1; and group 5: ulcerated rats
pretreated with 100 mg/kg of ST-1 (dissolved in distilled water with a few drops of DMSO).
After 2 hrs of all treatments with ranitidine (group 3) and compound ST-1 (group 4 and 5),
the rats were orally administrated 1 mL EtOH to induce ulceration. This analysis was
conducted by several studies [30–32]. For the ulceration induction, the fasted rats (n = 6)
were orally administrated with 1 mL EtOH (99.9% purity) [33]. After 4 h, sacrificing of all
rats occurred under anesthesia by diethyl ether. The stomachs were harvested, washed in
saline solution and dry-blotted. Subsequently, the stomachs were fixed in formalin saline
(10%) for histological investigation [34,35].

The animal experiments were conducted according to the international regulations of
usage and welfare of laboratory animals and were approved by the Ethics Committee of
the National Research Centre, Cairo, Egypt (Approval No: 18/204) [32].
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2.3. Galactin-3 and TNF-α Determination

Serum galectin-3 and TNF-α levels were determined by enzyme-linked immunosor-
bent assay technique using kits purchased from Sun Red Biotechnology (Shanghai, China).
The operational processes were measured in accordance with the kit’s instructions.

2.3.1. Histopathology Study

At the end of the experiment, a small piece of the stomach from each rat was excised
and fixed in formalin, dehydrated in ascending grade of ethanol and embedded in paraffin
wax. Sections 5 µm thick were cut in a microtome and mounted on glass slides using
standard techniques. After staining the tissues with hematoxylin-eosin stains, the slides
were viewed under a light microscope equipped for photography.

2.3.2. Gastric Mucosal Glycoprotein Evaluation

To examine gastric mucosal glycoproteins, stomach sections (5 µm) were stained with
periodic acid–Schiff (PAS) to observe changes in glycoproteins [36].

2.3.3. Statistical Analysis

All results were expressed as means ± SE. The data were calculated using SPSS 19.0
(SPSS Inc., Chicago, IL, USA). The statistical significance of differences for each parameter
between groups was evaluated by one-way ANOVA, followed by the LSD test. The
significance level was set at p < 0.05.

2.4. Molecular Docking

The PDB file for the H+/K+-ATPase α chain was downloaded from the SwissProt
database (https://swissmodel.expasy.org, accessed on 12 January 2021) (ID: P20648). A
previous published protocol for molecular docking of natural metabolites to target proteins
was followed [37–40]. Docking parameters were set to 250 runs and 25,000,000 energy
evaluations for each cycle. Docking was performed by Autodock 4.2.6 software using the
Genetic Algorithm [41]. Docking was performed three times independently to calculate
mean values and standard deviations of the lowest binding energies and predicted inhibi-
tion constants (pki). The representation and graphical analyses were performed using the
VMD software.

2.5. Protein–Protein Interaction

The online web-based tools of SwissTargetPrediction (http://www.swisstargetprediction.ch,
accessed on 21 May 2021) were applied to predict the biological targets for SP1 as a gastric ulcer
inhibitor. The DisGeNET online database (https://www.disgenet.org, accessed on 21 May 2021)
was utilized to collect the available database for Gastric ulcer diseases. A Venn diagram was
designed using the InteractiVenn online tool [42]. A protein–protein interaction (PPI) network
was generated using a STRING functional database for the top predicted targets [43]. Cytoscape
3.8.2 was employed to investigate target-function relations based on the network topology [44].
Furthermore, to explore all probable target-function relations for the top 20 targeted genes
based on their biological network mining, pathway enrichment analysis was performed using
Cytoscape 3.8.2. Finally, the ReactomeFIViz tool was utilized for modeling and visualization of
the ST-1-target interactions [45].

3. Results
3.1. Biochemical Results

Rodents pretreated with ST-1 showed a significant reduction in galactin-3 and TNF-α
disease progression biomarkers in comparison with an ethanol-treated group. Ranitidine
used as a positive control also exhibited a significant reduction in both galactin-3 and TNF-
α biomarkers, as revealed in Table 1. In contrast, serum galactin-3 and TNF-α increased in
rats treated with ethanol alone. However, these acute studies have provided information
regarding only acute phase responses and instant adaptation of the stomach to toxic insults.

https://swissmodel.expasy.org
http://www.swisstargetprediction.ch
https://www.disgenet.org
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Table 1. Effects of oral administration of ST-1 on blood Galactin-3 (ng/mL) and TNF-α (Pg/mL)
levels in ethanol-induced gastric ulcer in rats.

Parameters Galactin-3 (ng/mL) TNF-α Pg/ml

Groups Mean ± S.E % Change Mean ± S.E % Change

Control 1.64 ± 0.11 0 29.82 ± 0.56 0

Ethanol (1 mL) 13.99 ± 0.14 a +753 a 209.37 ± 2.91 a +602 a

Ranitidine 2.25 ± 0.09 ab −83.9 b 42.58± 0.84 ab −79.7 b

ST-1 (50 mg) 12.68 ± 0.32 ab −9.4 b 193.44 ± 2.55 ab −7.6 b

ST-1 (100 mg) 9.52 ± 0.32 ab −32 b 168.81 ± 6.32 ab −19.4 b

Data presented as means ± standard error (no. 6); a Significantly different at the p < 0.05 and % of change
as compared with control group; b Significantly different at the p < 0.05 and % of change as compared with
ulcer group.

3.2. Histopathological Results

Examination of sections of the stomach of rats from the normal control group shows
mucosa with integral surface mucosal epithelium and no lesions which have developed
(Figure 2A). In case of the ulcerated group, microscopic investigation showed severe
disruption of the surface epithelium. Necrotic lesions in the mucosa layer associated
with hemorrhagic erosion were seen (Figure 2B). Histological study of stomach mucosa of
sections of the ulcerated group treated with 50 mg/kg of ST-1 showed mucosa appeared
more similar to the control group (Figure 2C). In some rats, this group showed mild
mucosal surface erosion and no edema (Figure 2D). On the other hand, mucosa of the
ulcerated group treated with 100 mg/kg of ST-1 showed intact surface mucosal epithelium
and no visual lesions (Figure 2E). In case of the EtOH-induced, ranitidine-treated group,
mild erosion of mucosa was observed (Figure 2F).

Figure 2. Cont.
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Figure 2. Micrograph of sections of the stomach of rats from (A): normal control shows mucosa
with intact surface mucosal epithelium and no lesion appeared; (B): ulcerated group shows severe
disruption of the surface epithelium and necrotic lesions mucosa with hemorrhagic erosion, (C): the
group treated with 50 mg/kg of ST-1 shows mucosa appeared more like the control (D): the group
treated with 50 mg/kg of ST-1 shows mild mucosal surface erosion and no edema; (E): the group
treated with 100 mg/kg of ST-1 shows intact surface mucosal epithelium and no lesions which have
appeared; (F): the group treated with ranitidine, showing mild erosion of mucosa (H & E stain, Scale
Bar; 200 µm).

3.3. Histochemical Results

Periodic acid–Schiff reagent was used to stain polysaccharide material. Histochemical
assessment of untreated stomach sections showed that the gastric mucosa was mostly
localized to the epithelium covering the stomach mucosa. Extensive stain is recognized
in the apical zones of these cells, such that a thick coat of magenta color continues along
the stomach epithelium luminal surface (Figure 3A). In rodents that received a single
oral dose of ethanol to induce ulcers, both epithelial and mucous neck cells’ deteriorated
surface was relatively devoid of stainable material (Figure 3B). In the ulcerated group that
received 50 mg/kg of ST-1, the outer half of the fundic mucosa showed dense staining as
compared with that of the group which received ethanol only (Figure 3C). In some tissue,
the mucosa exhibited weak stainable material (Figure 3D). In the ulcerated group that
received 100 mg/kg of ST-1, heterogeneous staining was confronted where the deteriorated
surface of epithelial and mucous neck cells was relatively devoid of stainable material,
while the outer half of the fundic mucosa was heavily stained (Figure 3E). No change was
observed in the stainability of the polysaccharides in the fundic mucosa of ulcerated tissue
administrated with a single oral dose of ranitidine. The polysaccharide contents of mucosal
epithelium were almost similar to that of the control rats (Figure 3F).

Figure 3. Cont.
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Figure 3. Sections of the stomachs of rats from: (A) the normal control group showed the polysac-
charide material in the gastric mucosa. These materials are localized in the mucosa epithelium;
(B) the ulcerated group showed a lack of stainable material; (C) the group treated with 50 mg/kg
of ST-1 showed dense staining as compared with the group which received ethanol only; (D) the
group treated with 50 mg/kg of ST-1 exhibit weak stainable material; (E) the group treated with
100 mg/kg of ST-1 showed heterogeneous staining, such that the degenerated surface epithelial cells
and mucous neck cells were almost devoid of stainable material, while the outer half of the fundic
mucosa was densely stained; (F) the group treated with ranitidine showed that the polysaccharide
contents of the mucosal epithelium were almost similar to that of the control rats (PAS stain; scale
bar, 200 µm).

3.4. In Silico Inhibitory Effect of ST-1 on H+/K+-ATPase

Anti-ulcer drugs have the ability to prevent gastric acidification as the main factor of
ulcer formation via gastric H+/K+ ATPase. Accordingly, we investigated the binding mode
and affinity of ST-1 with H+/K+ ATPase; ranitidine was used as a positive control [33]. ST-1
showed a higher affinity to the proton pump than ranitidine (−9.86 vs. −6.21 kcal/mol,
respectively) and exhibited a higher estimated inhibition constant (pki values 59.72 nM vs.
27.92 µM, respectively). ST-1 showed interaction with GLN133, ASN143, ASN144, LEU147,
VAL344, ALA345, VAL347, GLU801, THR819, ILE822, and ASP826 amino acid residues
(Figure 4).
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Figure 4. 2D and 3D representations of the predicted binding modes, as well as the docking scores,
of ST-1.

3.5. Molecular Target Prediction and Network Analysis

ST-1 protein targets were initially predicted and categorized with the aid of Swis-
sTargetPrediction (Figure 5). Then, with the help of DisGeNET online tools, one hundred
and seventeen genes were recognized in terms of gastric ulcer diseases (C0038358). The
Venn diagram comparison results showed that shared genes for SP1 included CYP2C19,
CYP2C9, PTGS1, KDR, MET, MAPK1, and NOS2 (Figure 6). CYP2C19 and CYP2C9 are
the most polymorphic enzymes related to CYP2C genes in humans, and they metabolize
many important clinical drugs, including anti-ulcer drugs. Increased nitric oxide synthase
(NOS2) can lead to large amounts of NO secretion and induce severe damage to many
kinds of tissues. Inhibition of NOS2 leads to a decrease in its level in the gastric mucosa [46].
ST-1-predicted gene targets were also analyzed via a STRING PPI network and visualized
by Cytoscape 3.8.0. The top 20 scored genes for SP1 included CYP2C19, CYP2C9 and NOS2
(Table 2).

Figure 5. Venn diagram analysis for ST-1 and gastric ulcer disease (C0038358) genes.
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Figure 6. STRING PPI network for the top 20 targets identified by network analyzer for ST-1 as a
potent gastric H+/K+-ATPase inhibitor.

Table 2. Network topological analysis for the predicted targets for ST-1.

Name Betweenness Centrality a Closeness Centrality b Degree c

MAPK1 0.12998495 0.585987261 34

MTOR 0.05082444 0.531791908 31

PIK3CA 0.04725076 0.51396648 30

HSP90AA1 0.057040046 0.519774011 28

ESR1 0.03944331 0.525714286 28

MAPK8 0.096876023 0.541176471 26

AR 0.033861461 0.508287293 25

CYP3A4 0.066526563 0.508287293 23

KDR 0.03944376 0.50273224 22

NR3C1 0.059041577 0.528735632 21

MDM2 0.015376587 0.476683938 20

MAPK14 0.01274391 0.484210526 18

HPGDS 0.03677825 0.489361702 18

PRKCD 0.015162524 0.446601942 17

CNR1 0.082987497 0.469387755 17

CYP19A1 0.031696473 0.471794872 17

PIK3CB 0.004766941 0.433962264 16

ABL1 0.006113177 0.444444444 15

PIK3CD 0.013300606 0.427906977 15

KIT 0.006066222 0.46 14
a Betweenness quantifies the number of times a node acts as a bridge along the shortest path between two other
nodes. b Closeness represents the highly-connected network, indicating the influencers in a single cluster. c Degree
is the simplest measure of node connectivity.
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3.6. Pathway Enrichment Analysis (PEA)

For better and deeper mining/dissection of ST-1 target-function interactions, a Voronoi
tree map based on Boolean network modeling and PEA analysis was achieved. The
Voronoi tree map was constructed to visualize the top targeted pathway influenced by
the top 20 gene targets in response to ST-1 (Figure 7). Furthermore, a reactome graphical
representation was built on the top pathway affected in response to ST-1 (Figure 8). Notably,
pathways involved in diseases of signal transduction by growth factor receptors and second
messengers, as well as disease and immune system pathways, were found to be the most
significant pathways targeted by ST-1, with a false discovery rate (FDR) of <0.00001%
(Table 3).

Figure 7. The Voronoi treemap of the top pathway (diseases of signal transduction by growth factor receptors and second
messengers) influenced by the top 20 gene targets in response to ST-1.
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Figure 8. (A) Graphic representation of the diseases of signal transduction by growth factor receptors and (B) second
messengers reactome pathway, influenced as a response to ST-1 in the human genome.
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Table 3. Top 20 pathways for ST1 targets resulting from the pathway enrichment analysis (PEA).

Pathway Name #
Entities Found

#
Interactors Found

Entities
p-Value

#
Reactions Found Submitted Entities Hit Interactor

Diseases of signal
transduction by growth

factor receptors and
second messengers

18 22 0.62086893 269

MTOR; KIT; PIK3CA; MAPK8; NR3C1;
MAPK1; MAPK8; MAPK14; PIK3CD;

HSP90AA1; MAPK14; PRKCD; KDR;ABL1;
ESR1; PIK3CD; MDM2; ESR1; AR; PIK3CB;

PIK3CA; KDR

Disease 12 17 0.0033075 197
MTOR; KIT;MAPK8; NR3C1; MAPK1; PIK3CD;

HSP90AA1; PRKCD; ABL1; ESR1; PIK3CD;
MDM2; AR; ESR1; PIK3CB; KDR;PIK3CA

Immune system 12 18 0.96689721 150
MTOR; KIT; MAPK8; MAPK1; NR3C1;

PIK3CD; MAPK14; HSP90AA1; PRKCD; ABL1;
PIK3CD; ESR1; MDM2; AR; PIK3CB; PIK3CA;

HPGDS; KDR

Nuclear receptor
transcription pathway 11 2 3.75 × 10−14 2 ESR1; MDM2

Intracellular signaling by
second messengers 11 7 0.00100386 17 MTOR; HSP90AA1; KIT; MAPK8; NR3C1;

MDM2; ESR1

PIP3 activates AKT
signaling 10 6 0.00133626 13 MTOR; HSP90AA1; MAPK8; NR3C1; MDM2;

ESR1

Cellular responses to
stress 10 13 0.09103042 83

MTOR; MAPK8; NR3C1; MAPK1; MAPK14;
HSP90AA1; MDM2; ABL1; MDM2; ESR1; AR;

KDR; PIK3CA

Cellular responses to
external stimuli 10 13 0.10148968 83

MTOR; MAPK8; NR3C1; MAPK1; MAPK14;
HSP90AA1; MDM2; ABL1; MDM2; ESR1; AR;

KDR; PIK3CA

Signaling by receptor
tyrosine kinases 10 20 0.3190745 227

MTOR; KIT;MAPK8; NR3C1; MAPK1; CNR1;
PIK3CD; MAPK14; HSP90AA1; PRKCD;

KDR;ABL1; ESR1; PIK3CD; ESR1; MDM2;
PIK3CB; KDR;PIK3CA; HPGDS

Cytokine signaling in the
immune system 10 17 0.63708745 79

KIT; MAPK8; MAPK1; NR3C1; PIK3CD;
MAPK14; HSP90AA1; PRKCD; ABL1; PIK3CD;
MDM2; ESR1; AR; PIK3CB; PIK3CA; HPGDS;

KDR

PI3K/AKT signaling in
cancer 9 5 4.44 × 10−6 18 MTOR; HSP90AA1; NR3C1; MDM2; ESR1

PI5P, PP2A and IER3
regulate PI3K/AKT

signaling
8 3 2.68 × 10−6 4 MTOR; NR3C1; MDM2

Negative regulation of the
PI3K/AKT network 8 3 5.31 × 10−6 4 MTOR; NR3C1; MDM2

Axon guidance 8 12 0.31029712 31
KIT; HSP90AA1; MAPK8; MAPK14; PRKCD;
ABL1; ESR1; NR3C1; MAPK1; MDM2; ESR1;

KDR

Nervous system
development 8 12 0.39349828 32

KIT; HSP90AA1; MAPK8; MAPK14; PRKCD;
ABL1; ESR1; NR3C1; MAPK1; ESR1; MDM2;

KDR

Signaling by interleukins 8 12 0.4667549 51
HSP90AA1; KIT; MAPK8; PRKCD; ABL1; ESR1;

MDM2; MAPK14; PIK3CB; PIK3CA; KDR;
HPGDS

Innate immune system 8 11 0.73193686 66 HSP90AA1; KIT; MAPK8; PRKCD; ABL1;
MAPK1; ESR1; MDM2; AR; MAPK14; PIK3CA

Developmental biology 8 15 0.92886656 60
KIT; MAPK8; NR3C1; MAPK1; NR3C1;

HSP90AA1; ESR1; MAPK14; PRKCD; ABL1;
ESR1; ESR1; MDM2; AR; KDR

Metabolism 8 12 0.99897572 71
MTOR; NR3C1; HSP90AA1; PIK3CA; MDM2;

ESR1; NR3C1; MAPK1; AR; MDM2; ESR1;
MAPK14

Constitutive signaling by
aberrant PI3K in cancer 7 0 1.40 × 10−6 2

MTOR; KIT;PIK3CA; MAPK8; NR3C1; MAPK1;
MAPK8; MAPK14; PIK3CD; HSP90AA1;

MAPK14; PRKCD; KDR;ABL1; ESR1; PIK3CD;
MDM2; ESR1; AR; PIK3CB; PIK3CA; KDR

Interestingly, under the “diseases of signal transduction by growth factor receptors
and second messengers” pathway, it was found that the PI3K signaling pathway was the
most enriched pathway induced by ST-1 treatment among the human biological pathways.
Dissection of the PEA analysis combined with reactome mining emphasized that a set of
ten genes (PIK3CA, PIK3CB, PIK3CD, ESR1, KIT, MTOR, HSP90AA1, MAPK1, KDR, and
MDM2) were significantly modulated as biological targets to ST-1 as a potent anti-ulcer
drug. Moreover, the PEA-reactome outcomes disclosed that these ten genes were found to
significantly interact with 13 other biological interactors/genes, including P29353, P46531,
P48729, Q00987, P31749, P00533, P62993, P27986, P19174, Q07817, Q96B36, and P42336.
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4. Discussion

Gastric ulceration is one of the most common gastrointestinal disorders in clinical
practice. While, in many cases, the etiology of the ulcer is still unexplained, it is generally
affirmed that aggressive factors of both pepsin and acid can maintain mucosal integrity
throughout endogenous defensive mechanisms. To recover a healthy balance, therapeutics
alone or together with plant-derived medications have been used [47]. This study evaluated
both biochemically and microscopically the gastroprotective effects of 4α,24-dimethyl-5α-
cholest-8β,18-dihydroxy,22E-en-3β-ol (Figure 1) isolated from Nephthea sp. on ethanol-
induced gastric damage in vivo. The results were compared with ranitidine as a reference
anti-ulcerogenic drug.

Gastric ulcers, when ethanol-induced, act as widespread ulcerogenic agents. Ethanol
is processed in the body to release superoxide anion and hydroperoxy free radicals. The
oxygen-resultant free radicals were found to be involved in the stomach ulcer mecha-
nism [40]. Several mechanisms are implicated in ulcer origin in many models. Experimen-
tal proof has shown that antioxidants can promote gastric wall protection and safeguard
tissue from oxidative damage [46]. Additionally, gastric acid excretions exhibited a role
in the formation of gastric ulcers. Furthermore, substances which can modulate gastric
acid secretion, such as proton pump suppressors and histamine H2 receptor antagonists,
are deemed to accelerate the healing process of gastric lesions or repress the creation of
mucosal injury [47].

Histologically, there were no stomach lesions for the control group in contrast to
the ethanol-induced treatment, which showed severe ulceration and hemorrhage. Upon
ranitidine pre-treatment, the mucosal epithelium had less hemorrhage and erosion. Lesions
of gastric mucosa were also reduced with combined EtOH and ST-1 treatment, which may
be attributed to reduced oxidative damage and leukotriene activity.

Inflammation is regarded as the essential marker for stomach ulceration. A feature of
pathogenesis of peptic ulcers is the imbalance between offensive factors, such as gastric
acid, and protective factors, including inflammatory cytokines. Ethanol has been known to
upregulate pro-inflammatory markers and to downregulate anti-inflammatory biological
facets [48]. The examined levels of TNF-α in gastric tissue were found to be highly
expressed in the ethanol-induced ulcer model while in the 4α,24-dimethyl-5α-cholest-
8β,18-dihydroxy,22E-en-3β-ol isolated from Nephthea sp. pretreated rats, gastric tissue
exhibited a significant decrease in the expression of TNF-α.

PI3K encompasses a family of lipid kinases that are classified based on their capa-
bility to activate inositol phospholipids. PI3K-dependent activation of AKT was strongly
confirmed to affect the activity of numerous downstream biological pathways involved in
apoptosis, cell proliferation, cellular survival, senescence, and angiogenesis [49,50]. Addi-
tionally, it is associated with cancer progression. PI3K/AKT signals epithelialization [51],
tissue regeneration and repairing [52], as well as tissue remodeling [53]. Deregulation
of PI3K/AKT signaling, in contrast, can compromise wound healing [54]. Remarkably,
PI3K/AKT signaling was reported to switch on or off numerous downstream regulating
proteins involving glycogen synthase kinase 3 (GSK3) and mammalian target of rapamycin
(mTOR). The phosphorylation of GSK3 and mTOR by PI3K/AKT signaling stimulate a
broad range of biological activities, including growth, proliferation, and survival [55].

In this study, galactine 3 showed a significant increase in the ethanol-induced ulcer
group; on the other hand, in rats pretreated with ST-1, levels of Gal3 were reduced.
Gal3 has been shown to have a variety of pro-inflammatory and anti-microbial functions
(Hsu, et al. 2000; Beatty, et al., 2002), including macrophage activation, which plays a
role in survival and phagocytosis of macrophages/neutrophils (6–8), as well as neutrophil
extravasation [56,57].
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5. Conclusions

The present study affords the first perceptions into the gastroprotective potential of
4α,24-dimethyl-5α-cholest-8β,18-dihydroxy,22E-en-3β-ol (ST-1) in ethanol-induced gastric
ulcers in rats. ST-1 protects rodent gastric mucosa from ethanol-induced ulcers in vivo.

From the bioinformatical interpretation, molecular docking calculations against H+/K+-
ATPase transporter showed a higher binding affinity of ST-1 with a docking score value of
−9.9 kcal/mol and a pKi value of 59.7 nM. Additionally, the molecular target prediction and
network analysis showed that the PI3K signaling pathway was the highest enriched pathway
induced by ST-1 treatment among the human biological pathways. The combination between
PEA analysis and the reactome mining toolbox (which gives insights about biological path-
ways based on massive experimentally validated datasets merged with deep in silico analysis)
showed significantly modulated genes, particularly genes involved in the PI3K signaling
pathway, as biological targets of ST-1 as a potent anti-ulcer. These results indicate a probable
protective role for ST-1 against ethanol-induced gastric ulcers, and the anti-ulcerogenic effect
of ST-1 will require additional investigations to determine its mechanism of action.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11081247/s1, Figures S1–S4: NMR spectra for ST-1.
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