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Abstract: Chikungunya virus (CHIKV) is an alphavirus, transmitted by mosquitoes, which causes
Chikungunya fever with symptoms of fever, rash, headache, and joint pain. In about 30%–40%
of cases, the infection leads to polyarthritis and polyarthralgia. Presently, there are no treatment
strategies or vaccine for Chikungunya fever. Moreover, the mechanism of CHIKV induced bone
pathology is not fully understood. The modulation of host machinery is known to be essential in
establishing viral pathogenesis. MicroRNAs (miRNAs) are small non-coding RNAs that regulate
major cellular functions by modulating gene expression. Fascinatingly, recent reports have indicated
the role of miRNAs in regulating bone homeostasis and altered expression of miRNAs in bone-related
pathological diseases. In this review, we summarize the altered expression of miRNAs during CHIKV
pathogenesis and the possible role of miRNAs during bone homeostasis in the context of CHIKV
infection. A holistic understanding of the different signaling pathways targeted by miRNAs during
bone remodeling and during CHIKV-induced bone pathology may lead to identification of useful
biomarkers or therapeutics.

Keywords: bone remodeling; osteoblastogenesis; osteoclastogenesis; microRNAs; chikungunya
virus (CHIKV)

1. Background

Chikungunya virus (CHIKV) is a positive-sense, single-stranded RNA virus of the Togaviridae
family and Alphavirus genus [1]. The genome is 11.8 kb in length and has two open reading frames,
the 5′ORF which encodes the non-structural proteins nsP1, nsP2, nsP3, and nsP4, and the 3′ORF,
which encodes the structural proteins, capsid (C), envelope (E1 and E2), and two peptides (E3 and 6K).
The virus was first isolated in 1952 from the Makonde plateau in southern Tanzania [2,3]. Since its
initial outbreak in the mid-1900s, there have been numerous outbreaks of CHIKV infection in Africa.
In the late 1950s and early 1960s, there were outbreaks of the disease in Thailand which affected
about 31% of the population. In India, CHIKV was first detected in 1963 in West Bengal which was
followed by several other outbreaks between 1964 and 1973. In 2004, there was a CHIKV outbreak
in Kenya. In 2005, the largest CHIKV outbreak occurred in India which resulted in about 1.5 million
infections. Another CHIKV outbreak occurred in 2005 in Réunion island which affected approximately
one-third of the island’s population. Other cases of large-scale epidemics were in Mauritius in 2006,
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Gabon in 2007, and Thailand in 2008. In 2010, an autochthonous transmission of CHIKV was recorded
in southern France. In 2011, an outbreak occurred in the Republic of Congo. Beginning in 2013,
this virus spread to the Americas, in part due to travel from affected regions [4–6]. In 2014, outbreaks
occurred in Martinique-Guadeloupe and French Polynesia. To date, three CHIKV genotypes have been
identified, which are West African, Asian, and the East Central and South Asian (ECSA) lineages [5].
The sub Indian Ocean lineage (IOL) is a descendant of the ECSA lineage. CHIKV is mainly transmitted
by Aedes (Ae.) species mosquitoes [4]. The word “chikungunya” means “that which bends up” in
Makonde language to describe the stooped posture of infected patients due to musculoskeletal pain.
CHIKV causes CHIK fever (CHIKF), a disease that is typically accompanied by fever, headache,
rash, and arthralgia [7]. Although the mortality rate is low, the morbidity rate is high with 30%–40%
of the infected patients developing a chronic stage characterized by debilitating arthritis similar in
pathology with rheumatoid arthritis (RA) [7,8]. In rare cases, CHIKV infection also exhibit encephalitic
pathology [9,10]. However, the bone related pathologies such as joint pain and arthritis-like conditions
are major concerns of CHIKV infection.

MicroRNAs (miRNAs) are a class of small non-coding single stranded RNAs of 21–25 nucleotides
in length which function as post-transcriptional regulators of gene expression [11,12]. miRNAs
regulate gene expression by binding to the complementary 3′ untranslated regions (3′ UTR) of target
mRNAs and inhibiting their translation either by mRNA degradation or translational repression [13].
Recently, miRNAs have been shown to bind to the 5′ UTR of target genes [14]. The miRNA
mediated silencing of the mRNA targets occurs in cytoplasmic processing bodies (P-bodies) [15].
The formation of mature miRNAs is a sequential process. The miRNA gene is transcribed into primary
miRNA (pri-miRNA) which is processed into precursor miRNA (pre-miRNA) by a DROSHA/DGCR8
complex [16–18]. The pre-miRNA is then exported to the cytoplasm where it undergoes further
processing by DICER/TRBP/PACT enzyme complex to generate short double-stranded (ds) RNA [19].
Usually, the RNA strand with lower stability at the 5′ end is integrated into the RNA-induced silencing
complex (RISC) and become a mature miRNA, while the strand with higher stability at the 5′ end
is degraded [20]. The miRNA-induced silencing complex (miRISC) then binds to the 3′ UTR or 5′

UTR of the target mRNA, thus inhibiting its translation. [14]. By affecting gene expression, miRNAs
regulate essential physiological and cellular processes including cell cycle, differentiation, proliferation,
apoptosis, and immune response [13].

Viruses can alter host miRNA levels and the altered expression of those host miRNAs have been
associated with the establishment of viral pathogenesis [21]. Here in this review, we highlight the
recent studies that have indicated the association of host miRNA with CHIKV infection.

2. Role of miRNAs during CHIKV Infection

Viruses are known to hijack host gene expression and modulate fundamental cellular processes to
establish infection and pathogenesis. Many studies have demonstrated the role of miRNAs during viral
infections [21,22]. Besides having an imperative role in physiological functions, the aberrant expression
of miRNAs is associated with pathogenesis of various diseases including viral infections [21–23].
Recently, altered expression of several miRNAs (listed in Table 1) has been observed during CHIKV
infection [24–32].



Viruses 2020, 12, 1207 3 of 19

Table 1. miRNAs altered during Chikungunya virus (CHIKV) infection.

MicroRNAs Target mRNA
Expression Status

(Upregulated/
Downregulated)

References

aae-miR-2b 3′ UTR of ubiquitin related modifier (URM), ubiquitin,
and 3′ UTR of CHIKV Up [31]

hsa-miR-21-5p

B-cell lymphoma 2 (BCL2), chemokine ligand 1 (CCL1),
FASLG, pellino E3 ubiquitin protein ligase 1 (PELI1),

interleukin 12 A (IL12A), transforming growth factor beta
(TGFβ1)

Up [25]

hsa-miR-138-2-3p

Tripartite motif containing 26 (TRIM5), TGF-Beta activated
kinase 1 (MAP3K7) binding protein 3 (TAB3), tumor

necrosis factor receptor superfamily (TNFRSF19),
mitogen-activated protein kinase 13 (MAPK13), Apoptotic

protease activating factor 1 (APAF1), Forkhead Box O3
(FOXO3)

Up [25]

hsa-miR-146
Tumor necrosis factor receptor (TNFR)-associated factor 6

(TRAF6), interleukin-1 receptor-associated kinase 1
(IRAK1/2)

Up [24]

hsa-miR-216a-5p Cluster of Differentiation 6 (CD6), Janus kinase 2 (JAK2) Up [25]

aal-miR-305-3p ECM receptor interaction, endocytosis, and SNARE
interactions in vesicular transport Up [30]

hsa-miR-382-3p
Beta-transducin repeat containing E3 ubiquitin protein

ligase (BTRC), gap junction protein alpha 1 (GJA1), TRIM8,
ubiquitin-conjugating enzyme E2 D2 (UBE2D2)

Up [25]

hsa-miR-409-3p DNA topoisomerase 2-beta (TOP2B) Up [32]

hsa-miR-491-3p UBE2B Up [25]

hsa-miR-921 nicotinic acid uptake protein (NIAP) Up [25]

aal-miR-927 Soluble NSF attachment proteins receptor (SNARE)
interactions in vesicular transport Up [30]

aae-miR-989 sh2/sh3 adaptor and vacuolar ATP synthase Down [31]

hsa-miR-1260a BCL2 antagonist/killer 1 (BAK1), activating transcription
factor 6 beta (ATF6B) Up [25]

hsa-miR-1260b

Receptor interacting serine/threonine kinase 1 (RIPK1), E3
ubiquitin-protein ligase NRDP1 (RNF41), suppressor of

cytokine signaling 6 (SOCS6), NLR family CARD domain
containing 5 (NLRC5), caspase 10 (CASP10)

Up [25]

hsa-miR-1264

TRIM26, bone morphogenetic protein 2 (BMP2),
baculoviral IAP repeat containing 6 (BIRC6), interleukin 6

signal transducer (IL6ST), listerin E3 ubiquitin protein
ligase 1 (LTN1), itchy E3 ubiquitin protein ligase (ITCH),

MAPK8, SOCS5, UBE2D3

Up [25]

hsa-miR-3074 Integrin alpha-V (ITGAV), TNF receptor associated factor
3 (TRAF3) Up [25]

hsa-miR-4286

Interferon alpha and beta receptor subunit 1 (IFNAR2),
interleukin 13 receptor, alpha 1 (IL13RA1), interferon

regulatory factor 1 (IRF1), ubiquitin conjugating enzyme
E2 Z (UBE2Z), IL6R

Up [25]

hsa-miR-4299

SOCS7, signal transducer and activator of transcription 5
(STAT5B), TRIM28, mitogen-activated protein kinase

kinase kinase 7 (MAP3K7), TAB1, AKT serine/threonine
kinase 1 (AKT1), MAP3K11, MAP kinase-activated protein

kinase 3 (MAPKAPK3), CAMP responsive element
binding protein 1 (CREB1)

Up [25]

hsa-miR-4443
Interferon regulatory factor 3 (IRF3), mitogen-activated

protein kinase kinase kinase 8 (MAP3K8), receptor
interacting serine/threonine kinase 3 (RIPK3)

Up [25]

hsa-miR-4695-3p CASP8, chemokine C-X-C motif ligand 2 (CXCL2) Up [25]

hsa-miR-4717-3p

AKT3, UBE2M, sortilin (SORT1), ring finger protein 213
(RNF213), nerve growth factor receptor-associated protein
1 (NGFRAP1), MAPK10, IL11RA, C-C motif chemokine
ligand 4 like 2 (CCL4L2), IFNAR1, IL7R, mitochondrial

ubiquitin E3 ligase (MARCH5)

Up [25]
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hsa-miR-4762-5p Nemo like kinase (NLK) Up [25]

hsa-miR-4775 TNFRSF10A, toll-like receptors (TLR1), CASP3, ATF2,
TAB2, glycogen synthase kinase 3 beta (GSK3B) Up [25]

hsa-miR-4794-5p UBE2S, STAT1, TRAF5, RIPK1, protein inhibitor of
activated STAT 1 (PIAS1), AKT1 Up [25]

hsa-miR-4878-3p Diablo IAP-Binding Mitochondrial Protein (DIABLO) Up [25]

hsa-miR-5100 UBE2J1, axis inhibition protein 2 (AXIN2), IRAK4 Up [25]

hsa-miR-5581-3p MAPK6, IL4R, MAP3K1, CCL18, death inducer-obliterator
1 (DIDO1) Up [25]

Given its significance in the regulation of cellular processes, we focus on the recent reports that
elucidate the expression levels of different host miRNAs, related target genes, their functions in cellular
processes, and role in CHIKV pathogenesis.

2.1. Antiviral Role of miRNAs

The generation of antiviral miRNAs has been observed in many viral infections [21,22].
Computational analysis showed a number of significantly modulated miRNAs in early CHIKV
infection are involved in apoptosis and JAK-STAT signaling pathways [32]. Interestingly, the JAK/STAT
pathway is known to be one of the key signaling pathways in the interferon (IFN) response against viral
infection [33]. Reverse genetic approaches and functional studies in Ae. aegypti mosquitoes revealed
that increased resistance to Dengue virus (DENV) and Zika virus (ZIKV) infections is mediated by the
JAK/STAT pathway [34]. Moreover, CHIKV non-structural protein 2 (nsP2), has been associated with
the JAK/STAT pathway [35]. Thus, evaluating the interaction among viral proteins, miRNAs and their
involvement in the JAK-STAT pathway holds potential for exploratory studies in CHIKV pathogenesis.

miRNA profiling in CHIKV-infected human skin fibroblasts showed differential expression of a
number of miRNAs in the early stage of CHIKV infection [26]. The miRNAs were predicted to target
immune-related signaling pathways including JAK/STAT, MAPK, WNT, and retinoic acid inducible
gene I (RIG-I)-like receptor pathways [26]. Interestingly, both JAK/STAT and MAPK pathways have
been associated with CHIKV infection [35,36]. Additionally, the WNT signaling pathway can regulate
IFN response in flaviviruses [37]. The expressions of hsa-miR-15 and hsa-miR-16 were altered during
CHIKV infection [26]. In normal physiology, a number of cellular processes are regulated by hsa-miR-15
and hsa-miR-16 and altered expression of these miRNAs is observed in many other viral infections
and diseases [38–42]. Interestingly, hsa-miR-15 and hsa-miR-16 play important roles in inducing
apoptosis by targeting the anti-apoptotic protein BCL2 [43]. Additionally, downregulated expression
of hsa-miR-15 was found in arthritic synovial tissue, whereas hsa-miR-16 level was high in sera of RA
patient [38,44]. rno-miR-32–5 p is a negative regulator of phosphatase and tensin homolog (PTEN) [45].
Thus, understanding the functional relevance of these miRNAs during CHIKV infection would be
helpful for the development of novel drug targets.

Microarray analysis in CHIKV infected HEK293T cells revealed a set of 152 differentially regulated
miRNAs [28]. Among these, about 65%–70% of the differentially regulated miRNAs were significantly
upregulated and the remaining were downregulated. RT-PCR analysis showed that among the
upregulated hsa-miRNAs, hsa-miR-744, hsa-miR-638, and hsa-miR-503 were significantly upregulated.
Interestingly, 53% of the observed upregulated miRNAs and 45% of the downregulated miRNA were
altered in other viral infections including hepatitis B virus (HBV), hepatitis C virus (HCV), human
papillomavirus (HPV), and human immunodeficiency virus (HIV). Further analysis of the miRNA
pattern demonstrated that the altered miRNAs were members of different miRNA cluster including
hsa-miR-17-92, let-7e/99b, hsa-miR-191/425, hsa-miR-106b/25, hsa-miR-23a/24, and hsa-miR-15b/16
clusters which further indicated that these miRNA clusters are co-regulated in response to CHIKV
infection [28]. The pathway analysis predicted TGF-β, WNT pathway, endocytosis ubiquitin mediated
proteolysis, proteasome and lysosome associated genes, and the cell cycle pathways as targets of the
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altered miRNAs [28]. Moreover, qRT-PCR results confirmed that the altered miRNAs induced TGF-β
genes (mothers against decapentaplegic homolog 6 (SMAD6), JUN, and ski-like protein (SKIL) genes)
and endocytosis pathway genes (C-X-C motif chemokine receptor 4 (CXCR4), heat shock cognate
71 kDa protein (HSPA8), adrenoceptor beta 1 (ADRB1)), but inhibited genes involved in cell cycle
pathways (cell division cycle 27 (CDC27) and CDC23). The cells treated with a TGF-β inhibitor,
SB-431542, showed increased CHIKV mediated cell death compared to untreated cells, indicating that
TGF-β production is involved in regulating CHIKV infection [28]. TGF-β signaling pathway is a key
network in regulating important cellular processes including proliferation, differentiation, apoptosis,
epithelial-mesenchymal transition, and migration [46]. Studies show that this pathway is modulated
during many viral infections [47]. Importantly, TGF-β pathway is a significant factor in age related
complications during CHIKV infection [48]. Thus, miRNA mediated regulation of TGF-β pathway
may contribute to host response against CHIKV infection.

2.2. Pro-Viral Role of miRNAs

The ability of miRNAs to regulate gene expression makes them particularly useful for viruses.
Often viruses employ cellular miRNAs to target specific genes and downregulate their expression
to establish infection [21,22]. The expression of hsa-miR-146a was found to be upregulated in
CHIKV-infected human synovial fibroblasts where TRAF6 and IRAK1 were predicted as targets
(Table 1) [24]. The expression of these targets was restored in cells transfected with hsa-anti-miR-146a.
In addition, overexpression of hsa-miR-146a leads to decreased phosphorylation of NF-кB during
infection [24]. The conclusions were similar to another finding which demonstrated that increased
expression of hsa-miR-146a enhanced DENV replication by targeting the TRAF6-mediated NF-кB
pathway [49]. These results suggested a role of hsa-miR-146a-mediated targeting of the NF-кB pathway
during CHIKV pathogenesis.

In human synovial fibroblasts, an miRNA microarray identified a subset of 26 differentially
expressed miRNAs (DEMs) during CHIKV infection (Table 1) [25]. Among the DEMS, expression of
hsa-miR-4717-3p, hsa-miR-4299, hsa-miR-1264, and hsa-miR-21-5p were significantly upregulated.
AKT3 was predicted as a target for hsa-miR-4717-3p (Table 1). The AKT3 protein is a key regulator of the
PI3K/AKT/mTOR signaling pathway which influences various cellular processes including metabolism,
growth, proliferation, survival, transcription, and protein synthesis [50]. Moreover, dysregulation of the
PI3K/AKT/mTOR pathway has been implicated in many diseases [51,52]. Interestingly, this pathway is
moderately activated during CHIKV infection [53]. Thus, hsa-miR-4717-3p may mediate suppression
of the robust inflammatory response during CHIKV infection, by targeting AKT3 [25]. In response to
an infection, the host cellular system elicits a cytokine mediated immune response, but often due to
inefficient pathogen clearance, the immune response results in inflammation [54]. The expression of
hsa-miR-4299 was upregulated during CHIKV infection and the suppressor of cytokine signaling 7
protein (SOCS7) was predicted as the target (Table 1) [25]. SOCS7 is known to negatively regulate the
STAT3 protein which can either induce IL-6-mediated inflammation or IL-10-mediated suppression
of inflammation during CHIKV infection [55]. STAT3 can also promote viral replication and
persistence [56]. Thus, hsa-miR-4299 could mediate suppression of SOCS7 which may result in
increased STAT3 expression contributing to suppressed immune response during CHIKV infection.
As earlier mentioned, viruses employ different strategies to exploit cellular pathways for optimizing
chances of survival [57,58]. Agrawal et al. showed that expression of hsa-miR-1264 increased during
CHIKV infection and TRIM26 was predicted to be its target (Table 1) [25]. TRIM proteins function
as E3 ubiquitin ligase playing an important role in antiviral responses through ubiquitination and
proteasomal degradation of IRF3 genes during viral infections [59]. Thus, this indicates that CHIKV
infection may lead to hsa-miR-1264-mediated suppression of TRIM26 resulting in depleted antiviral
response and enhanced viral replication and persistence [25]. Another E3 ubiquitin ligase, PELI1 was
targeted by hsa-miR-21-5p whose expression was upregulated during infection (Table 1) [25]. PELI1
can suppress the NF-кB pathway by ubiquitination and degradation of an NF-кB-inducing kinase
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(NIK) [60]. As the NF-кB pathway plays a critical role in antiviral response, thus, increased expression
of miR-21 during CHIKV infection may contribute to suppression of cytokine signaling by modulating
the NF-кB pathway.

A genome-wide miRNA screen using high throughput RNA sequencing in Huh-7.5.1 cells revealed
that alphaviruses have a binding site for hsa-miR-124 [27]. A significant increase in CHIKV production
was observed on overexpressing hsa-miR-124, whereas inhibiting hsa-miR-124 led to reduced CHIKV
infection. In rare cases, CHIKV infection can result in encephalitic symptoms [9,10]. hsa-miR-124
is predominantly found in neurons and act as a key negative regulator of neuroinflammation [61].
An altered expression of hsa-miR-124 has been associated with brain disease [61]. Thus, it would
be interesting to evaluate whether hsa-miR-124 is associated with encephalitic pathology during
CHIKV infection. In a study by Nakamachi et al., decreased expression of hsa-miR-124 was observed
in fibroblast like synoviocytes (FLS) of patients with RA where hsa-miR-124a contributed to the
inflammatory processes in RA pathogenesis by targeting the monocyte chemoattractant protein-1
(MCP-1) and cyclin-dependent kinase-2 (CDK-2) [62]. Thus, hsa-miR-124 may have a role in contributing
to inflammation observed during CHIKV infection.

2.3. Aberrant Expression of miRNAs in Mosquito Cells during CHIKV Infection

To establish infection and increase virus survival in a mosquito vector, viruses modify the
transcriptional profile of the vector [63]. In Aag-2 cells, aae-miR-2944b-5p and aae-miR-2b were
observed to have binding sites for the 3′ UTR of CHIKV [29]. When mosquitoes were treated with
antagomiR-2944b-5p, they showed more susceptibility to CHIKV infection compared to untreated
control which suggested the role of antagomiR-2944b-5p in viral replication. The host vacuolar protein
sorting-associated protein 13 (VPS-13) was predicted as a target of aae-miR-2944b-5p. In Ae. aegypti,
VPS-13 functions in maintaining the mitochondrial membrane potential (MtMP) [29]. Interestingly,
studies report that host mitochondria are involved in combating the oxidative stress induced during
viral infections [64]. Silencing aae-miR-2944b-5p in Aag-2 cells and infecting with CHIKV increased
cellular MtMP, which indicated that aae-miR-2944b-5p interacts with VPS-13 to maintain MtMP [29].
In humans, VPS-13 is involved in post Golgi apparatus sorting and trafficking. Thus, studying the
effect of hsa-miR-2944b-5p on VPS-13 expression in human cell lines during CHIKV infection can lead
to identification of novel drug target.

Using next generation RNA sequencing, the expressions of a set of eight miRNAs were found to
be altered during CHIKV infection [30]. Among them, the expressions of aae-miR-100, aae-miR-283,
aae-miR-305-3p, and aae-miR-927 were significantly upregulated and the expressions of aae-miR-1000,
aae-miR-2b, aae-miR-2c-3p, and aae-miR-190-5p were downregulated. Target prediction revealed
that aae-miR-100, aae-miR-283, and aae-miR-305-3p commonly affected NK cell-mediated cytotoxicity
and protein processing in ER pathways. The analysis also revealed that the metabolic pathways
such as the TCA cycle, dorso-ventral axis formation, and valine, leucine, and isoleucine degradation
pathways were affected by aae-miR-100 and aae-miR-305-3p. aae-amiR-927 and aae-miR-305-3p were
predicted to target SNARE interactions in vesicular transport. Among these, aae-miR-305-3p was
predicted to target pathways essential for viral entry such as ECM receptor interaction, endocytosis,
and SNARE interactions in vesicular transport. The downregulated aae-amiR-1000, aae-miR-2b, and
aae-miR-2c targeted the ribosomal pathway. The upregulated miRNAs targeted genes which encodes
for protein tyrosine phosphatase SHP2, ERK1/2, and ubiquitin fusion degradation protein, respectively,
whereas the downregulated miRNAs targeted the gene that encodes for the 40S ribosomal protein
S16. In another study, next-generation sequencing identified the altered expression of 13 miRNAs
during CHIKV infection in Aag-2 cells [31]. Target prediction analysis showed aae-miR-2b targets
URM and ubiquitin whereas aae-miR-100 targets CDC42 and sumo-ligase. When cells were treated
with aae-antagomiR-2b, increased CHIKV replication was observed. The expression of URM was also
significantly high in CHIKV infected cells. Furthermore, CHIKV replication was reduced to 50% in
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URM knock down cells, indicating that aae-miR-2b-mediated regulation of URM plays a significant
role in chikungunya replication.

Usually in mosquito vectors, viruses establish infection in the salivary gland during a blood
meal [63]. For establishing a successful infection, viruses often modulate the gene expression of
several proteins in the salivary gland [63]. Next generation sequencing showed that aae-miR-bantam,
aae-miR-263a, aae-miR-125, and aae-miR-285 were significantly upregulated in CHIKV-infected Ae.
aegypti saliva [65]. In Ae. albopictus saliva, aal-miR-43b, aal-miR-43a, aal-miR-413a, aal-miR-5, and
aal-miR-249 were upregulated [65]. In addition, Aag-2 cells and BHK-21 cells showed decreased
CHIKV titers when treated with inhibitors against selected miRNAs indicating the role of salivary
gland miRNAs in modulating CHIKV replication. Another study predicted a set of miRNAs that
commonly targeted the different genotypes of CHIKV where aae-miR-282-5p, aae-miR-34-3p, and
aae-miR-11-5p had binding sites for CHIKV [66]. Moreover, aae-miR-11-5p was conserved among
the different lineages of CHIKV and was predicted to target the end of subgenomic untranslated
RNA region, thus, indicating that the CHIKV structural proteins may regulate the formation of a
miRNA-viral RNA (vRNA) complex at the end of subgenomic RNA untranslated regions, thereby
preventing the binding of host translational factors on vRNA.

3. Possible Role of miRNAs in Bone Homeostasis in the Context of CHIKV Infection

CHIKV infection is associated with bone pathology and it was first indicated by the presence
of bony lesions in CHIKV-infected IRF 3/7-/- mice [67]. In CHIKV-infected patients, MRI results
showed the presence of erosive arthritis [68]. Bone is one of the most dynamic organs in the body that
continuously undergoes remodeling. Bone homeostasis is a highly regulated and complex process
involving a fine balance between osteoblastogenesis and osteoclastogenesis [69]. Osteoblastogenesis is
the process of bone formation which results from differentiation of mesenchymal stem cells (MSCs)
into osteoblastic cell lineage forming the bone cells or osteoblasts (OBs) and later into osteocytes, the
mature OBs [70]. Conversely, osteoclastogenesis is the process of bone resorption where the formation
of multinucleated osteoclasts (OCs) occurs from the fusion of myeloid precursors which arise by
differentiation of hematopoietic stem cells (HSCs) [71]. Many complex processes, signaling pathways,
and transcription factors govern osteoblastogenesis and osteoclastogenesis in maintaining normal
bone homeostasis (Figures 1 and 2).
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During osteoblastogenesis, the key signaling pathways activated are canonical WNT, NOTCH,
Hedgehog, BMP, SMAD, MAPK, and the receptor activator of nuclear factor kβ (RANK), osteoprotegerin
(OPG)-and RANK ligand (RANKL) [72,73]. These pathways result in expression of the key transcription
factors identified during osteoblastogenesis which are the runt-related transcription factor 2 (RUNX2),
and Osterix (OSX) [74,75]. However, there are other transcription factors that also function in bone
homeostasis [76,77]. These transcription factors subsequently induce the expression of other osteogenic
genes including alkaline phosphatase (ALP), type I collagen (COl-I), osteocalcin (OCN), osteonectin
(ON), and bone sialoprotein (BSP) [76–78]. Similarly, processes such as OC differentiation from
myeloid precursors, maturation, and survival of the OC are regulated by a variety of environmental
factors including cytokines, growth factors, and hormones which influence the RANK-RANKL,
MAPK, PI3K/AKT, and NF-kβ pathways [72,73]. These signaling pathways in turn regulate the
expression of various transcription factors among which nuclear factor of activated T-cells, cytoplasmic
1 (NFATC1) is critical [79,80]. NFATC1 is the major regulator of the early phase of osteoclastogenesis,
which induces the expression of other osteoclastic genes in the late phase such as tartrate-resistant
acid phosphatase (TRAP), cathepsin k (CTSK), and dendrocyte expressed seven transmembrane
proteins (DCSTAMP) [79,81–85]. Conversely, few transcription factors can also negatively regulate
osteoclastogenesis [86–91].

Bone homeostasis is regulated by an array of transcription factors and complex signaling
pathways; thus, understanding how these pathways are modulated during CHIKV infection is of great
importance. Recently, a number of studies indicated that miRNAs can regulate both osteoclastogenesis
and osteoblastogenesis thereby acting as fine modulators of bone homeostasis [92] (Tables 2 and 3)
(Figures 1 and 2).
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Table 2. The targets and effect of miRNAs on osteoblastogenesis.

miRNA Target mRNA Effect on
Osteoblastogenesis References

hsa-miR-10b SMAD2 Enhances [93]

hsa-miR-21,
mmu-miR-21

SMAD5 (in human), SMAD7
(in mouse)

Inhibits (in human),
Enhances (in mouse) [94,95]

mmu-miR-22 Histone deacetylase 6
(HDAC-6) Enhances [96]

mmu-miR-29 ON Inhibits [97]

mmu-miR-30
RUNX2, SMAD1, LDL

receptor related protein 6
(LRP6)

Inhibits [98,99]

hsa-miR-34a Notch1, Notch2, and
Jagged-1 (JAG1) Inhibits [100]

mmu-miR-34c Notch1, Notch2, and JAG1 Inhibits [101]

mmu-miR-34s

CYCLIN D1, CDK4, CDK6,
special AT-rich

sequence-binding protein 2
(SATB2)

Inhibits [102]

mmu-miR-103-3p SATB2 Inhibits [103]

hsa-miR-133 RUNX2 Inhibits [104]

hsa-miR-138 Focal adhesion kinase (FAK) Inhibits

mmu-miR-145 OSX gene (SP7) Inhibits [105]

mmu-miR-155
SMAD5, RUNX2, and bone

morphogenetic protein
receptor type II (BMPR2)

Inhibits [106,107]

mmu-miR-183 Heme oxygenase 1
(HMOX-1) Inhibits [108]

mmu-miR-204 and
hsa-miR-204

RUNX2 (both in mouse and
human), ALP (in human),

ON (in human)
Inhibits [109,110]

mmu-miR-221 Zinc finger protein FOG
family member 2 (ZFPM2) Enhances [111]

mmu-miR-322 Transducer of ERBB2,2
(TOB2) Enhances [112]

hsa-miR-335 RUNX2 Inhibits [113]

mmu-miR-335-5p Dickkopf WNT signaling
pathway inhibitor 1 (DKK1) Enhances [114]

hsa-miR-381 WNT5A, frizzled class
receptor 3 (FZD3) Inhibits [115]

mmu-mir-433 RUNX2 Inhibits [116]

mmu-miR-495 Aquaporin 1 (AQP1) Enhances [117]

mmu-miR-505 RUNX2 Inhibits [118]

hsa-miR-637 OSX Inhibits [119]

mmu-miR-2861 HDAC-5 and homeobox A2
(HOXA2) Enhances [120]

mmu-miR-3960 HDAC-5 and HOXA2 Enhances [120]



Viruses 2020, 12, 1207 10 of 19

Table 3. The targets and effect of miRNAs on osteoclastogenesis.

miRNA Target mRNA Effect on
Osteoclastogenesis References

mmu-miR-26a Connective tissue growth factor (CTGF) Inhibits [121]

mmu-miR-29 family G protein-coupled receptor 85 (GPR85),
CD93, nuclear factor I A (NFIA) Enhances [122]

mmu-miR-29a RANKL, CXCL12 Inhibits [123]

mmu-miR-29b Bcl-2-modifying factor (BMF) Enhances [124]

mmu-miR-31

Rhodopsin (RHOA) and the GTPases of
the RHO family (Ras-related C3

botulinum toxin substrate 1 (RAC1),
RAC2, CDC42, RHOA, and RHOU)

Inhibits [125]

mmu-miR-34a TGFB induced factor homeobox 2
(TGIF2) Inhibits [126]

mmu-miR-34c Leucine rich repeat containing G
protein-coupled receptor 4 (LGR4) Enhances [127]

mmu-miR-124 NFATC1, ras-related protein 27a
(RAB27a) Inhibits [128,129]

mml-miR-141 EPH receptor A2 (EPHA2) Inhibits [130]

hsa-miR-144-3p RANK, tet methylcytosine dioxygenase
2 (TET2) Inhibits [131,132]

mmu-miR-145 SMAD3 Inhibits [133]

mmu-miR-146a TRAF6 and IRAK-1 Inhibits [134]

mmu-miR-148 MAF BZIP transcription factor B
(MAFB) Enhances [135]

mmu-miR-155 TAB2 Inhibits [136]

mmu-miR-214 PTEN Enhances [137]

mmu-miR-214-3p TRAF3 Enhances [138]

mmu-miR-218 TNFR1 Inhibits [139]

hsa-miR-503 RANK Inhibits [140]

mmu-miR-9718 PIAS3 Enhances [141]

The levels of miRNAs are altered in many bone-related pathological conditions [142]. Furthermore,
as mentioned earlier, dysregulated expression of miRNAs has been reported during CHIKV infection
(Table 1). Thus, understanding the specific roles of miRNAs in bone homeostasis during CHIKV
infection will be critical for the identification of novel biomarkers in altered bone homeostasis during
infection and for the development of miRNA-based therapeutics.

In osteogenically differentiated MSCs derived from dental and craniofacial tissues, the expression
of hsa-miR-21 was down-regulated, and its overexpression suppressed osteoblastogenesis [94]. SMAD5,
the upstream regulator of RUNX2 during osteogenesis, was the target of hsa-miR-21 [94]. However,
in mouse osteoblast MC3T3-E1 cells, mmu-miR-21 induced osteogenic differentiation by targeting
SMAD7 [95]. Sun et al., also showed that mmu-miR-21 induced osteogenesis as overexpression of
mmu-miR-21 resulted in increased mineralization and bone healing properties in a femur fracture
model in rats [143]. During CHIKV infection, an upregulated expression of hsa-miR-21-5p was
observed, and PELI1, a E3 ubiquitin protein ligase, was predicted as the target [25]. PELI1
has been shown to inhibit the NF-κB signaling pathway, which is an important pathway during
osteoclastogenesis [60]. Thus, further studies may be conducted to investigate whether miR-21 can
impair osteoclastogenesis during CHIKV infection. FAK signaling pathway acts as a critical signaling
pathway in the early stages of osteoblastogenesis [144]. During CHIKV infection, hsa-miR-138-2-3p
is upregulated and a number of genes are predicted as targets including MAPK13 [145]. MAPK13
encodes p38 MAPK which plays an important role in bone homeostasis [146]. hsa-miR-138 is also
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downregulated during osteoblastogenesis as it can target FAK and inhibit the FAK-mediated signaling
pathway [145]. Additionally, suppression of hsa-miR-138 expression with antagomiR-138 increased
ectopic bone formation in vivo and overexpression of hsa-miR-138 reversed the effects, thus indicating
that hsa-miR-138 impairs osteogenic differentiation by targeting FAK and its downstream signaling
pathways. However, whether miR-138 regulates any FAK-mediated MAPK-signaling pathway during
CHIKV infection is not yet known. Many reports have suggested that joint inflammation is associated
with arthritic-like symptoms during CHIKV infection [147]. hsa-miR-146 has been associated with
many viral and microbial infections and also with inflammatory conditions such as RA [49,148,149].
An upregulated expression of hsa-miR-146a was observed in synovial fibroblasts during CHIKV
infection [24]. Furthermore, TRAF6 and IRAK1 were predicted as targets of hsa-miR-146a [25]. It is
known that during viral infections, TRAF6 and IRAK1 activate the NF-кB signaling pathway to
produce pro-inflammatory cytokines for combating infection [49]. Additionally, the NF-кB signaling
pathway has been shown to play an important role during osteoclastogenesis. However, the effect of
hsa-miR-146a on the NF-кB signaling pathway during CHIKV infection remains unknown.

4. Conclusions

Understanding the involvement of miRNAs during bone homeostasis in the context of CHIKV
infection is of much interest as identification of novel biomarkers and/or development of miRNA-based
therapeutics against viral infections is a promising area of research. Several miRNAs already serve
as biomarkers and have been associated with pathologies, stages, and/or progression of different
diseases. However, the use of miRNAs as biomarkers to diagnose viral diseases is still uncommon.
Recently, hsa-miR-181c-5p and hsa-miR-1254 were identified as biomarkers for detection of H1N1 virus
influenza [150]. In miRNA-based therapeutics, the developed miRNA either targets the pathogen or
host factor during infection. During CHIKV pathogenesis, the two broad areas that can be targeted for
drug development are (1) to directly impact virus replication or (2) to modulate host factors to mitigate
arthritic-like symptoms caused due to infection. At present, a number of bioinformatic databases
and high throughput screens are available to predict miRNA targets during preclinical therapeutic
investigations. Additionally, a variety of in vitro cell culture models and in vivo mouse and non-human
primate models are available to investigate the efficacy, toxicity, and safety of miRNA therapeutics.
A phase 2 clinical trial with miravirsen (locked nucleic acid–modified DNA phosphorothioate
antisense oligonucleotide that sequesters the mature hsa-miR-122 in a stable heteroduplex, thereby
suppressing its function) in chronic hepatitis C virus (HCV)-infected patients showed reduced
HCV RNA levels that persisted beyond the end of active therapy [151]. Another product, RG-101
(an N-acetyl-D-galactosamine-conjugated RNA antagomiR that targets hsa-miR-122 in HCV infected
hepatocytes), was used in a clinical trial, which also resulted in undetectable HCV RNA in patients;
however, it produced adverse effects due to which the trial was put on hold [152]. Thus, the transition of
laboratory findings to clinical applications of miRNA-based diagnostics and therapeutics still remains
a challenge and warrants further research.
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