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Abstract

Overlappinggenes,whereoneDNAsequencecodes for twoproteinswithdifferent readingframes,arenotuncommon invirusesand

cellular organisms. Estimating the direction and strength of natural selection acting on overlapping genes is important for under-

standing their functionality, origin, evolution,maintenance, andpotential interaction.However, the standardmethods for estimating

synonymous (dS) and nonsynonymous (dN) nucleotide substitution rates are inapplicable here because a nucleotide change can be

simultaneously synonymous and nonsynonymous when both reading frames involved are considered. We have developed a simple

method that can estimate dN/dS and test for the action of natural selection in each relevant reading frame of the overlapping genes.

Ourmethod is anextensionof themodifiedNei-Gojoborimethodpreviouslydeveloped fornonoverlappinggenes.Weconfirmed the

reliability of our method using extensive computer simulation. Applying this method, we studied the longest human sense–antisense

overlapping gene pair, LRRC8E and ENSG00000214248. Although LRRC8E (leucine-rich repeat containing eight family, member E) is

known to regulate cell size, the function of ENSG00000214248 is unknown. Our analysis revealed purifying selection on

ENSG00000214248 and suggested that it originated in the common ancestor of bony vertebrates.

Key words: synonymous substitution, nonsynonymous substitution, evolution.

Introduction

Overlapping genes generally refer to pairs of genes that over-

lap in their transcribed sequences. In this study, however, over-

lapping genes refer to pairs of genes that overlap in their

protein-coding regions but use different reading frames. The

first overlapping genes were discovered nearly 40 years ago in

bacteriophage f X174 (Barrell et al. 1976). Overlapping genes

have since been found in numerous viruses and cellular organ-

isms including multicellulars such as humans, and their func-

tional importance has been demonstrated in some case

studies (Giorgi et al. 1983; Normark et al. 1983; Chen et al.

1993; Veeramachaneni et al. 2004; Pavesi 2006; Chung et al.

2008; Dornenburg et al. 2010). In theory, two genes may

overlap in one of the five possible phases (fig. 1), two being

sense–sense (ss) and three being sense–antisense (sas). The

sas11 phase, in which the second codon position in one

gene faces the third codon position in the other gene

(fig. 1), was reported to be the most common type (in

prokaryotes), likely because this phase minimizes the mutual

constraints of the protein sequences of the overlapping genes

(Rogozin et al. 2002).

To study the functionality, origin, maintenance, and evolu-

tion of overlapping genes, it is often necessary to infer the

direction and strength of natural selection acting on them. The

standard approach for studying natural selection acting on

protein-coding genes is by estimating the ratio between the

rate of nonsynonymous nucleotide substitution (dN) and that

of synonymous nucleotide substitution (dS). However, because

a mutation may be simultaneously synonymous and nonsy-

nonymous in overlapping genes, the commonly used methods

for estimating dS, dN, and dN/dS are inapplicable. Several at-

tempts have been made to estimate selection strengths in

overlapping genes. Some authors treated a pair of overlapping

genes as two nonoverlapping genes and calculated dN/dS for

each gene independently using the standard methods (Yu

et al. 2005; Pavesi 2006; Simon-Loriere et al. 2013). As

pointed out long ago (Miyata and Yasunaga 1978), this ap-

proach is problematic, because a synonymous mutation to

one of the overlapping genes may be nonsynonymous to

the other gene and thus may be non-neutral. Realizing that

the neutral expectation of dN/dS for each overlapping gene

may not be 1, Nekrutenko et al. (2005) simply calculated dN
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and dS rather than their ratio, but they still applied a standard

method directly to each overlapping gene. As such, the bio-

logical meanings of the estimated dS and dN are unclear.

Rogozin et al. also noted the impact of one mutation on

two genes and hence considered only sites that are 4-fold

degenerate for one of the overlapping genes. Specifically,

they were able to estimate dN for each gene in gene pairs

with the sas11 phase (Rogozin et al. 2002). But this method

does not apply to all overlapping genes, and estimating dS

remains difficult (e.g., Rogozin et al. estimated dS from non-

overlapping regions). Extending Goldman and Yang’s (1994)

method for nonoverlapping coding sequences, Sabath et al.

(2008) developed a maximum likelihood (ML) method for si-

multaneous estimation of the selection intensity in each of the

two overlapping genes. However, as currently implemented,

the method cannot test whether dN/dS significantly differs

from 1 for either gene (Sabath et al. 2008, 2012), rendering

the utility of the method limited.

Here, we describe a simple method that estimates the se-

lection strength of each of the two overlapping genes by sep-

arating the effects of each mutation on the two genes. Our

method also estimates the associated variance, allowing a test

of neutrality for each gene. We evaluate the performance of

our method using computer simulation, and illustrate its utility

by analyzing the human sas gene pair with the longest over-

lapping region.

Materials and Methods

Computer Simulation

Our new method for estimating the selection strengths in

overlapping genes is described in the Results section. Here,

we describe the simulation used to evaluate the performance

of our method. To generate a pair of overlapping genes, we

set the following parameters: the overlapping phase, the

length of the overlapping region l, the ratio (R) between the

number of transitions and number of transversions, the dis-

tance (d) between two sequences defined by the expected

number of substitutions per neutral site, selection strength

on open reading frame 1 (ORF1) (o1), and selection strength

on ORF2 (o2). We generated an ancestral sequence that con-

tained overlapping ORFs by first randomly choosing sense

codons for the first ORF and then removing all stop codons

until no stop codon is found in each ORF. We then introduced

mutations following Kimura’s (1980) two-parameter model

with a preset R. The fixation probability of a mutation is de-

termined jointly by o1 and o2. Specifically, if the mutation is

synonymous in both ORFs, its fixation probability is set to be a

(0< a< 1); if the mutation is synonymous to ORF1 but non-

synonymous to ORF2, its fixation probability is ao2; if the mu-

tation is synonymous to ORF2 but nonsynonymous to ORF1,

its fixation probability is ao1; if the mutation is nonsynon-

ymous to both ORFs, its fixation probability is ao1o2. The pa-

rameter a must be small enough so that ao1, ao2, and ao1o2

are all smaller than 1. Under this scheme, both positive and

negative selection can be simulated. When negative selection

is simulated for both ORFs, a can take any value between 0

and 1, but we assigned 0.9 to a to decrease the computational

time. When positive selection is simulated for ORF1 but neg-

ative selection is simulated for ORF2, 0.9/o1 was assigned to a.

If both ORFs are under positive selection, 0.9/(o1o2) was as-

signed to a. Each ancestral sequence was evolved indepen-

dently to produce two derived sequences, by either accepting

or rejecting the randomly generated mutations. Simulation

ended when the number of mutations introduced equals the

preset number (dl/a). o1 and o2 were then estimated by com-

paring the two simulated derived sequences. The scripts used

for simulating overlapping genes and for estimating o were

written with Perl and are available at http://www.umich.edu/

~zhanglab/download.htm (last accessed January 8, 2015).

Case Study

Annotation for human protein-coding genes and sequences

used in the selection analysis were downloaded from Ensembl

GRCh37 (http://useast.ensembl.org/, last accessed January 8,

2015). Overlapping genes were identified by comparing exon

start and end positions of each gene on the same chromo-

some. For example, if exon 2 of gene A starts at position

13,780 and ends at 13,942 on Chromosome 1, and exon 5

of gene B starts at 13,950 and ends at 13,820 on the same

FIG. 1.—Five phases of overlapping genes. Sense–sense overlap is

abbreviated as “ss,” whereas sense–antisense overlap is abbreviated as

“sas.” The two ss overlaps are equivalent if one switches the names of the

two ORFs.
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chromosome, we can infer that these two genes form a pair

of sas overlapping genes and that the overlapping region be-

tween the two exons has (13942�13820+1) = 123 bp. The

overlapping genes analyzed were identified from Ensembl an-

notations using a Python script. Sequences were aligned using

an online version of ClustalW2 (http://www.ebi.ac.uk/Tools/

msa/clustalw2/, last accessed January 8, 2015). Transition/

transversion ratio was calculated using MEGA5 (Tamura

et al. 2011). The protein expression levels were from

ProteomicsDB at https://www.proteomicsdb.org/ (last

accessed January 8, 2015) (Wilhelm et al. 2014). The

GenBank accession numbers of LRRC8 genes analyzed are

provided in supplementary tables S1 and S2, Supplementary

Material online. We used MEGA5 to reconstruct the neigh-

boring-joining tree of LRRC8 genes using protein p distances.

Results

A New Method for Estimating the Selection Strength in
Overlapping Genes

Because most species use double-stranded DNA, one segment

of DNA can harbor at most six different ORFs. However, very

rarely do all six ORFs coexist. Even in cases where all six ORFs

coexist, it is unclear whether all ORFs code for actual proteins

(Menon et al. 1990). The simplest and most common over-

lapping coding regions harbor two different ORFs, which can

be either on the same strand (ss overlap) or on opposite

strands (sas overlap) (fig. 1). The two types of ss overlap are

in fact equivalent, because they both have the third codon

positions of one ORF facing the first codon positions of the

other ORF (fig. 1). Here, we use the ss overlap as an example

to describe our method, but the same applies to all overlaps

between two ORFs.

Our method is an extension of the modified Nei-Gojobori

(mNG) method for estimating dS and dN in nonoverlapping

genes (Nei and Gojobori 1986; Zhang et al. 1998), but con-

siders the complication that one mutation simultaneously af-

fects two ORFs, often with different effects. Let us consider a

pair of homologous DNA sequences (e.g., respectively from

human and mouse) that harbor overlapping ORF1 and ORF2.

Our method for quantifying the selection strength in ORF1

and that in ORF2 involves the following four steps.

In the first step, we classify human nucleotide sites in the

overlapping region into four categories depending on the im-

pacts of potential mutations on the two ORFs. The four cate-

gories are referred to as NN, NS, SN, and SS sites, respectively,

where N stands for nonsynonymous and S stands for synon-

ymous. That is, if all potential mutations at a site cause non-

synonymous changes in both ORFs, it is an NN site, and so on.

A site may belong to multiple categories and be called, for

example, 1/3 NN site and 2/3 NS site, if one-third of potential

mutations at the site cause nonsynonymous changes in both

ORFs and two-thirds of potential mutations at the site cause

nonsynonymous changes in ORF1 but synonymous changes in

ORF2. When considering potential mutations, it is important

to separate transitions from transversions because they typi-

cally have different mutation rates and have different proba-

bilities of causing nonsynonymous changes (Zhang 2000). Let

R be the ratio between the number of transitional mutations

and that of transversional mutations and be estimated from

external information (e.g., from nonoverlapping regions or

other genes). Hence, we consider a fraction of R/(1 + R) mu-

tations to be transitions and the rest transversions (Zhang et al.

1998) in determining to which of the above four categories a

site belongs. For instance, if the transitional mutation at a site

causes a synonymous change in both ORFs and the two trans-

versional mutations both cause a synonymous mutation in

ORF1 and a nonsynonymous mutation in ORF2, this site is

counted as R/(R + 1) SS site and 1/(R + 1) SN site. We then

calculate the total number of sites in the human overlapping

region belonging to each of the four categories. The corre-

sponding values are also calculated for the mouse sequence,

and the averaged value from the two sequences for each

category (LNN, LNS, LSN, and LSS) will be used subsequently.

In the second step, we classify all nucleotide differences

between the two sequences into four categories: NN, NS,

SN, and SS. That is, if a difference is nonsynonymous in

both ORF1 and ORF2, it belongs to the NN group, and so

on. When a nucleotide difference is in isolation, meaning

that in neither ORF is there another difference in the same

codon as the focal difference, the classification is straightfor-

ward. But when a codon (in either ORF) harbors two or more

differences, the situation becomes complicated, because to

determine the categories of the multiple differences, one

has to consider all possible evolutionary pathways that can

give rise to the observed nucleotide differences. In the case

of nonoverlapping ORFs, there are two equally shortest evo-

lutionary pathways between a pair of codon sequences with

two differences (e.g., to evolve from AAA to AGG, one can go

through AAG or AGA) and six equally shortest pathways

when it harbors three differences (Nei and Gojobori 1986).

For overlapping ORFs, however, one may need to consider a

lot more pathways, because a codon in ORF1 overlaps with a

codon in ORF2, which overlaps with another codon in ORF1,

and so on. Thus, we need to find a segment of DNA in which

each codon (defined by both ORFs) has multiple nucleotide

differences with the exception of the codon at each end of the

segment (fig. 2). When this segment has a total of m nucle-

otide differences between the pair of homologous sequences,

a total of m! pathways should be considered, each of which

contains a unique order of m nucleotide changes. For each

pathway, we count the number of nucleotide changes be-

longing to each of the four categories (NN, NS, SN, and SS).

We average these numbers across all open pathways, which

are pathways with no intermediate sequences that contain

stop codons. An example is provided in supplementary

figure S1, Supplementary Material online. After classifying all
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nucleotide differences between the pair of homologous se-

quences into the four categories, we count their numbers

(MNN, MNS, MSN, and MSS, respectively).

In the third step, we calculate the proportion of sites with

nucleotide differences by pNN = MNN/LNN, pNS = MNS/LNS,

pSN = MSN/LSN, and pSS = MSS/LSS for NN, NS, SN, and SS

sites, respectively. The Jukes–Cantor formula (Jukes and

Cantor 1969) may be used to correct for multiple hits. For

instance, the number of nucleotide substitutions per site at

NN sites can be estimated by dNN ¼ �
3
4 lnð1� 4PNN

3 Þ; dNS, dSN,

and dSS can be similarly estimated. Here, we used the Jukes–

Cantor correction instead of more complex corrections such as

Kimura’s (1980) two-parameter model or Tamura and Nei

(1993) model, because overlapping regions are usually so

short that the variance of a distance estimate would be

large under complex corrections (Nei and Kumar 2000).

In the fourth step, we propose that the strength of natural

selection acting on ORF1 be estimated by o1 = dNN/dSN and

that acting on ORF2 be estimated by o2 = dNN/dNS. This for-

mulation is based on two assumptions. First, synonymous mu-

tations are neutral. Although not all synonymous mutations

are neutral due to their potential impacts on DNA–protein

interaction, pre-mRNA splicing, mRNA folding, translational

efficiency, translational accuracy, and other aspects of cell bi-

ology (Chamary and Hurst 2005; Pagani et al. 2005;

Warnecke and Hurst 2007; Qian et al. 2012; Park et al.

2013; Yang et al. 2014), most synonymous mutations may

be considered largely neutral when compared with nonsynon-

ymous mutations, especially in species with small effective

population sizes (Li 1987; Ohta 1992). Second, the two over-

lapping genes do not have genetic interaction, such that the

probability that a mutation gets fixed is the product of the

probability with which it gets fixed in the absence of ORF1 and

the probability with which it gets fixed in the absence of ORF2.

This assumption implies that 1) NN-type mutations and SN-

type mutations have comparable average effects on ORF2 and

2) NN-type mutations and NS-type mutations have compara-

ble average effects on ORF1. Hence, o1 can be estimated by

dNN/dSN and o2 can be estimated by dNN/dNS. In theory, we

could also estimate o1 by dNS/dSS and estimate o2 by dSN/dSS.

But, such estimates are usually subject to large sampling

errors, because with the exception of the sas12 overlap that

has a sizeable fraction of SS sites (fig. 1), overlapping regions

typically have few SS sites. Thus, unless otherwise noted, we

do not use dSS in this study. It is sometimes of interest to

compare the selective pressures acting on the two overlapping

genes. For this purpose, we can compute o1/o2, which equals

dNS/dSN.

To calculate the variances of dNN, dNS, dSN, and dSS, the

commonly used bootstrap method (Nei and Kumar 2000) is

inapplicable because of the difficulty in bootstrapping codons

from one ORF while maintaining the other ORF. We therefore

extend an approximate analytical method previously devel-

oped for estimating the variances of dS and dN in the Nei–

Gojobori method (Nei 1987), which is known to be quite

accurate (Ota and Nei 1994). Following this method, we

calculate the variance of dNN by Var(dNN) = Var(pNN)/

(1�4pNN/3)2, where the variance of pNN is given by

Var(pNN) = pNN(1�pNN)/LNN. Variances of dNS, dSN, and dSS

can be similarly estimated. Standard deviations (SDs) of dNN,

dNS, dNS, and dSS are then estimated by taking the square root

of their variances, respectively. The hypothesis of neutral evo-

lution of ORF1 can be tested by a Z-test of the equality be-

tween dNN and dSN. That is, we can conduct a Z-test using

Z = (dNN�dSN)/(Var(dNN) + Var(dSN))1/2. Similarly, the neutral

evolution hypothesis for ORF2 can be tested by a Z-test of

the equality between dNN and dNS. We can also test if the

strengths of natural selection acting on the two ORFs are

equal by a Z-test of the equality between dSN and dNS.

Performance of the New Method in Estimating the
Selection Strengths in Overlapping Genes

To examine the performance of the new method, we con-

ducted extensive computer simulation of overlapping genes of

each phase. The overlapping region had 3,000 nucleotides,

and the simulation was repeated 100 times under each pa-

rameter set. We used exceptionally long overlapping regions

to minimize the sampling error such that potential biases of

our estimators became more readily detectable. We start by

describing the results obtained under the ss overlap. We first

examined the situation that both overlapping genes are under

purifying selection. We fixed o1 = 0.2 and o2 = 0.5 and stud-

ied how the distance between a pair of homologous se-

quences affects the accuracy of estimation (fig. 3A), where

the distance is defined by the expected number of substitu-

tions per neutral site between the two homologous sequences

(i.e., the expected value of dSS). We found that the mean o1

estimate and the mean o2 estimate are both slightly greater

than their true values, and this excess in the estimated o value

appears unrelated to the distance. This bias may be due to the

fact that we simulated sequence evolution using Kimura’s

two-parameter model, but estimated dNN, dNS, and dSN

using the Jukes–Cantor correction, which is known to under-

correct multiple hits in this scenario. When o1 and o2 are

lower than 1, dSN and dNS are greater than dNN, making the

undercorrection more severe for the former than the latter

FIG. 2.—Determining the shortest overlapping region for mutational

pathway consideration. Shown is an example of the ss overlap. Codons in

ORF1 are marked with lines above the sequences, whereas codons in

ORF2 are marked with lines below the sequences. Differences between

the two species are in black, whereas identical nucleotides are in grey. The

boxed region is the shortest region for mutational pathway consideration.
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and the resultant o1 and o2 upward biased. Nevertheless, the

biases appear to be generally lower than 10%. In contrast, if

we estimate o1 and o2 by the mNG method without consid-

ering the mutual influences between overlapping genes, the

estimates are much higher than their respective true values

(fig. 3A). This is because some synonymous mutations to one

ORF are nonsynonymous to the other ORF and hence have

been removed by purifying selection, causing overestimation

of o1 and o2. Because the true o1<o2< 1, o2 is overesti-

mated to a larger extent than o1 (fig. 3A).

Next, we examined the situation that one overlapping gene

is under positive selection (o1 = 3), while the other is under

purifying selection (o2 = 0.2). We again found the mean esti-

mates of o1 and o2 by our method to be close to their

respective true values, for all levels of distance considered

(fig. 3B). When the mNG method is used, o2 is slightly under-

estimated (fig. 3B), likely because some synonymous muta-

tions to ORF2 are beneficial to ORF1 and are fixed by positive

selection. In contrast, o1 is grossly overestimated by mNG

(fig. 3B), for the reason mentioned in the previous paragraph.

We next examined the impact of the transition/transversion

ratio R on estimates of o1 and o2 when their true values are

0.2 and 1, respectively (fig. 3C). We found both o1 and o2

slightly overestimated. This becomes moderately severe for o2

when R� 10, probably due to the aforementioned undercor-

rection of multiple hits by the Jukes–Cantor formula that is

more serious when R gets higher. The mNG method performs

similarly well as the new method in estimating o1 (fig. 3C),

likely because of the lack of any selection on ORF2. But o2 is

grossly overestimated by mNG (fig. 3C). Because ORF2 itself is

not under any selection, the above phenomenon must be due

to the fact that synonymous mutations to ORF2 are more likely

than nonsynonymous mutations to ORF2 to be deleterious to

ORF1.

We next varied o1 from 0.2 to 3.0 while keeping o2 at 0.2.

We found estimates of o1 and o2 by our method to be gen-

erally reliable (fig. 3D). By contrast, o1 is consistently and

grossly overestimated by mNG, whereas o2 is overestimated

when o1<1 and underestimated when o1> 1, as expected

(fig. 3D).

FIG. 3.—Performances of the new (NEW) method and modified Nei–Gojobori (mNG) method in estimating the selection intensities (o1 and o2) on

overlapping genes. Shown are results from computer simulations of overlapping genes with the ss overlap. Each symbol represents the mean from 100

replications under a given parameter set, and error bars show the standard error. In each panel, the common parameters are listed above the panel, whereas

the varying parameter is shown on the x axis. Distance is defined as the expected number of nucleotide substitutions per neutral site between the two

sequences under comparison.
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In addition to the ss overlap, we also examined the three

sas overlapping phases with different parameter sets. We

found that our method generated reliable results under all

phases (fig. 4). In contrast, the mNG method can make grossly

wrong estimates, and the direction and extent of the error

depend on o1, o2, and the specific overlapping phase (fig. 4).

For phase sas12, third codon positions in ORF1 overlap with

third codon positions in ORF2. Consequently, the fraction of

SS sites is higher than that in other phases, allowing the pos-

sibility of estimating natural selection using SS sites. We thus

also estimated o1 by dNS/dSS and estimated o2 by dSN/dSS for

phase sas12 (see sas12* in fig. 4). The results showed that

these estimates are either similar to or slightly better than

those using NN sites (see sas12 in fig. 4).

Because the analytical formulas for SDs are approximate,

we used computer simulation to investigate their accuracies.

For the ss phase, we examined the reliabilities of the analyti-

cally computed SD(dNN), SD(dNS), and SD(dSN), but could not

examine SD(dSS) because of the paucity of SS sites. We con-

ducted 100 simulation replications under each set of param-

eters. We then compared the SD among the 100 dNN values

obtained and the mean of SD(dNN) analytically calculated

using the data from each simulation. The same was done

for dNS and dSN. We found the analytically calculated SD

values to be overall similar to the simulation observations,

with statistically insignificant differences (fig. 5).

Evolutionary Analysis of the Human Gene Pair with the
Longest Sense–Antisense Overlapping Region

To illustrate the utility of our method, we searched for an

appropriate pair of overlapping genes from Ensembl for de-

tailed analysis. We found that Ensembl annotates most ss

overlapping genes with different reading frames as alternative

splicing (Curwen et al. 2004), greatly underestimating the

prevalence of ss overlapping genes. We thus focused on sas

overlapping and identified the longest sas overlapping coding

region in the human genome, containing 732 bases. The in-

volved genes are LRRC8E (leucine-rich repeat containing eight

family, member E) and an uncharacterized gene with an

Ensembl Gene ID of ENSG00000214248. The structure of

this gene pair (fig. 6A) shows that the entire 243 amino acid

FIG. 4.—Performances of the new (NEW) method and modified Nei–Gojobori (mNG) method in estimating the selection intensities (o1 and o2) on

simulated overlapping genes of various phases indicated on the x axis. Each symbol represents the mean from 100 replications under a given parameter set,

and error bars show the standard error. In each panel, the parameters are listed above the panel, whereas different overlapping phases are shown on the x

axis. The results for sas12* are estimates using SS sites (i.e., o1 =dNS/dSS and o2 = dSN/dSS) under the sas12 phase.

Wei and Zhang GBE

386 Genome Biol. Evol. 7(1):381–390. doi:10.1093/gbe/evu294 Advance Access publication December 31, 2014

sense
-
sense
sense
-
antisense
 By
s
standard deviation
sense
-
sense
a
h
g
p
l
s
-
a
o
r
sense
-
sense
sense
-
sense
sense
-
antisense
sense
-
antisense
8


coding region of ENSG00000214248 lies within the second

exon of LRRC8E, with the sas12 overlapping phase. It was

recently discovered that LRRC8E functions as an essential

component of the cell volume-regulated anion channel

VRAC (Voss et al. 2014), but whether ENSG00000214248

encodes a functional protein and what its function is are

unknown.

We found from the recently published human proteomic

data (Wilhelm et al. 2014) that ENSG00000214248 is not only

transcribed but also translated in coronary sinus and blood

platelet (Fig. 6B). The protein expression sites of

ENSG00000214248 and those of LRRC8E overlap in blood

platelet but are otherwise distinct (fig. 6B). The expression

levels of the two proteins are generally comparable (fig. 6B).

We acquired the sequences of the orthologous genes of

human ENSG00000214248 and LRRC8E from the macaque

genome sequence. Using our method, we estimated the o
values for the two genes in the overlapping region as well as

the o in the nonoverlapping region of LRRC8E. R was esti-

mated to be 3.61 from the nonoverlapping region of LRRC8E

using Kimura’s (1980) two-parameter model. We found that

the overlapping region and the nonoverlapping region

of LRRC8E have been under similar levels of purifying

selection, with o= 0.08 and 0.09, respectively. The o for

ENSG00000214248 is 0.20, significantly lower than the neu-

tral expectation of 1 (P<0.002, two-tail Z-test), suggesting

that this uncharacterized gene has been under purifying se-

lection at least since the divergence between human and ma-

caque. For the overlapping region, we used SS sites in the

above estimation of o values for ENSG00000214248, be-

cause there was no substitution at NS sites.

Because ENSG00000214248 is entirely within LRRC8E, we

traced the origin of ENSG00000214248 by examining its pres-

ence in LRRC8E of various species. We were able to identify

LRRC8E in all bony vertebrate genome sequences available at

Ensembl and NCBI, but not in shark, lamprey, or any inverte-

brate genome. Interestingly, we also identified the ORF of

ENSG00000214248 within LRRC8E in most bony vertebrates,

including zebrafish (fig. 6C). Apparently, ENSG00000214248

already existed in the common ancestor of bony vertebrates,

but was pseudogenized several times in subsequent evolution

(fig. 6C). Because LRRC8E is a member of the LRRC8 family

that contains five genes in human, we reconstructed the phy-

logeny of this gene family (supplementary fig. S2,

Supplementary Material online) to investigate if

ENSG00000214248 originated before LRRC8E. We discov-

ered that the closest relative to LRRC8E is LRRC8C, which

can be found in bony vertebrates and shark. However, the

FIG. 5.—Performance of the new method in estimating the SD of dNN, dNS, and dSN. Shown are the results from computer simulations of overlapping

genes with the ss overlap. The analytically computed SD, averaged across 100 replications, is shown by red symbols, whereas the actual SD, observed from

the 100 simulation replications, is shown in blue. In each panel, the common parameters are listed above the panel, whereas the varying parameter is shown

on the x axis. Using 400 bootstrap samples of the 100 replicates under each parameter set, we derived a frequency distribution of the observed SD. We found

that the mean computed SD is within the central 95% of the frequency distribution of the observed SD under all parameter sets examined.
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presumable ENSG00000214248 reading frame in LRRC8C

contains several premature stop codons in each species exam-

ined (human, macaque, mouse, rat, zebrafish, and shark),

suggesting that the common ancestor of LRRC8C and

LRRC8E did not contain ENSG00000214248. Thus, the anti-

sense reading frame probably originated in LRRC8E shortly

after the birth of LRRC8E from the duplication of LRRC8C.

Discussion

Overlapping genes have been identified in many species and

are particularly common in bacteria and viruses (Normark et al.

1983; Veeramachaneni et al. 2004), but their evolutionary

studies have been hampered by the inapplicability of the stan-

dard methods for inferring natural selection acting on over-

lapping genes. We developed a simple method to estimate

the selection strength on each of the overlapping ORFs and

demonstrated the reliability of our method by computer sim-

ulation. Our method allows testing whether an overlapping

gene is under natural selection and hence can be used to

identify functional genes from hypothetical overlapping read-

ing frames, as was demonstrated in the example of

ENSG00000214248.

To more readily detect potential biases of our method, we

simulated long overlapping regions (3,000 sites). In reality,

however, overlapping regions are much shorter. We also

FIG. 6.—Evolution of the overlapping genes LRRC8E and ENSG00000214248. (A) The structures of the sas overlapping (sas12) genes of LRRC8E and

ENSG00000214248. The o values are estimated by comparing the human and macaque orthologs, with P values indicating the probabilities with which the

null hypothesis of o=1 is true. (B) Protein expression levels of LRRC8E and ENSG00000214248. Median protein intensities from multiple samples, based on

ProteomicsDB (Schwanhausser et al. 2011; Wilhelm et al. 2014), are shown for each tissue. (C) Evolution of ENSG00000214248. Species in which the ORF

for ENSG00000214248 is broken are underlined. Numbers on branches show the amino acid positions of premature stop codons. Branches are not drawn to

scale.
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performed simulations using overlapping regions of 750 sites

and 300 sites, respectively (supplementary fig. S3,

Supplementary Material online), based on the parameters

used in figure 3A and B. When the overlapping region is

short and the distance is low, many sequences had no substi-

tution in NS sites or SN sites, making our method inapplicable.

For cases where our method did work, the mean o estimates

were reasonably good, although the standard errors were

large, as expected (supplementary fig. S3, Supplementary

Material online). Thus, accurately estimating o values of

short overlapping regions remains challenging unless the di-

vergence between the two taxa compared is high. On the

basis of current annotations of eukaryotic genomes, there

are not many overlapping genes that have long evolutionary

histories. However, as in the example studied, although the

orthologs of human ENSG00000214248 are present in many

vertebrates, they have not been annotated outside primates. It

is likely that much more overlapping genes and long-lasting

overlapping genes than currently annotated exist. Overlapping

genes are prevalent in viral genomes. Many viruses have high

mutation rates, allowing the use of our methods even for

relatively short overlapping regions.

Sabath et al. (2008) noted that the ML method they devel-

oped does not perform well under low distances (mean se-

quence divergence across sites<8%). To examine if our

method suffers from the same problem, we compared the

two methods using the parameters in figure 3A and B. The

results showed that the two methods are similar in their sen-

sitivity to distance (supplementary fig. S4, Supplementary

Material online). However, under both negative (supplemen-

tary fig. S4a, Supplementary Material online) and positive

(supplementary fig. S4b, Supplementary Material online) se-

lection, our method outperforms the ML method in terms of

the accuracy of the o estimates.

Although we introduced our method in the context of es-

timating the selective strength using interspecific compari-

sons, our method may also be applied to intraspecific data

or comparisons between intraspecific and interspecific data.

For instance, let us use DNN, DNS, DSN, and DSS to denote the

numbers of the four types of substitutions in a pair of over-

lapping genes, respectively, and use PNN, PNS, PSN, and PSS to

denote the corresponding numbers of the four types of poly-

morphisms, respectively. We can conduct a selection test sim-

ilar to the McDonald–Kreitman test (McDonald and Kreitman

1991) for ORF1 by comparing DNN, DSN, PNN, and PSN, because

DNN/PNN equals DSN/PSN under the null hypothesis of neutrality.

Similarly, we can test selection in ORF2 by comparing DNN,

DNS, PNN, and PNS. In addition to studying overlapping genes,

our method can also be applied to the study of the function-

ality of certain alternative splicing. Alternative splicing is gen-

erally demonstrated by the existence of various transcripts

from a gene, but the existence of a transcript is not a proof

that the transcript is functional. For splice variants using alter-

native reading frames, our method may be used to test if the

alternative reading frame has been under natural selection,

which would support the functionality of the splice variant.

In summary, we believe that our development of a simple

method for estimating the selective strengths on overlapping

genes will facilitate researches toward understanding the

origin, evolution, and functionality of overlapping genes.

Supplementary Material

Supplementary figures S1–S4 and tables S1–S2 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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