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Abstract: Two new Cr(III) complexes based on 2-substituted 8-hydroxyquinoline ligands,
namely [Cr(L1)3] (1), (HL1=(E)-2-[2-(4-nitro-phenyl)-vinyl]-8-hydroxy-quinoline) and [Cr(L2)3] (2),
(HL2=(E)-2-[2-(4-chloro-phenyl)vinyl]-8-hydroxy-quinoline), were prepared by a facile hydrothermal
method and characterized thoroughly by single crystal X-ray diffraction, powder X-ray diffraction,
FTIR, TGA, ESI-MS, UV-Visible absorption spectra and fluorescence emission spectra. Single crystal
X-ray diffraction analyses showed that the two compounds featured 3D supramolecular architectures
constructed from noncovalent interactions, such as π···π stacking, C-H···π, C-H···O, C-Cl···π,
C-H···Cl interactions. The thermogravimetric analysis and ESI-MS study of compounds 1 and 2
suggested that the Cr(III) complexes possessed good stability both in solid and solution. In addition,
the ultraviolet and fluorescence response of the HL1 and HL2 shown marked changes upon their
complexation with Cr(III) ion, which indicated that the two 8-hydroxyquinolinate based ligand are
promising heavy metal chelating agent for Cr3+.
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1. Introduction

Complexes of various metals with 8-hydroxyquinoline (HQ) or its derivatives have attracted
considerable attention owning to their biological activities and promising application in organic
light-emitting diodes (OLEDs), optical sensing, and so on [1–6]. In recent years, particular interest
has been given to the supramolecular coordination compounds based on 8-hydroxyquinoline
derivatives [7–11]. Because of the ease of preparation and chemical modification of 8-HQ, various
8-hydroxyquinoline derivatives with different substituents are employed to construct metal complexes
with desired structure and properties relying on the non-covalent intra- and intermolecular
forces [12–14]. For example, Yuan et al. recently reported that the luminescent properties of trimeric
Zn(II) 8-hydroxyquinolinates tuned by functional substituents [8]. In addition, a wide range of metal
ions, including main group, transition, and rare earth metal ions, have been used in preparing
8-hydroxyquinolinates-based supramolecular coordination compounds with the aim to understand
the effect of the central metals on supramolecular architectures as well as the properties of the final
products [15–21].

It is known that Cr(III) and Al(III) have very similar ionic radii, coordination numbers (typically
six) as well as comparable thermodynamic stabilities. In addition, 8-hydroxyquinolinate complexes
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of Cr(III) and Al(III) also exhibit excellent electronic spectral properties [22–25]. However, to the best
of our knowledge, Cr(III) 8-hydroxyquinolates are rarely explored, even though 8-hydroxyquinoline
shown excellent coordination ability with various metal ions [26,27]. The difficulty in synthesis of Cr(III)
8-hydroxyquinolate might arise from the high kinetic inertness of Cr3+ ion with the 3 d3 electronic
configuration. In order to gain valuable information on both the structure and spectral properties of
Cr(III) 8-hydroxyquinolate and investigate their promising application, we report here the synthesis
and characterization studies of two Cr(III)-based supramolecular coordination compounds constructed
from 2-substituted 8-hydroxyquinoline ligands.

2. Materials and Methods

2.1. General

All of the chemicals are commercial available, and used without further purification.
Thermogravimetric analyses (TGA) were carried out at a rate of 10 ◦C/min in the temperature range of
50–800 ◦C under a nitrogen atmosphere on a STA449C integration thermal analyzer (Netzsch, Bavaria,
Germany). The infrared spectra (KBr pellet) were recorded (400–4000 cm−1 region) on a Nicolet
Magna 750 FT-IR spectrometer (Nicolet Instrument Corporation, Markham, ON, Canada). Electrospray
ionization mass spectra (ES-MS) were recorded on a MALDI-TOF mass spectrometer (Bruker Daltonics
Inc., Bremen, Germany) using dichloromethane-methanol as mobile phase. All UV-Vis absorption
spectra were recorded on a Lambda 20 UV-Vis Spectrometer (Perkin Elmer, Inc., Waltham, MA, USA).
The fluorescence spectra were carried out on a LS 50B Luminescence Spectrometer (Perkin Elmer,
Inc., Beaconsfiled, Backinghamshire, UK). The EPR spectra were acquired on JES-FA200 electron
paramagnetic resonance spectrometer (JEOL, Tokyo, Japan) at room temperature on X-band 9.07 GHz
frequency under the magnetic field strength of 337 G.

2.2. Synthesis of 1

Cr(OAc)3 (2.29 mg, 0.01 mmol) and HL1 (8.76 mg, 0.03 mmol) were dissolved in a DMSO/H2O/EtOH
(3 mL/0.2 mL/3 mL) in a 20 mL vial. Then the mixture were heat at 80 ◦C for 24 h, 6.48 mg reddish
brown crystals of 1 were obtained with a yield of ~70% based on Cr.

2.3. Synthesis of 2

Using the same procedure as that used for 1, except using HL2 (8.43 mg, 0.03 mmol) instead of
HL1, brown block crystals of 2 were obtained with a yield of ~62.3% based on Cr.

2.4. X-ray Crystallography

Single-crystal XRD data for compounds 1 and 2 were collected on a Bruker SMART Apex II
CCD-based X-ray diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) with Mo-Kα radiation
(λ = 0.7103 Å) at 296 K, respectively. The structures of compounds 1 and 2 were solved using direct
method, and refined by full-matrix least-squares on F2, Technical details of the crystal structure
solutions and refinements are listed in Table 1. Powder X-ray diffraction (PXRD) data were collected
on a DMAX2500 diffractometer (Rigaku, Tokyo, Japan) using Cu Kα radiation. The calculated PXRD
patterns were produced using the SHELXTL-XPOW program (Version 5.102, Bruker AXS, Germany)
and single crystal reflection data.
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Table 1. Crystal data and structure refinement for compounds 1 and 2.

Identification Code 1 2

Empirical formula C102H66Cr2N12O18 C102H66Cl6Cr2N6O6
Formula weight 1851.67 1788.31
Temperature (K) 296(2) K 296(2) K
Crystal system triclinic triclinic

Space group P-1 P-1

Unit cell dimensions

a = 13.1901(16) Å a = 12.884(3) Å
b = 16.133(2) Å b = 16.175(3) Å
c = 20.623(3) Å c = 20.794(4) Å
α = 77.999(2)◦ α = 77.349(3)◦

β = 86.580(2)◦ β = 87.155(2)◦

γ = 85.524(2)◦ γ = 84.676(3)◦

Volume (Å3), Z 4275.2(1), 2 4208.1(2), 2
Density (calculated) (mg/m3) 1.438 1.411

F(000) 1908 1836
Limiting indices −17≤ h ≤ 16, −20 ≤ k ≤ 21, −18 ≤ l ≤ 26 −15 ≤ h ≤ 15, −19 ≤ k ≤ 17, −21 ≤ l ≤24

Reflections collected 27000 21571
Independent reflections 19127 [R(int) = 0.0261] 14500 [R(int) = 0.0271]
Completeness to theta 25.00/98.2% 25.00/97.7%

Data/restraints/parameters 19127/0/1207 14500/3/1119
Goodness-of-fit on F2 0.970 1.034

Final R indices [I > 2sigma(I)] R1 = 0.0570, wR2 = 0.1379 R1 = 0.0497, wR2 = 0.1224
R indices (all data) R1 = 0.1197, wR2 = 0.1707 R1 = 0.0858, wR2 = 0.1418

Largest diff. peak and hole (e/Å−3) 0.339 and −0.302 0.405 and −0.307

3. Results and Discussion

3.1. Single Crystal Structures

As shown in Scheme 1, two 2-substituted 8-hydroxyquinoline ligands were readily synthesized
according the reported procedure [14,28]. A solvothermal reaction of Cr(OAc)3 with HL1 or HL2

(1:3 molar ratio) in DMSO/H2O/EtOH afforded brown crystals of Cr(L1)3 (1) or Cr(L2)3 (2) in
good yields. A single-crystal X-ray diffraction study reveals that 1 crystallizes in the triclinic
space group P-1, with two crystalgraphic independent Cr(L1)3 molecules in the asymmetric unit.
Three 8-hydroxyquinolinate ligands L1 chelate to one Cr centers in the mer-geometry to form a
propeller-like Cr(L1)3, thus, the Cr centers adopt an octahedral coordination environment, which
was confirmed by the paramagnetic S = 3/2 system (d3 electron configuration) of Cr center in
complex 1 (see Figure 1) [29,30]. In the octahedral geometry, the Cr-O, Cr-N distances are fall in
the range of 1.9176(2)–1.949(2) Å and 2.102(2)–2.186(2) Å, respectively (See Table 2), which are
comparable with those reported [26]. The three 8-hydroxyquinolinolates are almost perpendicular
to each other, with dihedral angles of 85.7, 86.90, 87.31◦ for Cr1(L1)3 unit and 87.55, 89.10, 86.35◦

for Cr2(L1)3 unit, respectively. As shown in Figure 2a, multiple intramolecular C-H···O and C-H···N
hydrogen bonds could be found between the C-H group of ethenyl and quinoline rings (for Cr1L1,
C···O = 3.063(4)–3.153(4) Å, C-H···O = 136.0◦–152.0◦; for Cr2L1, C···O = 2.945(4)–2.992(4) Å, C-H···O =
131.0◦–137.0◦, C···N = 3.183(4) Å, C-H···N = 135◦), further stabilizing the whole motif of mononuclear
Cr(L1)3 units.
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Figure 1. Electron paramagnetic resonance (EPR) spectra of the crystalline samples of complex 1 and
2 at room temperature and v = 9.07 GHz. Broad intense transitions are observed at 168 and 162 mT
resonance fields, respectively.

Table 2. Selected Bond length for 1 and 2.

Complex 1 Complex 2

Bond Dist. Bond Dist. Bond Dist. Bond Dist.
Cr(1)-O(9) 1.9176(2) Cr(1)-N(1) 2.130(2) Cr(1)-O(3) 1.916(2) Cr(1)-N(1) 2.122(2)
Cr(1)-O(3) 1.938(2) Cr(1)-N(3) 2.172(2) Cr(1)-O(1) 1.934(2) Cr(1)-N(3) 2.133(2)
Cr(1)-O(6) 1.949(2) Cr(1)-N(5) 2.102(2) Cr(1)-O(2) 1.945(2) Cr(1)-N(2) 2.196(3)
Cr(2)-O(12) 1.920(2) Cr(2)-N(11) 2.121(2) Cr(2)-O(6) 1.918(2) Cr(2)-N(6) 2.098(2)
Cr(2)-O(18) 1.943(2) Cr(2)-N(7) 2.140(2) Cr(2)-O(4) 1.935(2) Cr(2)-N(4) 2.135(2)
Cr(2)-O(15) 1.944(2) Cr(2)-N(9) 2.186(2) Cr(2)-O(5) 1.958(2) Cr(2)-N(5) 2.175(2)
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Figure 2. Views of the coordination geometries of Cr(III) atoms and the noncovalent interactions in
the mononuclear complexes 1 (a) and 2 (b) (The intermolecular interactions are shown in different
colors for clarity, the C-H···O, C-H···N, C-H···π and π···π stacking interactions were highlighted by
red, yellow, green, and pink dotted lines, respectively).

The two Cr(L1)3 entities in the asymmetric unit are linked together as a dimer by a bundle of
supramolecular interaction with a Cr1-Cr2 distance of 8.979(1) Å, including by H-bonding interaction
[C(3)-O(15) = 3.226(4) Å], C-H···π interaction [(C(10)-H(10)···π = 3.724(4) Å] and two π···π interactions
(centroid-centroid distance is 3.804(6) Å between the adjacent 4-nitrophenyl rings; centroid-centroid
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distance is 3.779(4) Å between the 4-nitrophenyl ring and quinoline unit). Among the parallel quinoline
rings from Cr(L1)3 units, the π···π stacking interactions (face-to-face distance: 3.612(5)–3.662(3) Å) direct
the assembly of neighboring dimers into a 1D supramolecular chain (Figure 3a). The adjacent chains
further aggregate into a 2D supramolecular layers in the bc plane via interchain H-bonding interactions
[C(6)-O(13) = 3.365(5) Å, C(73)-O(8) = 3.359(7) Å] and interchain C-H···π interactions [C(84)-H(84)···π
= 3.527(4) Å; C(22)-H(22)···π = 3.554(4) Å]. Stacking of 2D layers along the crystallographic a-axis
assisted by C-H···π interaction [C(53)-H(53)···π = 3.853(5) Å] finally results in a 3D supramolecular
architecture (Figure 3). The potential solvent-accessible volume for 1 is calculated using Platon, and
it suggests void space only constitutes 2.4% of the total crystal volume, i.e., 1 is nearly a non-porous
solid (Figure 4a) [31].
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To compare the influence of different substituents at 2-position on the supramolecular
self-assembly, ligand HL2 was employed to prepare supramolecular coordination compound 2 [12,32].
Compound 2 crystallizes in space group P-1 and is isostructural with compound 1, but the arrangement
of building units (Cr(L2)3 molecules) in the supramolecular network is different due to the non-covalent
interactions originated from Cl. As depicted in Figure 2b, each of Cr(III) ions in 2 adopts a
distorted octahedral geometry constructed from three oxygen and three nitrogen atoms of three
L2 ligands. The bond lengths around Cr centers are similar with those in 1 (see Table 1). The two
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crystallographically unique Cr(L2)3 molecules in the asymmetric unit with a Cr1-Cr2 separation of
8.853(1) Å are linked into a Cr2(L2)6 dimer via the combination of weak π···π stacking (face-to-face
distance: 3.828(18) Å), H-bonding interaction [C(68)-O(2) = 3.311(4) Å] as well as intermolecular
C-H···π interaction between adjacent quinoline units [C-H···π = 3.736(4), 3.870(4) Å, respectively.
As seen in Figure 3b, the Cr2(L2)6 dimers connect with neighboring units in plane [1,0,0] to form
a supramolecular 2D layer via π···π interactions of the adjacent quinoline units (centroid-centroid
distances are in the range of 3.646(2)–3.679(2) Å) and intermolecular C-H···π interactions (C-H···π =
3.496(4), 3.445(4) Å), respectively. Unlike 1, the construction of a 3D supramolecular network employing
these 2D layers is assisted not only by the weak intermolecular C-H···π interactions [C(50)-H(50)···π =
3.710(7) Å] but also by the C-Cl···π interactions [C(100)-Cl···π = 3.654(3) Å] and C-H···Cl interactions
(C(55)-H(55)···Cl(3) = 3.286(5) Å). This is primarily due to the replacement of -NO2 group by the
chlorine atom on the bidentate chelate ligand, leading to different intermolecular interactions in the
solid state [8,9]. In addition, compound 2 is almost non-porous supramolecular coordination polymers
with only 2.1% of void space as calculated by PLATON (see Figure 4b) [31].

3.2. The stability of 1 and 2

In order to confirm the crystal structure of 1 and 2 are truly representative of their bulk samples,
the PXRD experiments have been carried out on the as-prepared sample. As shown in Figure 5, the
experimental diffraction patterns fit perfectly with the patterns simulated from their single-crystal
structure, indicating the phase purity of bulk samples of 1 and 2. The thermal stabilities of the two
crystalline solids were determined by thermal analysis technique. Thermogravimetric analyses (TGA)
of 1 and 2 shown no appreciable weight loss until the temperature reaches around 370 ◦C for 1 and
395 ◦C for 2, respectively, this thermal behavior is similar to that of other metal quinolates [9,33]
(see Figure 6). The TGA results suggest that the two supramolecular architectures are thermally robust,
which are attributed to highly polarized Cr-N and Cr-O bonds. In comparison with compound 1, the
higher thermal stability may derive from C-Cl···π interactions and C-H···Cl interactions.

The stability of chromium(III) tris-(8-hydroxyquinolinates) in solution is confirmed from the
electrospray ionization mass spectra of 1 and 2, where the molecular ion peaks located at m/z = 925.2
and 892.1 are observed, corresponding to [Cr(L1)3]+ (calculated M+ = 925.1708) and Cr(L2)3]+

(calculated M+ = 892.0987), respectively (see Figure 7). The robustness of 1 and 2 is mainly due
to kinetically inert nature of Cr(III), making it quite slow to undergo ligand exchange [34].
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3.3. The IR spectra of 1 and 2

The FT-IR spectra of the two bidentate ligands and corresponding Cr-based complexes are shown
in Figure 8, and the proposed assignment of complexes are presented in Table 2. The characteristic ν

(OH) stretching bands (located at ~3360 cm−1) and bending vibration bands (located at ~1200 cm−1)
in the IR spectra of the two free ligand nearly disappears after coordination to Cr ion. The broad
absorptions at ~3410 cm−1 in the spectra of two Cr(III) complexes are probably due to the presence of
trace water in the KBr discs. The observation of an absorption bands located at ~3059 and 2925 cm−1
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in the IR spectra of free ligands are attributed to the stretching vibrations of aromatic and vinylic C-H,
which are here scarcely affected after complex formation. The ν (C=C) bands are found at similar
energies as in the free ligands (~1536–1578 cm−1), respectively, but the ν (C=N) vibrational bands in
the two Cr-based compounds are affected after complexation and exhibited at around ~1595 cm−1.
After deprotonation, the band assigned to the ν (C-O) vibration moved to somewhat higher energies
in the complexes (from 1205 to 1276 cm−1). In addition, the bands related to Cr-O and Cr-N vibrations
are exhibited within region 552–497 cm−1 as refereed in Table 3 [35].
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Table 3. Infrared spectral bands and assignments of two Cr-based complexes.

1 2 Assignments

3410 3408 ν (trace H2O in the KBr discs)
3058, 2926 3059, 2925 ν (aromatic and vinylic C-H)
1595 1593 ν (C=N)
1539~1575 1536~1573 ν (C=C)
1276, 1242, 1208 1275, 1243, 1205 ν (C-O)
548 552 ν (Cr-O)
497 501 ν (Cr-N)

3.4. UV/Visible Absorption and Fluorescence Emission Spectra Studies

We obtained UV-vis spectra of HL1, HL2, 1, and 2 in DMF (N,N-dimethylformamide) (see Figure 9).
The absorption peaks around 275 nm in HL1 and 305 nm in HL2 can be assigned to the π-π* transition
of the conjugated ligands, while the absorption peaks around 365 nm in HL1 and 350 nm in HL2

can be assigned to the n-π* transition of conjugated quinoline rings [35,36]. From the absorption
spectra of 1 and 2, we note that main characteristic absorption peaks corresponding to ligands exhibit
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red-shift. The main absorption bands of 1 and 2 merge into one broad peak centered at 360 nm and
325 nm, respectively, with a shoulder around 295 nm and 365 nm accordingly. Additionally, the
emerging absorbance in the visible range around 480 nm in 1 and 460 nm in 2 might be ascribed to
metal-to-ligand charge-transfer transitions (MLCT) [34,35]. The fluorescent properties of both the
complexes and related 8-hydroxyquinolate ligands are also investigated in DMF at room temperature.
Upon excitation at 365 nm, HL1 and HL2 display maximum emission wavelengths at 525 nm and
488 nm, respectively (see Figure 10). The very low emission of HL1 in DMF solution is probably due
to the strong electron withdrawing effect of nitro group on the aromatic ring [37,38]. However, the
fluorescent emission of the 2-substituted 8-hydroxyquinoline ligands in DMF solution are completely
quenched after the formation of Cr(III) hydroxyquinolinates (see Figure 10), which are similar to the
result in the solid state (see below).Materials 2017, 10, x FOR PEER REVIEW  9 of 13 
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The solid-state diffuse reflectance spectra of HL1, HL2, 1, and 2 present similar bands to those
observed in solution, albeit with a slight blue shift. The ligand HL1 shows two broad bands around
269 nm and 350 nm, while HL2 shows two broad bands centered at 262 nm and 340 nm (see Figure 11).
All of these absorption bands could be ascribed to the π-π* and n-π* transition of the conjugated
system of ligands. Upon binding to the Cr(III) ion, the two main absorption bands of the two free
ligands exhibit a red shift by ~15 nm, which is due to the enhancement of rigidity after the formation of
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complexes. Special absorptions at 480 nm and 460 nm are found for compounds 1 and 2, respectively.
We assign these broad absorptions as metal-to-ligand charge transfer transitions (MLCT) between
center mental ions and ligands. It should be noted that the broad shoulder at ca. 670 nm for 1 and
635 nm for 2 can be attributed to d-d transition of chromium ion [34]. The emission spectra of the
two 8-hydroxyquinoline ligands and their metallocomplexes are examined in the solid state at room
temperature as well. Upon excitation at 350 nm, the major emission peaks located at approximately
550 and 465 nm for HL1 and HL2, respectively, dominate the fluorescence spectra (see Figure 12).
Though the five-membered chelate rings formed between the NO donors and Cr(III) metal centers
have increased the π-π* conjugation and conformational coplanarity of 8-hydroxyquinolinate, it is
hard to detect the fluorescent signal of the two metallocomplexes. In contrast to other complexes of
8-hydroxyquinoline and its derivatives with metal ions (e.g., Al(III), Ga(III), Zn(II), or Cd(II)), the
3 d3 Cr(III) ion exhibits striking quenching effect, which might be attributed to the lowest energy
transition being metal rather than ligand based [34,39]. The striking fluorescence response of the two
8-hydroxyquinolinate based ligand towards Cr3+ both in solid and solution indicated they could
serve as a good heavy metal chelating agent for Cr3+ in a range of environmental monitoring and
biomedical applications.
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4. Conclusions

In summary, two supramolecular coordination compounds, [Cr(L1)3] (1) and [Cr(L2)3] (2),
were prepared by a solvothermal reaction of Cr(OAc)3 with two 2-substituted-8-hydroxyquinolate
ligands, respectively. Structures of compounds 1 and 2 were fully characterized by FTIR, MS,
TGA, EPR, and single and powder X-ray diffraction. They also featured a 3D supramolecular
architecture constructed from abundant noncovalent inter- and intramolecular forces. The remarkable
change in the photoluminescent properties of the two 2-substituted 8-hydroxyquinoline ligands
and their corresponding Cr-based complexes, both in solution and solid state, indicate that the two
8-hydroxyquinolate ligands are promising chelating agents in luminescence investigation Cr(III)
ion [1,35,40]. Therefore, this study provides an idea to explore new 8-hydroxyquinolinate based
ligands and related supramolecular coordination compounds for environmental monitoring and
biomedical applications.
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Appendix

X-ray Crystallographic data for the structures reported in this paper has been deposited with
the Cambridge Crystallographic Data Centre as supplementary publication NO. CCDC-1507348,
CCDC-1507355 for compound 1 and 2, respectively. These data can be obtained free of charge from the
Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/conts/retrieving.html.
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