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Abstract: Biliverdin reductase (BVR) is an enzymatic and signaling protein that has multifaceted
roles in physiological systems. Despite the wealth of knowledge about BVR, no data exist regarding
its actions in adipocytes. Here, we generated an adipose-specific deletion of biliverdin reductase-A
(BVRA) (BlvraFatKO) in mice to determine the function of BVRA in adipocytes and how it may impact
adipose tissue expansion. The BlvraFatKO and littermate control (BlvraFlox) mice were placed on a
high-fat diet (HFD) for 12 weeks. Body weights were measured weekly and body composition,
fasting blood glucose and insulin levels were quantitated at the end of the 12 weeks. The data showed
that the percent body fat and body weights did not differ between the groups; however, BlvraFatKO

mice had significantly higher visceral fat as compared to the BlvraFlox. The loss of adipocyte BVRA
decreased the mitochondrial number in white adipose tissue (WAT), and increased inflammation
and adipocyte size, but this was not observed in brown adipose tissue (BAT). There were genes
significantly reduced in WAT that induce the browning effect such as Ppara and Adrb3, indicating that
BVRA improves mitochondria function and beige-type white adipocytes. The BlvraFatKO mice also
had significantly higher fasting blood glucose levels and no changes in plasma insulin levels, which is
indicative of decreased insulin signaling in WAT, as evidenced by reduced levels of phosphorylated
AKT (pAKT) and Glut4 mRNA. These results demonstrate the essential role of BVRA in WAT in
insulin signaling and adipocyte hypertrophy.
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1. Introduction

Current estimates put the world’s obese population at one-third; however, that figure may be
an underestimate of the global obesity epidemic [1–3]. Obesity is a co-morbidity for numerous
pathological conditions, including cardiovascular disease, some cancers, increased traumatic injury,
and inflammation [4–6]. To combat this epidemic, a better understanding of the factors that promote
and protect against the harmful effects of obesity are needed.

Obesity increases insulin resistance and adipocyte size and reduces mitochondria number [7–9].
Adipocyte hypertrophy in obesity changes the profile of hormones and cytokines released, so-called
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“adipokines”. Excess fat in obesity is primarily stored in the viscera. The visceral fat releases more
harmful adipokines than subcutaneous fat, resulting in worsened insulin resistance and inflammation,
promoting complications such as type II diabetes and non-alcoholic fatty liver disease (NAFLD) [10,11].
Recent investigations have shown that biliverdin reductase-A (BVRA) can bind to the insulin receptor
and increase sensitivity for glucose uptake [12,13], implicating it may be a potential therapeutic for
reversing glucose intolerance.

Biliverdin reductase (BVR) is the enzyme responsible for the reduction of biliverdin to
bilirubin [14–17]. It consists of two isoforms BVRA and biliverdin reductase-B (BVRB), which are
expressed at different times in development [17]. BVRB is the main isoform expressed embryonically,
and BVRA is expressed after fetal development [17]. In adults, the BVRA isozyme is essential, as it
reduces biliverdin IXα to bilirubin IXα, which at this age is the only version present [17]. Recently, BVRA
was shown to be significantly lower in peripheral blood mononuclear cells (PBMC) from obese humans
compared to matched lean controls [18]. Others have described that BVRA mediates the direction of
macrophage chemotaxis and polarization [19,20]. Our studies have shown that the BVRA isoform is
essential for protection from hepatic steatosis and insulin resistance through its positive regulation of
nuclear receptor peroxisome proliferator-activated receptor-α (PPARα) [21]. PPARαα regulates fat
accumulation by inducing fat-burning genes in the liver [22] and improving mitochondrial function in
white adipocytes by stimulating ‘browning’ or ‘beiging,’ which reduces body weight [23]. Drugs that
target mitochondrial respiration through upregulation of mitochondrial uncoupling proteins (UCPs)
can promote the “browning” of white adipose tissue (WAT), which decreases the storage of fat and
increases fat burning within the WAT [24,25]. The role of BVRA in control of adipocyte mitochondrial
function or beiging is unknown. Here, we report the characterization of BVRA in adipocytes.

2. Materials and Methods

2.1. Animals

The experimental procedures and protocols of this study conformed to the National Institutes of
Health Guide for the Care and Use of Laboratory Animals and were approved by the Institutional
Animal Care and Use Committee of the University of Mississippi Medical Center. BVRA conditional
knockout mice were generated from gene-targeted embryonic stem cells as previously described [21].
For adipose-specific knockout, homozygous floxed BVRA (BlvraFlox) mice were crossed to mice
expressing the Cre recombinase specifically in adipose under the control of the adiponectin promoter
(stock # 028020, Jackson Labs, Bar Harbor, ME, USA) to create adipose-specific BVRA knockout mice
(BlvraFatKO). Breeding pairs consisted of a homozygous BlvraFlox mouse crossed with a homozygous
BlvraFlox mouse heterozygous for the Cre allele. This breeding strategy generated litters containing
both BlvraFlox and BlvraFatKO littermates (Figure 1). All mice were on a C57BL/6J genetic background.
Studies were performed on separate cohorts of 6-week old male housed under standard conditions
with full access to standard mouse chow and water and maintained at an ambient temperature of 24 ◦C.
Mice were house between 2–5 mice per cage. After this time mice were switched to a 60% high-fat
diet (diet # D12492, Research Diets, Inc., New Brunswick, NJ, USA) for 12 weeks and allowed access
to water. Mice were euthanized and tissues and plasma samples collected after an 8 h fast. White
adipose tissue (WAT) was collected from samples of epididymal fat and brown adipose tissue (BAT)
was collected from the area between the scapula. Tissues were immediately frozen in liquid nitrogen
and stored at −80 ◦C.

2.2. Body Composition

Body composition (fat mass, free water, and total water) was measured at 4-week intervals
throughout the 12-week study using magnetic resonance imaging (EchoMRI-900TM, Echo Medical
System, Houston, TX, USA) as previously described [26,27]. Body composition analysis was measured
in conscious mice exposed to a low-intensity electromagnetic field. Mice were placed in a thin-walled
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plastic cylinder with a cylindrical plastic insert that functioned to limit the movement of the mice while
they were in the EchoMRI instrument.
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Brightfield images of the lipid droplet sizes were measured as previously described [43]. Tissue 
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in LAS AF software (Leica Microsystems, Buffalo Grove, IL, USA). The diameter was used to 
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USA). p values of 0.05 or smaller were considered statistically significant. 
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tissues, including spleen, heart, white adipose (WAT), brown adipose (BAT), and kidney showed that 
BlvraFatKO mice exhibited near-complete loss of BVRA in the WAT (reduced 97.7%) and BAT (reduced 
72.7%) as compared to the BlvraFlox mice (Figure 1B). BVRA levels in other tissues such as the spleen, 
heart, and kidney were not different between the two groups of mice. 

 
Figure 1. Adipose-specific knockout of biliverdin reductase-A (BVRA) in mice. (A) Homozygous 
floxed BVRA (BlvraFlox) mice were crossed to mice expressing the Cre recombinase specifically in 
adipose under the control of the adiponectin promoter to create adipose-specific BVRA knockout mice 
(BlvraFatKO). (B) Western blot for biliverdin reductase-A (BVRA) and heat shock protein 90 (HSP90) as 
a loading control in various tissues from BlvraFlox and BlvraFatKO mice. WAT, white adipose tissue. BAT, 
brown adipose tissue. 

3.2. BlvraFatKO Mice Exhibit Greater Levels of Visceral Fat as Compared to Littermate Controls 

At the end of the 12-week high-fat diet (HFD) feeding period, body weights (Figure 2A), body 
fat and lean percentages (Table 1), and non-adipocyte tissue weights (Table 1) were similar between 
the BlvraFlox and BlvraFatKO mice. Despite these similarities, BlvraFatKO mice exhibited a trend towards 

Figure 1. Adipose-specific knockout of biliverdin reductase-A (BVRA) in mice. (A) Homozygous
floxed BVRA (BlvraFlox) mice were crossed to mice expressing the Cre recombinase specifically in
adipose under the control of the adiponectin promoter to create adipose-specific BVRA knockout mice
(BlvraFatKO). (B) Western blot for biliverdin reductase-A (BVRA) and heat shock protein 90 (HSP90)
as a loading control in various tissues from BlvraFlox and BlvraFatKO mice. WAT, white adipose tissue.
BAT, brown adipose tissue.

2.3. Fasting Glucose and Insulin

Fasting blood glucose and insulin were obtained from plasma samples collected following an 8 h
fast. Samples were collected under light isoflurane anesthesia via the orbital sinus. The fasting glucose
levels were measured using an Accu-Chek Advantage glucometer (Roche, Mannheim, Germany) and
fasting insulin levels were measured by ELISA (Ultrasensitive Mouse Insulin Kit, Crystal Chem, Elk
Grove Village, IL, USA) as previously described [22,26,28–31].

2.4. Quantitative Real-Time PCR Analysis

WAT and BAT specimens from BlvraFatKO and BlvraFlox mice were prepared for RNA extrations
by placement of tissues in QIAzol Lysis Reagent (Qiagen, Germantown, MD, USA) using a Qiagen
TissueLyser LT (Qiagen, Germantown, MD, USA) with a setting of 50 oscillations per second for
3 min. Samples were then passed through the total RNA extraction column and procedure followed as
described for the miRNeasy Mini Kit (Qiagen, Germantown, MD, USA). Total RNA was read on a
NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA) and cDNA was
synthesized using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Wilmington,
DE, USA). PCR amplification of the cDNA was performed by quantitative real time PCR using TrueAmp
SYBR Green qPCR SuperMix (Advance Bioscience, Edwards, CO, USA). The thermocycling protocol
consisted of 3 min at 95 ◦C, 48 cycles of 15 sec at 95 ◦C, 30 sec at 60 ◦C, and based on primer size 0
to 30 sec at 72 ◦C and finished with a melting curve ranging from 60–95 ◦C to allow distinction of
specific products. Normalization was performed in separate reactions with primers to 36B4, which is
an endogenous housekeeping gene previously described in [32,33].

2.5. Gel Electrophoresis and Western Blotting

Tissue lysates were prepared from WAT specimens from BlvraFatKO and BlvraFlox mice were
suspended in CelLytic MT Cell Lysis Reagent Buffer for mammalian tissues (Millipore Sigma, St.
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Louis, MO, USA, Cat No: C3228) that contained protease inhibitor cocktail (Millipore Sigma, St.
Louis, MO, USA, Cat No: P2714-1BTL) and Halt phosphatase inhibitor (Thermo Fisher Scientific,
Wilmington, DE, USA, product # 1862495) using a Qiagen TissueLyser LT (Qiagen, Germantown, MD,
USA) with a setting of 50 oscillations per second for 3 min. As previously described [31,34–39], lysates
were centrifuged at 100,000× g for 7 min and the supernatant removed and measured for protein
concentration by BCA Protein Assay Kit (Thermo Fisher Scientific, Wilmington, DE, USA). Protein
specimens were resolved by SDS polyacrylamide gel electrophoresis and electrophoretically transferred
to Immobilon FL membranes. Membranes were blocked at room temperature for 1 h in Odyssey
Blocking buffer (LI-COR Biosciences, Lincoln, NE, USA) or TBS (TBS; 10 mM Tris HCl (pH 7.4) and
150 mM NaCl) containing 5% BSA or milk. Subsequently, the membrane was incubated overnight at
4 ◦C with antibodies for BVRA (Enzo, Farmingdale, NY, USA, ADI-OSA-450-E), phospho-Akt (pSer473)
(Cell Signaling Technology, Danvers, MA, USA, 4060s), AKT1/2 (Santa Cruz Biotechnology, Dallas, TX,
USA, sc-1619) or HSP90 antibodies (Santa Cruz Biotechnology, Dallas, TX, USA, sc-13119). After three
washes in TBST (TBS plus 0.1% Tween 20), the membrane was incubated with an infrared anti rabbit
(IRDye 800, green) or anti mouse (IRDye 680, red) secondary antibody labeled with IRDye infrared
dye (LI COR Biosciences, Lincoln, NE, USA) (1:15,000 dilution in TBS) for 2 h at 4 ◦C. Following an
additional 3 washes in TBST, immunoreactivity was visualized and quantified by infrared scanning in
the Odyssey system (LI COR Biosciences, Lincoln, NE, USA).

2.6. Measurement of Mitochondrial Density and Lipid Droplet Sizes

To determine mitochondrial numbers, we used cryopreserved intact native adipose tissue as
described by Fuller et al. [40]. WAT and BAT samples from the BlvraFatKO and BlvraFlox mice were
thawed at room temperature in prewarmed 37 ◦C PBS and washed three times for preparation of
imaging as we have previously described [41]. Samples were incubated with 100nM Mitotracker®

Green FM (M7514, Molecular Probes, Eugene, OR, USA) for 15 min at room temperature. WAT
Mitotracker staining was previously described in [42]. The samples were washed once with PBS,
then incubated for 5 min with 1 µM of Draq-5 (Cell Signaling Technology, Danvers, MA, USA). Adipose
tissue was washed one final time with PBS before imaging using a Leica TSC SP5 laser scanning
confocal microscope in 1 µm steps. Samples were imaged using the 488 and 633 laser lines for excitation
with peak emission collection at 514 and 647 respectively.

Brightfield images of the lipid droplet sizes were measured as previously described [43]. Tissue
sample diameters (d) were quantitated based on the measurement of the lipid droplet’s widest point in
LAS AF software (Leica Microsystems, Buffalo Grove, IL, USA). The diameter was used to extrapolate
the lipid area for the adipocytes using the formula: πr2 where r = 1

2 d.

2.7. Statistics

Data are expressed as mean + SEM. Data were analyzed using analysis or variance and a Tukey’s
post-test was utilized to compare group means utilizing Prism 7 (GraphPad Software, San Diego, CA,
USA). p values of 0.05 or smaller were considered statistically significant.

3. Results

3.1. Selective Deletion of BVRA in Adipose Tissue in Mice

To generate an adipose-specific BVRA knockout (BlvraFatKO), homozygous floxed BVRA (BlvraFlox)
mice were crossed with mice expressing Cre recombinase under the control of the adiponectin promoter
(Figure 1A). Western blot analysis of the levels of BVRA expressed in various tissues, including spleen,
heart, white adipose (WAT), brown adipose (BAT), and kidney showed that BlvraFatKO mice exhibited
near-complete loss of BVRA in the WAT (reduced 97.7%) and BAT (reduced 72.7%) as compared to the
BlvraFlox mice (Figure 1B). BVRA levels in other tissues such as the spleen, heart, and kidney were not
different between the two groups of mice.
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3.2. BlvraFatKO Mice Exhibit Greater Levels of Visceral Fat as Compared to Littermate Controls

At the end of the 12-week high-fat diet (HFD) feeding period, body weights (Figure 2A), body fat
and lean percentages (Table 1), and non-adipocyte tissue weights (Table 1) were similar between the
BlvraFlox and BlvraFatKO mice. Despite these similarities, BlvraFatKO mice exhibited a trend towards
increased total fat measured at the time of euthanasia and a significant increase in visceral fat with no
difference in epididymal fat between the BlvraFlox and BlvraFatKO mice (Figure 2B–D). Total body fat,
as measured by non-invasive echo MRI at the end of the 12-week HFD, was also not different between
BlvraFlox and BlvraFatKO mice.
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Figure 2. Bodyweight and fat distribution in BlvraFlox and BlvraFatKO mice fed a high-fat diet. (A) Body
weights at the end of the 12-week HFD; (B) Total fat at the end of the 12-week HFD; (C) Visceral Fat at
the end of the 12-week HFD; (D) Epididymal fat at the end of the 12-week HFD. *, p < 0.05 (vs. BlvraFlox).
n = 5/group BlvraFlox; n = 7/group BlvraFatKO.

Table 1. Fat and lean mass percentage and tissue weights in BlvraFlox and BlvraFatKO.

Parameter BlvraFlox (n = 5) BlvraFatKO (n = 7) p Value

Fat Mass (%) 46.5 ± 0.7 44.7 ± 1.5 0.2999

Lean Mass (%) 51.3 ± 0.8 53.3 ± 1.4 0.2556

Body Length (cm) 10 ± 0.15 10.2 ± 0.15 0.313

Tibia Length (cm) 2.2 ± 0.03 2.3 ± 0.02 0.109

Heart Weight (mg) 145.1 ± 14.2 139.6 ± 7.4 0.6573

Heart Weight/Body Weight (mg/g) 3.3 ± 0.3 2.9 ± 0.15 0.2687

Heart Weight/Body Length (mg/cm) 14.5 ± 1.3 13.6 ± 0.6 0.5

Heart Weight/Tibia Length (mg/cm) 62.9 ± 4.3 59.4 ± 3.4 0.5126

Kidney Weight (mg) 328 ± 15 328 ± 12 0.9945

Kidney Weight/Body Weight (mg/g) 7.4 ± 0.5 6.9 ± 0.3 0.3070

Kidney Weight/Body Length (mg/cm) 32.8 ± 1.4 31.7 ± 1.1 0.6650

Kidney Weight/Tibia Length (mg/cm) 145.8 ± 6 140.1 ± 5 0.4227

Liver Weight (g) 1.8 ± 0.3 1.7 ± 0.2 0.7989

Liver Weight/Body Weight (mg/g) 0.03 ± 0.005 0.03 ± 0.001 0.4724

Liver Weight/Body Length (mg/cm) 0.17 ± 0.03 0.16 ± 0.01 0.6972

Liver Weight/Tibia Length (mg/cm) 0.71 ± 0.13 0.69 ± 0.03 0.8618
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3.3. Loss of Adipose BVRA Decreases Insulin Signaling and Elevates Inflammatory Pathways in
White Adipocytes

The deletion of BVRA in the adipose tissue increased fasting blood glucose levels measured at
the end of the study in BlvraFatKO as compared to BlvraFlox mice (Figure 3A). The increase in fasting
hyperglycemia observed in the BlvraFatKO mice did not correlate with any changes in fasting insulin
levels between the groups (Figure 3B). This data demonstrates a decrease in insulin signaling in the
BlvraFatKO mice. The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway is required for normal
metabolism, and its imbalance leads to the development of obesity and type-2 diabetes mellitus.
The PI3K/AKT pathway is critical for insulin signaling; hence, any defect in AKT/PKB pathway
along with the downstream molecules may lead to insulin resistance. We measured the levels of
phosphorylated AKT (pAKT) and total AKT as well as Glut4 mRNA levels from WAT of BlvraFlox and
BlvraFatKO mice. The BlvraFatKO mice exhibit significantly reduced levels of pAKT and Glut4 mRNA as
compared to BlvraFlox mice (Figure 3C,D). The loss of BVRA significantly increased proinflammatory
TNFα (Tnfa) and reduced anti-inflammatory adiponectin (Adipoq) adipokines (Figure 4A). This was
pararlleled with significantly higher inflammatory markers F480 (Adgre1) and CD11c (Itgax) (Figure 4B).
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Figure 3. Insulin signaling pathway in BlvraFlox and BlvraFatKO mice fed a high-fat diet. (A) Fasting
blood glucose levels at the end of the 12-week HFD; (B) Fasting blood insulin levels at the end of the
12-week HFD; (C) Representative Western blot of phospho-Akt (pSer473) and total AKT protein levels
in the adipose tissue; (D) Slc2a4 mRNA (also known as Glut4) expression. *, p < 0.05 (vs. BlvraFlox).
n = 5/group BlvraFlox; n = 7/group BlvraFatKO.
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3.4. Adipose Knockout of BVRA Reduces Mitochondrial Number and Beige Fat Markers in WAT But Not BAT

Mitochondria play an important role in the physiology of adipocytes. To determine the effect of the
loss of adipose BVRA on mitochondria, we utilized the Mitotracker mitochondrial staining technique
to measure the number [42] in the WAT and BAT in BlvraFlox and BlvraFatKO mice. The deletion of
BVRA from the adipose tissues resulted in a significant decrease in mitochondrial number in WAT of
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BlvraFatKO as compared to BlvraFlox mice (Figure 5A). However, the loss of BVRA did not affect the
amount of mitochondria in BAT (Figure 5B). The adipocyte size was significantly larger in WAT of the
BlvraFatKO as compared to BlvraFlox mice (Figure 5C), but this was not observed in BAT (Figure 5D).
Also, Sod2 was significantly increased in WAT, indicating oxidative stress levels were high, which is
known to be heightened by inflammatory stimuli [44]. Similar to the mitotracker staining, Cox2, a gene
known to control mitochondria in WAT [45], was significantly reduced. These indicate that the loss
of BVRA in WAT causes whitening and increased WAT size, reducing mitochondria levels. Further
indicators of this are reduced beiging markers Ppara and Adrb3 in WAT of the BlvraFatKO compared to
the BlvraFlox (Figure 6A). However, Prmd16, another beige fat marker, was unchanged between the
groups. There was no significant difference for Ppara, Adrb3, or Prmd16 in BAT between the groups
(Figure 6B).
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4. Discussion

Our results demonstrate that while the loss of adipocyte BVRA does not affect the total amount of
fat gained in response to a HFD, it does play a role in the distribution of fat, resulting in considerably
more visceral fat. Thus, increased expansion of visceral fat in the BlvraFatKO mice may contribute to
the higher glucose and lower pAKT-insulin signaling observed in these mice fed a HFD. Visceral fat
releases greater amounts of damaging adipokines (TNFα), which can result in insulin resistance and
inflammation [10,11,46,47]. In humans, lower BVRA levels are found in obesity and contribute to
the metabolic syndrome and visceral adipose tissue inflammation [18]. Not surprisingly, BVRA has
anti-inflammatory actions via inhibition of toll-like receptor 4 (TLR4) and NF-κB [48–52]. Weigel et al.
showed that BVRA mediates biliverdin-induced anti-inflammatory effects via phosphatidylinositol
3-kinase and AKT (PI3K/AKT). Here, we found a similar finding that the adipocyte-loss of BVRA
caused WAT inflammation and reduced pAKT, as well as lowered mitochondria number and increased
adipocyte size.

The PI3K/AKT signaling pathway regulates insulin action in many tissues, including adipose and
skeletal muscle, where it promotes glucose transport, glycogen synthesis, and protein synthesis [53,54].
Tonks et al. demonstrated that insulin-stimulated AKT phosphorylation at Thr309 and Ser474 highly
correlated with whole-body insulin sensitivity in overweight/obese type 2 diabetic patients before
and during a hyperinsulinaemic-euglycaemic clamp [55]. Given the importance of this pathway to
the actions of insulin, Zhang et al. proposed activation of AKT as a novel strategy to treat insulin
resistance [56]. One of the primary regulators of AKT activity and insulin signaling is BVRA [18,57].
Studies by Miralem et al. elegantly demonstrated that BVRA modulates AKT activity by aiding the
formation of a complex with phosphatidylinositol-dependent kinase 1 (PDK1) [12]. The interaction of
BVRA with AKT increases activity and phosphorylation (pAKT), improving insulin sensitivity [12,21].
Specific peptide sequences within the BVRA protein itself can impact insulin sensitivity through
activation or inhibition of the insulin receptor kinase (IRK) domain [58]. The delivery of nanoparticles
corresponding to the C-terminal KYCCSRK peptide sequence of human BVR improves glucose
clearance in obese ob/ob mice by activation of the pAKT pathway [59]. Thus, it is clear that BVRA
can impact insulin signaling through its interactions with AKT. Others have shown that the loss of
BVRA in the brain causes insulin-resistance that occurs in Alzheimer’s disease [60–62]. However,
the loss of BVRA in obesity can result in hyperactivation of insulin signaling [18]. These conflicting
results highlight the lack of consensus in the field. Our study is the first to demonstrate that the
adipose-specific loss of BVRA decreases the PI3K/AKT pathway. The deletion of WAT BVRA resulted
in the attenuation of pAKT, which may contribute to the reduced insulin signaling and higher blood
glucose and inflammation exhibited in the BlvraFatKO mice. Further studies in both animal models and
humans are needed to understand the complex relationship between BVRA and AKT fully. Limitations
of the current study are the lack of comparison to mice fed a normal fat diet, and that food intake
was not measured. Thus, the role of adipose BVRA on the adaptive changes that occur in response to
high-fat feeding could not be determined in the present study.

Mitochondria play a vital role in the maintenance of adipocyte function. Strategies to increase
the “browning” or “beiging” of adipose tissue, are now being considered as potential treatments
for obesity [63–65]. In the present study, the loss of BVRA from WAT resulted in a reduction of
mitochondria number. This result is consistent with previous studies in which the deletion of BVRA in
both cultured renal proximal tubule cells, as well as cultured hepatocytes, resulted in the decrease in
mitochondrial number, mitochondrial membrane potential, oxygen consumption, and extracellular
acidification rate [66,67]. Furthermore, the loss of BVRA was shown to decrease the expression of
several mitochondrial complex subunit genes as well as mitochondrial dynamin-like GTPase (Opa1),
which codes for a protein of the inner mitochondrial membrane regulating mitochondrial stability
and energy output [67]. The results of these studies highlight the important role of BVRA in the
maintenance of mitochondrial function, which is surprising given the fact that BVRA does not localize
to mitochondria [17]. If BVRA is not found in mitochondria, then why does the loss of BVRA
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have such a great impact on mitochondrial function? There are several potential mechanisms by
which this may occur, including increased reactive oxygen species production in response to BVRA
deletion [19,66,68,69]. In the present study, decreases in the metabolite of BVRA, bilirubin, may be
responsible for this observed effect on mitochondria number in BlvraFatKO.

We have previously demonstrated that hepatocyte-specific loss of BVRA results in exacerbation of
hepatic steatosis and insulin resistance in response to a chronic HFD through alterations in PPARα [21].
Activation of heme oxygenase-1 (HO-1) has beneficial effects to prevent fatty liver disease [15,31,70,71],
which is most likely mediated by BVRA production of bilirubin [15,21,28,72]. Others have shown
that heme-derived metabolic signals dictate immune responses [21]. Bilirubin has strong antioxidant
properties, and we have shown that it also signals through the nuclear hormone receptor PPARα to
up-regulate genes associated with increased fatty acid oxidation and glucose sensitization [72,73].
Bilividen is rapidly converted to bilirubin by BVRA [74], and biliverdin treatment in diabetic [75] or
obese [76] mice improves metabolic dysfunction. However, biliverdin treatment in human HepG2
hepatocytes with PPARα knockdown attenuates transcriptome responses [73]. PPARα associates
with peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) to increase
mitochondrial biogenesis [77,78]. Here, we found that BVRA in WAT, like liver, also regulates PPARα
expression (Ppara mRNA) and known beiging target gene Adrb3. It is interesting that while similar
mechanisms by which bilirubin regulates mitochondrial function are present in BAT, the deletion of
BVRA did not affect mitochondrial numbers in BAT in the BlvraFatKO mice. The exact mechanism by
which brown fat escapes this BVRA influence remains unknown. BAT may exhibit redundant pathways
(i.e., greater sympathetic input) that are not present in WAT, which serves to preserve mitochondrial
numbers and function, or the loss of BVRA in BAT may not have had an impact on inflammatory
stimuli such as that observed in WAT. The mechanism(s) that protect mitochondrial numbers in BAT
following the deletion of BVRA requires further study.

5. Conclusions

In summary, adipocyte-specific deletion of BVRA caused increased expansion of visceral fat
adipocyte size and inflammation, and reduced insulin signaling and mitochondria number. At the
same time, this deletion did not have a direct impact on weight gain in response to chronic HFD
feeding. The loss of BVRA in WAT decreased pAKT levels, which may contribute to insulin resistance
in humans, but this topic requires further study. Our results demonstrate the notable regulatory
role of BVRA in WAT and strongly suggest that BVRA may contribute to beiging and increased
mitochondrial functionality, and inhibit inflammation. Increasing BVRA in WAT may provide a
novel therapeutic target for the improvement of obesity-associated insulin resistance, inflammation,
and adipocyte hypertrophy.
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