
92  |  	﻿�  CNS Neurosci Ther. 2021;27:92–100.wileyonlinelibrary.com/journal/cns

 

Received: 26 August 2020  |  Revised: 25 October 2020  |  Accepted: 25 October 2020

DOI: 10.1111/cns.13509  

O R I G I N A L  A R T I C L E

Machine learning models predict coagulopathy in spontaneous 
intracerebral hemorrhage patients in ER

Fengping Zhu1,2,3,4 |   Zhiguang Pan1,2,3,4 |   Ying Tang5 |   Pengfei Fu1  |   Sijie Cheng6 |   
Wenzhong Hou6 |   Qi Zhang6 |   Hong Huang6 |   Yirui Sun1,2,3,4

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2020 The Authors. CNS Neuroscience & Therapeutics Published by John Wiley & Sons Ltd.

Zhu and Pan are contributed equally to this work. 

1Department of Neurosurgery, Huahsan 
Hospital, Fudan University, Shanghai, China
2Neurosurgical Institute of Fudan University, 
Shanghai, China
3Shanghai Clinical Medical Center of 
Neurosurgery, Shanghai, China
4Shanghai Key Laboratory of Brain Function 
and Restoration and Neural Regeneration, 
Shanghai, China
5Department of Nursing, Huahsan Hospital, 
Fudan University, Shanghai, China
6Information Center, Huahsan Hospital, 
Fudan University, Shanghai, China

Correspondence
Yirui Sun, Department of Neurosurgery, 
Huashan Hospital, Fudan University, 12 
Wulumuqi Road, Shanghai 200040, China.
Email: Yirui.sun@live.cn

Hong Huang, Information Center, Huahsan 
Hospital, Fudan University, 12 Wulumuqi 
Road, Shanghai 200040, China.
Email: huashantbi@163.com

Funding information
Shanghai Minhang Nature Science 
Foundation project, Grant/Award Number: 
2018MHZ007; Science and Technology 
Commission of Shanghai Municipality, 
Grant/Award Number: 18441903300; 
Shanghai Pujiang Program, Grant/Award 
Number: 18PJ1401600; Shanghai Municipal 
Commission of Health and Family Planning, 
Grant/Award Number: 201801075 and 
201840063

Abstract
Aims: Coagulation abnormality is one of the primary concerns for patients with 
spontaneous intracerebral hemorrhage admitted to ER. Conventional laboratory in-
dicators require hours for coagulopathy diagnosis, which brings difficulties for appro-
priate intervention within the optimal window. This study evaluates the possibility 
of building efficient coagulopathy prediction models using data mining and machine 
learning algorithms.
Methods: A retrospective cohort enrolled 1668 cases with acute spontaneous intrac-
erebral hemorrhage from three medical centers, excluding those under antithrom-
botic therapies. Coagulopathy-related clinical parameters were initially screened by 
univariate analysis. Two machine learning algorithms, the random forest and the sup-
port vector machine, were deployed via an approach of four-fold cross-validation to 
screen out the most important parameters contributing to the occurrence of coagu-
lopathy. Model discrimination was assessed using metrics, including accuracy, preci-
sion, recall, and F1 score.
Results: Albumin/globulin ratio, neutrophil count, lymphocyte percentage, aspar-
tate transaminase, alanine transaminase, hemoglobin, platelet count, white blood 
cell count, neutrophil percentage, systolic and diastolic pressure were identified as 
major predictors to the occurrence of acute coagulopathy. Compared to support vec-
tor machine, the model based on the random forest algorithm showed better ac-
curacy (93.1%, 95% confidence interval [CI]: 0.913-0.950), precision (92.4%, 95% CI: 
0.897-0.951), F1 score (91.5%, 95% CI: 0.889-0.964), and recall score (93.6%, 95% 
CI: 0.909-0.964), and yielded higher area under the receiver operating characteristic 
curve (AU-ROC) (0.962, 95% CI: 0.942-0.982).
Conclusion: The constructed models exhibit good prediction accuracy and efficiency. 
It might be used in clinical practice to facilitate target intervention for acute coagu-
lopathy in patients with spontaneous intracerebral hemorrhage.
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1  | INTRODUC TION

Spontaneous intracerebral hemorrhage (ICH) is a major global public 
health issue, contributing to 7.4 million cases and over 3.1 million 
deaths worldwide annually.1 The case-fatality rate of ICH ranges 
from 35% at seven days to 59% at one year.2-4 Survivors often pres-
ent with severe disability, leaving less than 40% regaining functional 
independence.4

It has been established that prolonged bleeding frequently oc-
curs during the acute phase of ICH, which contributes to neurolog-
ical deterioration and worsened outcome.3,5 The pathogenesis of 
prolonged bleeding is not fully understood, but coagulation abnor-
malities are considered as one of the most significant risk factors.3,6 
For patients under antithrombotic therapies (including antiplatelet, 
anticoagulant, and fibrinolytic agents), the application of hemostatic 
agents such as vitamin K1 is a common regimen in neurological ICU 
and is recommended by ICH guidelines from the American Heart 
Association and the American Stroke Association.4 Even without 
any antithrombotic therapies, coagulation abnormalities are com-
mon and are often accompanied by intracerebral hematoma enlarge-
ment.7 Early detection and intervention of acute coagulopathy can 
significantly reduce mortality and improve outcomes.8,9

Currently, the diagnosis of coagulopathy is based on conven-
tional coagulation indicators such as prothrombin time (PT), inter-
national normalized ratio (INR), and activated partial thromboplastin 
time (APTT), which typically require a minimum of 1 to 2 hours of 
processing time after blood sample collection. A most optimal ther-
apeutic window may be missed due to this time lag. Therefore, it is 
of great importance to develop efficient prediction models that can 
identify coagulopathy rapidly and timely, so as to provide an early 
warning to physicians and to facilitate ancillary resource manage-
ment better to treat patients in the emergency room (ER).

Previously, clinical parameters, including age, gender, body tem-
perature, have been identified as risk factors for coagulation abnor-
malities in acute ICH patients, yet the sensitivities and specificities 
varied among studies.10-15 The difficulties of precise predictions 
come from the fact that the coagulopathy during the acute phase 
of ICH is a multifactorial pathological process with complex mech-
anisms, possibly including tissue damage, hypoxemia, acidemia, 
inflammation, hypoperfusion, and other confounders. For ICH pa-
tients arriving at the ER, it is impractical for clinicians to screen every 
individual factor. Therefore, it is crucial to develop prediction models 
that are easily applicable to alert clinicians of potential coagulopathy 
in ICH patients.

The rise of big data analysis and machine learning algorithms of-
fers possible strategies to build efficient prediction models and re-
veal hidden patterns from enormous datasets.16-20 In this study, we 
used machine learning methods to develop and validate a prediction 

model for coagulopathy after acute ICH based on objective indica-
tors, which are routinely obtained after patients being admitted to 
the ER.

2  | METHODS

2.1 | Study cohort and source of data

The study was approved by the institutional ethics commit-
tees and registered with the Chinese Clinical Trial Registry 
(ChiCTR1900021522). The clinical data collected for modeling 
were retrospectively obtained from patients in the ER of Shanghai 
Huashan Hospital, Shanghai Jing'an Hospital, and Huashan Pudong 
Hospital between January 2016 and June 2019. The data set in-
cludes demographic information, triage target, medical records, 
vital signs, laboratory tests, imaging examinations, and transfusion 
records. Information was collected electronically from the hospital 
information system (HIS) and Laboratory Information Management 
System (LIS). Due to the retrospective nature of the study, informed 
consent was waived. The personal information and privacy of pa-
tients involved in this study are strictly protected under the supervi-
sion of the ethics committee.

Patients with non-aneurysmal spontaneous ICH, confirmed by 
Computed Tomography (CT) scanning, were recruited in this study. 
The inclusion criteria also involve a timing of less than 12 hours from 
symptom onset to ER admission.21,22 Since two of the medical cen-
ters, Huashan Hospital and Huashan Pudong Hospital, only accept 
adult patients, this study only recruited patients over 18 years old. 
The exclusion criteria involve any of the following conditions: preg-
nancy; uncorrected shock (systolic pressure ≤90 mm Hg, or diastolic 
pressure ≤50  mm  Hg); thrombocytopenia; cirrhosis; hypohepatia/
hepatic failure; renal failure; currently on oral administration of an-
tiplatelets or anticoagulants (including warfarin, clopidogrel, aspirin, 
rivaroxaban, and dabigatran); and patients with incomplete data 
upon ER admission.

2.2 | Definition of coagulation abnormalities

Results of coagulation assessment were collected from day 0 to 5 
after ER admission. A diagnosis of coagulation abnormality was made 
when a patient showed either increased International Normalized 
Ratio (INR ≥1.2) or prolonged activated partial thromboplastin time 
(APTT, reference range 28-34 seconds). These indicators and refer-
ence ranges are used to assess either the extrinsic or intrinsic path-
ways of coagulation along with the common pathways, which have 
been commonly applied within clinical researches and literature.23-26
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2.3 | Statistics

Continuous variables were presented as mean ± standard deviation 
for variables with a normal distribution, or median and interquar-
tile ranges for skewed distribution variables. Categorical variables 
were presented as proportions. Shapiro-Wilk W test and F test were 
performed for normality and homogeneity of variance. The baseline 
characteristics between ICH patients with or without coagulopathy 
were initially compared using either Student's t tests or rank-sum 
tests. The χ2 tests or Fisher exact tests were used to compare dif-
ferences in categorical variables, as appropriate. Statistical analyses 
were performed using SPSS 23.0 software.

2.4 | Machine learning algorithms

The data mining and model fitting were performed in python 3.6. Two 
algorithms, random forest and support vector machine (SVM), were ap-
plied to predict coagulopathy among ICH patients admitted to the ER.

Random forest is a supervised learning algorithm. The "forest" in 
this approach is a series of decision trees that act as "weak" classi-
fiers, which are poor predictors individually but exhibit robust pre-
diction value in the aggregate. To classify an object from an input 
vector, each tree gives a classification. The forest selects the clas-
sification that has the most votes.27,28 In this study, the Gini Index 
was applied as the optimization criterion, with 1000 estimators used 
in the calculation. The hyperparameters used in the current study 
were as follows: criterion=“gini,” bootstrap  =  True, max_parame-
ter=“auto,” max_depth = 10, n_jobs = 2, min_samples_split = 2.

SVM, also known as support vector network (SVN), is also a su-
pervised learning method. SVM looks at data and sorts it into one 
of two categories. It is trained with a series of data already clas-
sified into two groups, building the model as it is initially trained. 
The task of an SVM algorithm is to determine which category a new 
data point belongs to. This makes SVM a kind of non-binary linear 

classifier.29,30 In this study, the prediction model was trained via lin-
ear SVM, in which relative parameter contributions were derived 
from the weighted coefficients. To ensure the robustness of the pa-
rameter contributions, 1,000 bootstrapped sets were generated, in 
which 75% of the training set was sampled with replacement. Linear 
SVMs were trained on each of these bootstrapped sets.

This study adopts an approach of fourfold cross-validation via 
which the whole data set was randomly divided into four subsets 
(folds). Of the fourfolds, threefolds were used as training data, 
and the remaining one was retained as a validation data set. The 
cross-validation process was repeated four times, and each of the 
fourfolds was used once as validation data. The four results were 
then averaged to produce a single estimation. The area under the 
receiver operating characteristic curve (AU-ROC), precision, classifi-
cation accuracy, recall score, and F1 score were used to evaluate pre-
diction models. Precision quantifies the percentage of positive class 
predictions that truly belongs to the positive class. Classification ac-
curacy is the proportion of the correct prediction in all prediction re-
sults. The recall score is the proportion of predicted positive samples 
in all true positive samples. The F1 score provides a single score that 
balances both the concerns of precision and recall in one number.

3  | RESULTS

3.1 | Cohort Characteristics

Between January 2016 and June 2019, 32,857 patients visited the 
ER of the above three medical centers. Among them, 3,016 patients 
were diagnosed with acute ICH, and 1,813 patients met the above 
inclusion criteria. Yet, 145 patients were excluded due to missing 
data for one or more covariates. Therefore, data of 1,668 patients 
were finally used for modeling. A flowchart of patient selection is 
shown in Figure 1. The demographic characteristics of recruited pa-
tients are shown in Table 1.

F I G U R E  1   A flowchart of patient 
selection
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A total number of 1,313 (78.71%) patients did not present co-
agulopathy during the acute phase of ICH, while 355 (21.29%) pa-
tients had coagulation abnormalities upon ER admission. Patients 
with coagulopathy showed statistically higher values for systolic 
blood pressure (SBP) and diastolic blood pressure (DBP) (Table  1). 

Other parameters associated with coagulopathy include albumin/
globulin ratio (A/G), neutrophil count (NEUT), lymphocyte percent-
age (LYMPH), aspartate transaminase (AST), alanine transaminase 
(ALT), hemoglobin (Hb), platelets count (PLT), white blood cell count 
(WBC), and neutrophil percentage in acute ICH patients. On the 

TA B L E  1   Characteristic of ICH patients with coagulopathy and without coagulopathy

Overall (n = 1668) With Coagulopathy (n = 355)
Without Coagulopathy 
(n = 1313) P-value*

Age 54.56 ± 15.94 54.47 ± 15.61 54.59 ± 15.72 .90

Gender (Male: Female) 943:725(1.30:1) 201:154 (1.31:1) 742:571 (1.30:1) .95

Diagnosis n, (%)

Lobe hemorrhage 461 (27.64) 99 (27.89) 362 (27.57) .91

Basal ganglia hemorrhage 743 (44.54) 151 (42.54) 592 (45.09) .39

Cerebellar hemorrhage 79 (4.74) 14 (3.94) 65 (4.95) .48

Brain stem hemorrhage 81 (4.86) 19 (5.35) 62 (4.72) .68

Ventricular hemorrhage 304 (18.23) 72 (20.28) 232 (17.67) .26

Medical history n, (%)

Hypertension 738 (44.24) 162 (45.63) 576 (43.87) .55

Diabetes 426 (25.54) 91 (25.63) 348 (25.51) .57

Vital sign on ER admission

Temperature, ℃ 36.93 ± 0.74 36.94 ± 0.72 36.92 ± 1.02 .73

Heart rate 90.53 ± 17.76 91.12 ± 18.23 89.57 ± 17.58 .14

Systolic blood pressure, mm Hg 132.53 ± 26.32 137.53 ± 25.59 129.82 ± 29.21 <.01

Diastolic blood pressure, mm Hg 78.12 ± 14.37 81.58 ± 16.17 76.38 ± 15.98 <.01

SpO2, % 97.32 ± 8.21 97.01 ± 8.15 97.65 ± 7.37 .16

Routine blood test

Hb, g/L 123.24 ± 19.34 121.46 ± 17.35 126.48 ± 19.86 <.01

WBC, × 109/L 12.68 ± 3.24 13.64 ± 3.59 12.16 ± 3.89 <.01

NEUT, × 109/L 10.91 ± 2.14 11.28 ± 2.43 10.77 ± 2.96 .029

NEUT percentage, % 86.21 ± 12.45 87.13 ± 13.31 85.32 ± 12.64 .026

PLT, × 109/L 190.32 ± 24.38 177.48 ± 25.37 210.27 ± 28.24 <.01

LYMPH, % 11.02 ± 2.03 10.95 ± 2.21 12.37 ± 3.15 <.01

MPV, fL 12.41 ± 1.38 12.42 ± 1.42 12.39 ± 1.26 .89

PDW, % 16.67 ± 3.95 16.62 ± 3.82 16.75 ± 4.13 .59

Liver & renal function

ALT, U/L 22.37 ± 7.32 23.59 ± 7.48 21.57 ± 6.96 <.01

AST, U/L 32.15 ± 8.35 29.35 ± 8.46 33.18 ± 9.73 <.01

A/G 1.64 ± 0.42 1.31 ± 0.31 1.79 ± 0.45 <.01

Cr, μmol/L 65.25 ± 15.21 66.34 ± 16.37 64.78 ± 17.02 .12

BUN, mmol/L 4.78 ± 1.63 4.67 ± 1.57 4.83 ± 1.72 .11

Electrolyte

Na+, mmol/L 137.32 ± 12.30 136.77 ± 13. 41 138.33 ± 13.22 .092

K+, mmol/L 3.96 ± 1.53 3.89 ± 1.55 4.01 ± 1.54 .19

Ca2+, mmol/L 1.97 ± 0.21 1.98 ± 0.23 1.96 ± 0.22 .13

Cl-, mmol/L 103.36 ± 11.35 102.96 ± 11.24 104.25 ± 12.87 .086

Note: Bold values indicate p-values less than 0.05.
*The P-values indicate the difference in ICH patients with and without coagulopathy. A P-value <.05 is considered as statistical significance. 
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contrary, parameters such as age, gender, hemorrhage locations, his-
tory of hypertension, body temperature, heart rate, and pulse oxy-
gen saturation (SpO2) showed no significant difference between the 
two groups (Table 1).

3.2 | Random forest model

In the random forest model, recruited patients were classified ac-
cording to their coagulation status, and an algorithm was used to 
assess the importance of each clinical parameter on coagulopathy. 
Parameter importance was calculated as the sum of the decrease 
in error when split by a variable. The importance of each clinical pa-
rameter reflects the contribution of each variable in the patient's 
classification into the coagulopathy or non-coagulopathy group. 
Major indicators for coagulopathy during acute phase ICH were 
ranked in the upper part of Table 2 in the random forest model: A/G 
(0.232), NEUT (0.176), LYMPH (0.170), AST (0.160), Hb (0.153), PLT 
(0.146), WBC (0.139), NEUT percentage (0.138), SBP (0.136), and 
DBP (0.134).

3.3 | SVM model

Further interrogation of the linear SVM model identified the major 
predictor variables contributing to the presence of coagulopathy of 
ICH patients upon ER admission. Variables are listed in descending 
order of contribution in Table  2 (lower part), with higher param-
eter contribution denoting a stronger association with coagulopa-
thy: LYMPH (0.203), NEUT (0.199), A/G (0.187), AST (0.160), WBC 
(0.180), Hb (0.158), NEUT percentage (0.154), PLT (0.151), SBP 
(0.148), and DBP (0.133).

3.4 | Model performance comparison

Model discrimination was assessed using machine learning evalua-
tion metrics, including accuracy, precision, recall, and F1 score. The 
results are presented in Table 3. Notably, the random forest model 
is superior to the SVM model in both accuracy (0.931) and precision 
(0.924), as well as F1 (0.915) and recall scores (0.936). The AU-ROC 
values with 95% CI were 0.9623 (95% CI: 0.9415 - 0.9815) for the 
random forest model and 0.8987 (95% CI: 0.8559 - 0.9436) for SVM 
model.

3.5 | Contributors for the extrinsic and intrinsic 
coagulation pathway

Since INR and APTT measure the extrinsic and intrinsic coagulation 
pathway, respectively, the major contributors for either of the path-
way were screened independently using the same machine learn-
ing strategies. Table 4 shows that the random forest algorithm has 
superior accuracy, precision, FI score, and Recall Score during the 
prediction of both pathways. The SVM algorithm offers a higher AU-
ROC value 0.965(95% CI 0.916-0.987) for increased INR prediction 
but a lower AU-ROC value 0.921(95% CI 0.896-0.976) for prolonged 
APTT prediction compared to the random forest algorithm. The vari-
ables with a significant contribution to both pathways are sorted and 
listed in Table 5.

4  | DISCUSSION

Coagulation is one of the most sophisticated systems of the human 
body, which is affected by multiple organ functions, disorders, and 
medications. Early detection and intervention of coagulopathy 
are known to reduce mortality and to improve the outcomes of 
ICH patients.8,9 It is of great importance to develop effective pre-
diction models that can alert clinicians to potential coagulopathy 
cases in ICH patients in the ER. Considering the narrow optimal 
therapeutic window for coagulation abnormalities, an ideal predic-
tion model would be: (a) Easy to use: the input data for the predic-
tion model should be easily accessible upon ER admission (ideally, 
no extra work for clinicians such as filling in questionnaires or 

TA B L E  2   Feature contributions derived from machine learning 
algorithms

Model Variable Contributionc 

Random forest

A/Ga  0.232

NEUTb  0.176

LYMPH a  0.170

ASTb  0.160

Hba  0.153

PLTa  0.146

WBCb  0.139

NEUT percentageb  0.138

SBPb  0.136

DBPb  0.134

SVM

LYMPHa  0.203

NEUT b  0.199

A/Ga  0.187

ASTb  0.160

WBCb  0.180

Hba  0.158

NEUT percentageb  0.154

PLTa  0.151

SBPb  0.148

DBPb  0.133

aMeasurements below the normal range. 
bMeasurements above the normal range. 
cThe values were transformed to a scale of 0-1. 
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performing scaling). (b) Timely: clinical parameters required can 
be quickly obtained, enabling timely prediction and appropriate 
model-guided interventions. (c) Universal: clinical parameters 
needed for modeling should be widely applied to most medical 
institutions worldwide, both in developed and under-developed 
areas.

Currently, ongoing investigations aim to look for practical and 
convenient tools for coagulopathy prediction. Machine learning 
techniques are extraordinary in terms of information analyzing ca-
pabilities and unveiling the hidden relationships among various pa-
rameters. Not only have they been used for weighted parameter 
selection, but they also help construct high predictive and optimal 
fitting models in various medical investigations, including neuro-
logical disorders such as intracranial stenosis31 and Parkinson's dis-
ease.32 Relying on the powerful capabilities of data selection, 
machine learning techniques reduce the redundant attributes of the 
patients' characteristics and meanwhile provide a comprehensive 
overview of interrelated attributes.20,33-35 In this study, two dif-
ferent data mining approaches, the random forest and SVM, were 
constructed and proposed to predict coagulopathy among patients 
with acute ICH. Clinical data on epidemiological characteristics, vital 
signs, routine blood tests, liver and renal functions, and electrolytes 
were collected and used for machine learning algorithms. Both mod-
els yielded satisfactory predictive performance, and each produced 
an optimal combination of parameters as a predictive model. The 
random forest model is better in terms of accuracy, precision, F1 
score, recall scores, and offered superior predicted performance in 
AU-ROC, though.

In the present study, both random forest and SVM algorithms 
indicated that A/G, NEUT, LYMPH, and AST changes were the 
major predictors for the development of coagulopathy. The con-
tributions of the A/G ratio and AST suggest that regular liver 
function plays a vital role in maintaining normal coagulation. 
Hemostasis is closely related to liver function, as most coagulation 
factors are synthesized by liver parenchymal cells. Also, the liv-
er's reticuloendothelial system plays a critical role in the clearance 

of the activated form of the coagulation factors. The severity of 
coagulation abnormalities correlated to the extend of liver distur-
bance.36 Yet, bilirubin is not identified as a primary parameter for 
coagulopathy in this study, suggesting that synthesis dysfunction 
may play a more critical role than hepatocellular damage or biliary 
obstruction in coagulopathy.

Acute leukocytosis is a well-established response to ICH. 
Previous prospective studies have shown that elevated admission 
WBC count and neutrophil count are associated with an increased 
risk of early neurologic deterioration in ICH 37-39 as well as in isch-
emic stroke.40 Multiple studies have also reported increased neu-
trophil-to-lymphocyte ratio associated with higher mortality and 
increased intracerebral remote diffusion-weighted imaging lesions 
in ICH,41,42 and worsened prognosis in glioma.43 Although the 
mechanisms are not fully understood, some interactions between 
coagulation factors and neutrophils are described elsewhere, 
which may, in turn, play a role in hemostasis. Proteins of the co-
agulation system, such as FXa, thrombin, and fibrinogen, bind to 
various sites on neutrophils. This binding leads to complicated con-
sequences. First, it assembles coagulation complexes such as the 
prothrombinase complex and the contact system on the neutro-
phil membrane, which further impacts neutrophil functions such 
as chemotaxis, aggregation, degranulation, and migration. Second, 
neutrophil elastase degrades multiple coagulation proteins, modu-
lating both the thrombotic and the fibrinolytic systems.44 In fact, 
these interactions are recognized as a link between the coagulation 
and inflammation pathways.

Multiple prospective investigations have indicated that achiev-
ing early and stable blood pressure seems safe and associated with 
favorable outcomes in acute ICH patients.45,46 While this may be due 
to avoidance of hypertension-induced hematoma enlargement,47 
studies have revealed that patients with a history of hypertension 
show lower-grade fibrin formation and higher levels of several anti-
coagulant factors (eg, antithrombin III, protein C and protein S, and 
von Willebrand factor antigen).48,49 The clinical application of these 
findings warrants additional studies.

TA B L E  3   The performance metrics of machine learning with 95%CI

Models Accuracy Precision FI score Recall AU-ROC

Random forest 0.931 (0.913-0.950) 0.924 (0.897-0.951) 0.915 (0.889-0.942) 0.936 (0.909-0.964) 0.962 (0.942-0.982)

SVM 0.902 (0.884-0.920) 0.899 (0.872-0.916 0.889 (0.863-0.916) 0.911 (0.884-0.938) 0.899 (0.856-0.944)

TA B L E  4   The performance metrics of machine learning with 95%CI for the extrinsic and intrinsic coagulation pathway

Prolonged INR Prolonged APTT

Random forest SVM Random forest SVM

Accuracy 0.978 (0.939-0.994) 0.973 (0.938-0.991) 0.974 (0.936-0.997) 0.894 (0.842-0.934)

Precision 0.913 (0.886-0.949) 0.889 (0.861-0.913 0.921 (0.893-0.958) 0.875 (0.851-0.893)

FI score 0.917 (0.892-0.949) 0.901 (0.871-0.927) 0.919 (0.875-0.953) 0.876 (0.842-0.891)

Recall 0.925 (0.892-0.954) 0.921 (0.891-0.948) 0.931 (0.907-0.961) 0.929 (0.894-0.952)

AU-ROC 0.942 (0.901-0.976) 0.965 (0.916-0.987) 0.978 (0.956-0.992) 0.921 (0.896-0.976)
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In this present study, the two machine learning algorithms make it 
convenient to achieve predicted probability for coagulopathy among 
patients with acute ICH, which is more efficient than conventional 
coagulation lab tests. Compared to traditional statistical methods, 
the random forest and SVM are better at analyzing nonlinear rela-
tionships between various biochemical markers and coagulopathy. 
Notably, the strategy of machine learning models is highly practical. 
All parameters used in this study are easily accessible and well estab-
lished in routine clinical work. From a scientific point of view, machine 
learning and big data techniques have the capability of screening a 
vast number of candidates with high efficiency and revealing hidden 
patterns that could easily be overlooked during routine clinical work. 
From a clinical point of view, by identifying patients with primary risk 
factors, ER clinicians could be warned for the occurrence of coagu-
lopathy and provide prophylactic treatment if necessary. A prelimi-
nary ER risk prediction system based on machine learning algorithms 
involved in this study has been under test in our facility. A demo 
system can be reviewed at http://52.83.50.248:9090/rpas/page/
index.jsp (username: user1; password: 111111). The manuscript of 
introducing this system is under preparation. It is hoped that in the 
near future, machine learning and artificial intelligence technologies 
would be fully applied to assisted diagnosis, risk assessment, and 
treatment strategy formulation.

5  | CONCLUSION

Machine learning techniques have been successfully introduced into 
the field of healthcare. This study provides an example of a systematic 
analysis of the data set on coagulopathy among ICH patients. The re-
sults above demonstrate that machine learning techniques can gener-
ate prediction models with excellent performance and high efficiency. 
Such methods and theorems could be applied to other evaluations in 
the future.
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