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In the management of emerging infectious disease epidemics, precise and accurate estimation of severity indi-

ces, such as the probability of death after developing symptoms—the symptomatic case fatality ratio (sCFR)—is

essential. Estimation of the sCFR may require merging data gathered through different surveillance systems and

surveys. Since different surveillance strategies provide different levels of precision and accuracy, there is need for a

theory to help investigators select the strategy that maximizes these properties. Here, we study the precision of

sCFR estimators that combine data from several levels of the severity pyramid. We derive a formula for the standard

error, which helps us find the estimator with the best precision given fixed resources. We further propose rules of

thumb for guiding the choice of strategy: For example, should surveillance of a particular severity level be started?

Which level should be preferred? We derive a formula for the optimal allocation of resources between chosen sur-

veillance levels and provide a simple approximation that can be used in thinking more heuristically about planning

surveillance. We illustrate these concepts with numerical examples corresponding to 3 influenza pandemic scenar-

ios. Finally, we review the equally important issue of accuracy.

case fatality ratio; emerging infectious diseases; influenza; pandemics; statistical planning; surveillance protocol

Abbreviations: sCFR, symptomatic case fatality ratio; SE, standard error.

During outbreaks of emerging infectious diseases, the
symptomatic case fatality ratio (sCFR)—the probability of
death following the development of symptoms—is a critical
summary statistic characterizing disease severity, along with
the probability of hospitalization given symptoms and the
probability of symptoms given infection (1, 2). Estimates
of the sCFR influence the public health measures put in
place to control an epidemic. Large-scale public health re-
sponses are expensive and socially disruptive; health author-
ities often face a difficult tradeoff between mitigation and the
costs to society (1). Accurate and precise estimates of the
sCFR are essential for decision-making at the time response
plans are being drawn up and as the plans are periodically re-
vised during the course of the epidemic.
The 2009 A/H1N1 influenza pandemic illustrated well the

challenges involved in rapid severity assessment. It was clear
from early in the outbreak (3) that the severity of the epidemic

was substantially less than that of the 1918 A/H1N1 pan-
demic (for which the sCFR was approximately 0.02 (4)), yet
it proved more difficult to determine whether severity was
intermediate (sCFR ≈ 10−3) or mild (sCFR ≈ 10−4) (5–13).
Robust, precise estimates establishing that the pandemic
had mild severity (sCFR = 4.5 × 10−4, 95% credible interval:
2 × 10−4, 9 × 10−4) were published by July 2009 (9).
In the context of an epidemic ofmild severity, sample sizes

required to directly estimate the sCFR by recording fatalities
occurring in a series of symptomatic cases may become pro-
hibitively large. As a consequence, several authors have de-
veloped pyramidal approaches to estimating the sCFR as a
product of conditional probabilities—for example, the prob-
ability of hospitalization given symptoms times the probabil-
ity of death upon symptom-related hospitalization (5, 10, 14).
Strong assumptions underpin pyramidal approaches, particu-
larly the assumption that deceased cases progress through the
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entire pyramid, which can limit their validity. However, these
approaches present so many practical advantages that they
were extensively used during the 2009 pandemic, and they
can sometimes be the only available alternative.

Despite this fact, there is still little understanding of the
statistical properties of pyramidal sCFR estimators. The stan-
dard error (SE), in particular, indicates when such estimators
are more precise than direct estimation in a series of sympto-
matic cases. More generally, different pyramidal estimators,
combining different surveillance systems and surveys, have
different levels of precision. There is need for a theory to
help in selecting the most precise estimator. Once the estima-
tor has been selected, it is also unclear what the optimal allo-
cation of resources between the different surveillance levels
should be:Would it be better to conduct more outbreak inves-
tigations or to increase hospital-based surveillance? In an
emerging infectious disease outbreak, where resources are
finite, a clear strategy with which to efficiently reduce uncer-
tainty around sCFR estimates is essential for management
and planning.

In this article, we study the precision of pyramidal ap-
proaches to sCFR estimation and examine how the choice
of the best approach depends upon outbreak characteristics.
We propose rules of thumb for finding the most precise esti-
mator and for optimizing resource allocation between sur-
veillance levels. The general concepts are illustrated using
3 influenza pandemic scenarios with different levels of se-
verity. We also discuss the issue of accuracy, which we pro-
pose may be best assessed on a case-by-case basis.

METHODS

Pyramidal approaches to sCFR estimation combine data
from several levels of the severity pyramid, making assump-
tions about the course of the disease and about health-care
organization (5, 10, 14). For instance, in the severity pyramid
of Figure 1, symptomatic cases (S) go through 2 severity

levels before death (D): medical attention (M) and hospitali-
zation (H). Assuming that all cases go through M before H
and go through H before D, the sCFR can be written as
a product of progression probabilities: sCFR = P(DjH) ×
P(HjM) × P(MjS) (see Web Appendix 1, available at http://
aje.oxfordjournals.org/). A natural estimate of the sCFR is the
product of the progression probability estimates. According to
the available data at each severity level, different pyramidal
estimators are possible, as long as theyare based on reasonable
assumptions. Figure 1 illustrates 4 estimators of the sCFR.

More generally, we are interested in comparing K pyrami-
dal estimators, labeled k = 1 . . .K, with Nk levels each. The
sCFR in the kth estimation strategy is sCFR ¼ QNk

i¼1 pi;k,
where pi,k denotes the probability of progression from level
i in strategy k to the next level and is estimated in a sample
of ni,k cases. The true value of the sCFR is independent
of the estimation strategy, but the estimator ðsdCFRk ¼QNk

i¼1 p̂i;kÞ and its SE are not. Large SEs indicate low preci-
sion. A first-order approximation of the SE of pyramidal
sCFR estimators is obtained with the delta method (15)
(Web Appendix 2):

SEðsdCFRkÞ ≈ sCFR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNk

i¼1

1
ni;k

1
pi;k

� 1

� �vuut : ð1Þ

The core of our paper is to study the precision of sCFR pyra-
midal estimators to find 1) the most precise estimation strat-
egy and 2) the allocation of resources between a strategy’s
surveillance levels that maximizes precision.

Optimizing resource allocation in a pyramidal approach

Sample sizes are constrained by the available number of
cases at each severity level but also by the finite amount of
(monetary) resources available for surveillance. We denote
as ci,k the cost of recruiting a case into the ith surveillance
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Figure 1. Classification of symptomatic cases of infectious disease into a severity pyramid comprising medical attention, hospitalization, and
death (all related to symptomatic infection). A) Probabilities of progression to severity level B for persons on level A, P(BjA), denoted pBjA; for ex-
ample, the probability of medical attention following symptoms is pM jS. Plain arrows indicate progression to the next level, and the dashed arrows
indicate progression through intermediate level(s). B) Four estimators (numbered 1–4) of the symptomatic case fatality ratio, obtained either directly
by following up symptomatic cases until death ðp̂DjSÞ or by multiplying progression probabilities estimated from 2–3 surveillance levels. Outbreak
investigations, household contact surveys, or symptomatic case series can be used to derive p̂M jS , p̂H jS , and p̂DjS ; a surveillance system based on
sentinel general practitioners can be used to derive p̂H jM and p̂DjM ; and a hospital-based surveillance system can be used to derive p̂DjH .
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level of strategy k, so that
PNk

i¼1 ci;kni;k is the cost of estimat-
ing sCFR with strategy k and sample sizes {ni,k}. We model
resource constraints by assuming that there is a fixed budget
C, and for each strategy k we ask, “What is the optimal allo-
cation of resources to the different surveillance levels?” This
involves finding sample sizes {ni,k} that minimize the SE sub-
ject to the constraint of the fixed budget:

PNk
i¼1 ci;kni;k ¼ C.

We show in Web Appendix 3 that this minimum is achieved
for the following sample sizes:

n�i;k ≈
C

ci;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ci;kð1= pi;k � 1Þp

PNk

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c j;kð1= p j;k � 1Þp ;∀i ¼ 1; : : :; Nk: ð2Þ

A first observation from equation 2 is that the sample size n�i;k
increases as pi,k decreases. This is obtained by studying the
sign of @ð1=n�i;kÞ=@pi;k: Being strictly positive on ]0;1[, it in-
dicates that n�i;k is a decreasing function of pi,k. Essentially, the
rarer the events in each surveillance level, the more resources
need to be assigned to it.
A second observation is that the optimal proportion of

resources allocated to each surveillance level ðρ�i;k ¼ ci;k ×
n�i;k=CÞ is independent of the total budget C. A very simple
approximation of this optimal proportion is obtained when
the probabilities pi,k are much smaller than 1 and all of the
costs ci,k are equal (i.e., ci,k = c, ∀i):

n�i;k
n

≈
1=

ffiffiffiffiffiffiffi
pi;k

pPNk
j¼1 1=

ffiffiffiffiffiffiffiffi
p j;k

p ;∀i ¼ 1; : : : ; Nk; ð3Þ

where n is the total number of recruited cases (n = C/c). We
suggest that this may serve as a useful heuristic for rapid sur-
veillance setup: All else being equal, the proportion of cases
that needs to be recruited at each surveillance level is propor-
tional to the inverse square root of the probability of progres-
sion at that level.
We denote as sdCFR�

k the estimator of strategy k when pre-
cision is optimum. Its SE is obtained by replacing {ni,k} with
fn�i;kg in equation 1:

SEðsdCFR�
kÞ ≈

sCFRffiffiffiffi
C

p
XNk

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ci;k

1
pi;k

� 1

� �s
: ð4Þ

Equation 4 can be inverted to calculate the budget necessary
to reach a desired SE, σ, with strategy k:

C ≈

"
sCFR
σ

XNk

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ci;k

1
pi;k

� 1

� �s #2

: ð5Þ

In some cases, it may be desirable to consider “recruitment
needs” without reference to costs—for example, if it can be
assumed that recruitment costs are equivalent between sur-
veillance systems. Estimate precision is then a simple func-
tion of the total number of recruited cases n:

SEðsdCFR�
kÞ ≈

sCFRffiffiffi
n

p
XNk

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
pi;k

� 1

s
; ð6Þ

and the overall number of cases to recruit to reach a targeted
SE, σ, is

n ≈

"
sCFR
σ

XNk

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
pi;k

� 1

s #2

: ð7Þ

In Web Appendix 3, we study the best allocation of resources
1) made available partway during an outbreak (Web Figure 1)
and 2) given that some surveillance systems have fixed sam-
ple sizes (e.g., when routine surveillance data are reused for
sCFR estimation).

Choosing the most precise pyramidal estimator

While comparisons of SEs or necessary budgets can be
carried out with equations 1, 4, and 5, we provide hereafter
rules of thumb for rapid comparison of estimation strategies
in the special case where all surveillance systems have equal
recruitment costs and each estimator has a minimal SE thanks
to appropriate allocation of resources.
We first study whether precision can be improved by add-

ing a new surveillance level—that is, by splitting the progres-
sion probability pj,k into 2 probabilities p′ and p″ such that
pj,k = p′ × p″. In Web Appendix 4, we show that this split
increases precision only if pj,k < 1/9 (approximately 0.11)
and if p′ and p″ satisfy

ð1� 3 p j;k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 10 p j;k þ 9 p j;k

2
p Þ

2
< fp0; p00g

<
ð1� 3 p j;k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 10 p j;k þ 9 p j;k

2
p Þ

2
: ð8Þ

The smaller the value of pj,k, the wider this interval, so the
less important this second condition is. For example, when
pj,k is the 2009 sCFR, all splits where p′ and p″ are picked
between 0.00025 and 0.999 allow a gain in precision. This
is illustrated in Web Figure 2.
We then study which pair p′ × p″ yields the most precise

estimate. We show that the more similar p′ is to p″, the
more precise the estimator, with maximum precision being
reached when p0 ¼ p00 ¼ ffiffiffiffiffiffiffi

pj;k
p

(seeWeb Appendix 4). These
decision rules are summarized with a decision tree in Web
Figure 3.

Optimization in the presence of uncertainty

It is easy to calculate optimal sample sizes when all pi,k are
known, but in practice, of course, pi,k are unknown. Yet in-
formed guesses, denoted ~pi;k, supported by the literature or
by preliminary surveys, can be used to calculate the sCFR ex-
pected value, denoted sgCFR ¼ QNk

i¼1 ~pi;k, and the sample
sizes, denoted ~ni;k, that optimize estimator precision:

~ni;k ≈
C

ci;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ci;kð1=~pi;k � 1Þ

q
PNk

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c j;kð1=~p j;k � 1Þ

q ;∀i ¼ 1; : : : ; Nk: ð9Þ
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Through sensitivity analysis, developed in Web Appendix 5
(Web Figures 4–6), we examine how deviations of ~pi;k from
the true value pi,k affect the decided allocation of resources
and, as a consequence, decrease estimator precision.

We also assess the robustness of the estimator choice to the
initial uncertainty: Sensitivity techniques are used to con-
struct 8 anticipation scenarios reflecting uncertainty about
the severity of a particular outbreak as it starts. Robust perfor-
mance ranking of sCFR estimators throughout all 8 scenarios
is sought.

RESULTS

The analytical results derived in the Methods section are
illustrated below with numerical examples, using 3 influenza
pandemic scenarios with different severity levels (Table 1):
severe (“1918-like”; sCFR = 2%), intermediate (“1957-like”;

sCFR = 0.2%), and mild (“2009-like”; sCFR = 0.025%).
We study the 4 estimators presented in Figure 1. Table 2
shows the key epidemiologic concepts illustrated in each ex-
ample. For simplicity of illustration, we assume equal recruit-
ment costs per case at all surveillance levels of all estimation
strategies; consequently, the same budget allows for recruit-
ment of the same number of cases. Other numerical exam-
ples, based on cost sets described Web Appendix 6 (Web
Tables 1 and 2), are presented in Web Appendices 7 and 8
(Web Tables 3–6).

Precision of pyramidal estimators

Table 3 presents the SE of the 4 sCFR estimators, obtained
with equation 6, considering a budget allowing recruitment
of 10,000 cases. The best possible precision is obtained for
each estimator by appropriate allocation of resources between

Table 1. Severity Parameters Used for Simulating 3 Influenza Pandemic Scenarios With Different Levels of Severity

Parameter Description

Severity of Influenza Pandemic

Severe
(1918-Like)

Intermediate
(1957-Like)

Mild
(2009-Like)

pD jS = sCFR Probability of death following
symptoms

0.02040 (4)a 0.00020 (32) 0.00025 (14)

pM jS Probability of medical attention
following symptoms

0.4000 0.2000 0.3500

pH jM Probability of hospitalization
following medical attention

0.3500 0.1000 0.0157

pD jH Probability of death
following hospitalization

0.1457 0.1000 0.0455

pDjM = pD jH × pH jM Probability of death following
medical attention

0.0510 0.0100 0.0007

pH jS = pHjM × pM jS Probability of hospitalization
following symptoms

0.1400 0.0200 0.0055 (14)

Abbreviation: sCFR, symptomatic case fatality ratio.
a For data found in the literature, source references are given in parentheses; the other figures are assumed.

Table 2. Key Concepts Illustrated in Numerical Examples Corresponding to 3 Influenza Pandemic Scenarios with

Different Levels of Severity

Numerical Example Methodological Concept(s)

Precision of surveillance
strategies’ pyramidal
estimators

The optimal allocation of resources for any pyramidal estimator can be calculated
with equation 2.

The standard error of pyramidal sCFR estimators under optimal resource allocation
can be calculated with equation 4.

The precision of sCFRestimators increaseswhen progression probabilities inferior to
0.11a are split in two.

The precision of sCFR estimators increases when multiplied progression
probabilities are close to one anothera.

Necessary budget The minimal necessary budget for any pyramidal estimator to reach a desired
precision can be calculated with equation 5.

The minimal necessary budget for the single-level estimator increases dramatically
as the sCFR decreases.

Using pyramidal estimators allows a great precision gain when the sCFR is small.

Robustness to initial
uncertainty

See “Optimization in the presence of uncertainty” in the Methods section of the text.

Abbreviation: sCFR, symptomatic case fatality ratio.
a When recruitment costs at the concerned levels are equal.
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surveillance levels, calculated with equation 2. Figure 2
shows the 95% prediction intervals of the sCFR estimators,
based on 10,000 recruited cases. Figure 3 presents SE ratios
between the 3 pyramidal estimators and the single-level esti-
mator. Precision usually increases with the number of sur-
veillance levels in an estimation strategy, more so for small
sCFRs. However, in our simulation, this was not systematic:
In the severe scenario, a 2-level estimator ðp̂DjH × p̂HjSÞ was
slightly more precise than the 3-level one ðp̂DjH × p̂HjM ×
p̂MjSÞ. This was predictable from the analytical results pre-
sented in the Methods section: The progression probability
pH jS is above 0.11 (pH jS = 0.14), making it inefficient to

further split it. The estimator p̂DjH × p̂HjS was always more
precise than p̂DjM × p̂MjS, with the same number of surveil-
lance levels. This was also predictable: Estimators that mul-
tiply close progression probabilities are the most precise, and
in all 3 scenarios pHjS is closer to pDjH than pMjS is to pDjM
(see Table 1).

Necessary budget

In this second illustration, we compare the necessary bud-
gets, in terms of sample size, for all estimators to achieve the
same level of precision. Again, we assume that the best

Table 3. Minimal Standard Errors of Symptomatic Case Fatality Ratio Estimators (Based on 10,000 Recruited Cases) When Recruitment Costs

Are Equal at All Surveillance Levelsa

Estimator Levelb Event

Severity of Influenza Pandemic

Severe (1918-Like):
sCFR = 2.04 × 10−2

Intermediate (1957-Like):
sCFR = 2 × 10−3

Mild (2009-Like):
sCFR = 2.5 × 10−4

Optimal
Sample
Size, no.

Expected
No. of
Events

SE
(×10−3)

Optimal
Sample
Size, no.

Expected
No. of
Events

SE
(×10−4)

Optimal
Sample
Size, no.

Expected
No. of
Events

SE
(×10−5)

p̂DjS S Death 10,000 204 1.41 10,000 20 4.47 10,000 3 15.81

p̂DjM × p̂M jS S Medical attention 2,211 885 1.13 1,674 335 2.39 352 123 9.69
M Death 7,789 397 8,326 83 9,648 7

p̂DjH × p̂H jS S Hospitalization 5,058 708 1.00 7,000 140 2.00 7,459 41 4.51
H Death 4,942 720 3,000 300 2,541 116

p̂DjH × p̂H jM × p̂M jS S Medical attention 2,445 978 1.02 2,500 500 1.60 983 344 3.47
M Hospitalization 2,721 952 3,750 375 5,713 90
H Death 4,834 704 3,750 375 3,304 150

Abbreviations: sCFR, symptomatic case fatality ratio; SE, standard error.
a The optimal sample size at each surveillance level is obtainedwith equation 2, ensuring theminimumSE for each estimator. Expected numbers

of events are calculated as sample size × pi j j .
b H, hospitalized cases; M, medically attended cases; S, symptomatic cases.
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Figure 2. Ninety-five percent prediction intervals of symptomatic case fatality ratio (sCFR) estimators based on 10,000 recruited cases. Pyramidal
sCFR estimators are obtained by multiplying estimates of pi j j , the probabilities of progressing to severity level i for cases in level j, which are based
on 4 severity levels: symptomatic cases (S), medically attended cases (M ), hospitalized cases (H ), and dead cases (D). The 95% prediction inter-
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timator through optimal resource allocation between surveillance levels. Recruitment costs are assumed to be equal at all surveillance levels of all
estimation strategies.
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possible precision is obtained for each estimator by appropri-
ate allocation of resources. In Table 4, the number of cases
needed to obtain a coefficient of variation (coefficient of
variation = SE/sCFR) of 0.5 is calculated with equation
7. Figure 4 presents the necessary sample size of the single-
level estimator for different targeted precisions. Figure 5 pre-
sents the relative sample sizes of the 3 pyramidal estimators.
In short, choosing the optimal estimator substantially reduces
recruitment efforts, particularly when the sCFR is low. This
matters, because it is when the sCFR is low that such reduc-
tion is the most welcome, since necessary sample sizes for the
single-level estimator are then prohibitive (Figure 4). For ex-
ample, compared with the severe scenario, the size of a case
series would need to be 10- and 83-fold larger for the inter-
mediate and mild severity scenarios, respectively, for a
single-level sCFR estimator to have a similar coefficient of
variation. However, those differences are reduced when using
the optimal pyramidal estimator in each scenario: One would
then need 2.67- and 8-fold more cases for the intermediate
and mild severity scenarios, respectively.

Robustness to initial uncertainty

True optimization requires knowledge of the probabilities
we want to estimate, which is obviously circular. To be use-
ful, optimization needs to be robust to the use of approximate
values available early during an emerging infectious disease T
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Figure 3. Relative precision of symptomatic case fatality ratio (sCFR)
pyramidal estimators versus the single-level estimator ðp̂DjSÞ, given
similar budgets. Relative precision is measured with the standard
error (SE) ratio, obtained by dividing theminimal SE of each pyramidal
estimator by that of the single-level estimator. Recruitment costs are
assumed to be equal at all surveillance levels of all estimation strate-
gies. It can be noted from equation 4 that the SE ratio of 2 estimators
that have the same budget C is independent of C.
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outbreak. We analyze how uncertainty in the preliminary es-
timates of pi,k may affect the optimal allocation of resources
between surveillance levels. As an illustration, we study the
estimator p̂DjH × p̂HjS: We assume that the probability of
death following hospitalization (pDjH) is known but the prob-
ability of hospitalization following symptoms (pHjS) is ini-
tially uncertain. We allow the preliminary estimate of pHjS
to vary between 0.0001 and 0.99. For each preliminary esti-
mate of pHjS, we calculate the optimal allocation of resources
between community-based surveillance systems and hospital-
based surveillance systems. The more the preliminary esti-
mate of pHjS deviates from the true value, the less optimal
is the resource allocation and the less precise is the sCFR
estimator. However, we find numerically that estimator preci-
sion is quite robust even to errors of several orders of magni-
tude in the preliminary estimate of pHjS (Web Figure 4).
For example, optimal precision for the mild scenario is ob-

tained when 75% of cases are recruited in the community and
25% are recruited in hospitals. If the preliminary estimate of
pHjS were 0.0003 (instead of 0.0055), the initial “best guess”
of optimal resource allocation would be 92% of cases re-
cruited in the community and 8% of cases recruited in the
hospital, yielding an SE 1.21-fold larger than optimal. Even
with an initial estimate of pHjS of 0.1, giving us a best-guess
resource allocation ratio of 40%–60%, the SE is only
1.23-fold larger than optimal. Similar results are observed
for the intermediate and severe severity scenarios and with
the other 2-level estimator.
This implies that optimization of resources between sur-

veillance levels can be based on an informed guess about
progression probabilities, since only if this guess is wrong

by several orders of magnitude will precision decrease sub-
stantially. This also means that gains in precision obtained
by optimal resource allocation with a particular pyramidal es-
timator are much less substantial than gains in precision ob-
tained from a good choice of the estimator.
Given this conclusion, we analyze whether the optimal es-

timator can be identified in the presence of uncertainty at the
start of an outbreak. For each studied pandemic, we combine
the initial uncertainty bounds of pMjS, pHjM, and pDjH to ob-
tain 8 anticipation scenarios. A consistent order of estimator
precisions across all anticipation scenarios would strongly
support the choice of the best one. In Figure 6, we present
this analysis for the mild severity scenario assuming uncer-
tainty ranges of 0.2–0.5, 0.005–0.03, and 0.01–0.1 for
pMjS, pHjM, and pDjH, respectively (for the other scenarios,
see Web Figures 5 and 6). For all 8 anticipation scenarios,
the 3-level estimator is more precise than the others, with
the single-level estimator always being the worst.

DISCUSSION

Producing precise and accurate estimates of case fatality
ratios early during an emerging infectious disease outbreak
is important for public health decision-making. We have
shown here that statistical planning can help investigators
find an estimation strategy that minimizes costs without sacri-
ficing precision. We focused on the sCFR as the case fatality
ratio of most interest; however, the methods presented here
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can be used to optimize the precision of any severity estimate
that decomposes into a product of probabilities, like the infec-
tious case fatality ratio (making use of serology data) (16, 17).

We showed that the precision obtainable with a given bud-
get depends greatly on the surveillance levels at which the es-
timation strategy is focused, and that pyramidal estimators
with 3 surveillance levels can dramatically decrease the nec-
essary budget in comparison with follow-up of a series of
symptomatic cases. To a lesser extent, precision also depends
on the allocation of resources between the surveillance levels
of a given strategy.

As a result, we propose rules of thumb for finding the most
precise estimator. First, precision generally increases with the
number of surveillance levels, particularly when severity is
low: Where feasible, surveillance levels should be further de-
composed until the probability of progression to the next pyr-
amid level is about 11% (at which point the gain in precision
stops). Second, precision generally increases when the prob-
abilities ofprogressionmultiplied togetherare similar. Finally,
early identification of the optimal estimator is possible: Com-
paring the precision of all contemplated estimators over a

plausible range of parameters guaranties a robust choice. Be-
sides, as data are collected, severity parameters can be up-
dated and surveillance strategies adapted.

Which estimator is ultimately preferred also depends on
other criteria, such as the availability of data and the feasibil-
ity, timeliness, and quality of reporting, among others. Scal-
ing up particular levels of a surveillance strategy might be
difficult in real time; the limited precision gained by shuffling
resources around surveillance levels must be contrasted with
the associated inconvenience. Scaling up hospital-based sur-
veillance or community case detection might be the most
feasible option, the latter via outbreak investigation or Web
or telephone cohorts. At the general practitioner level, one
could imagine a system in which an aggregate number of
cases is periodically reported, with outcome details on a pro-
portion of these cases, and which could be scaled up or down
depending on available data collection resources. When
scaling up is done by enrolling more data providers, it is im-
portant to avoid introducing biases due to changes in the
composition of the populations they serve (e.g., demographi-
cally). Finally, resource limitations might not be financial per
se but might involve a limited number of staff; for example,
suitably trained staff might be used to perform community
contact tracing or might be sent to hospitals to extract data
from patients’ case notes. This would be an example of re-
allocating resources between levels of a strategy.

Our study falls into the framework of optimal designs,
which aim at estimating parameters without bias and with
minimum variance (18); we have focused herein on the min-
imum variance issue. Few optimal design studies concern
disease surveillance: Most have been simulation studies of
surveillance protocols for animal diseases (19–23) and opti-
mization studies of general practitioner recruitment for more
precise estimation of influenza incidence in the community
(24–27). More recently, Ejima et al. (28) used simulations to
assess the delay before precise estimation of the case fatality
ratio in various severity scenarios. We believe that the simple
examples presented here provide pedagogical insight into how
statistical planning may help improve the precision of sCFR
estimates. However, these simple analyses had limitations.

First, we studied only precision (minimum variance), not
accuracy (absence of bias). In particular, pyramidal esti-
mators can be biased if some underlying assumptions are
not satisfied—for example, in Figure 1, if D , H , M , S
is not true. This is the case if a large proportion of deaths occur
outside the hospital or if symptomatic cases are hospitalized
without previous medical attention. In the 2009 A/H1N1 pan-
demic, the reported proportion of deaths taking place outside
of hospitals was 17% in the United States (10), so it may be
important to monitor death certification from primary care set-
tings as well as hospitals, as was done in England (11), and use
them in a comprehensive evidence synthesis approach: For ex-
ample, Presanis et al. (10) estimated an overall sCFR by adding
the sCFRs of hospitalized patients and nonhospitalized pa-
tients seen in general practice, both estimated with pyramidal
estimators.

More generally, given how important severity estimates
are early on in an outbreak and since, unfortunately, there
is currently no real alternative to the pyramidal approach in
a context of mild-to-intermediate sCFR, in the future it will
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are calculated using equation 6.
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be important to develop studies that can be conducted in
parallel with pyramidal severity estimation to assess the va-
lidity and bias in the estimates. In particular, such studies
should allow ascertainment of the likelihood of effectively
going through each of the pyramids’ steps. For example,
where a sample of symptomatic cases is used to estimate
the probability of consulting a general practitioner upon de-
velopment of symptoms, a subset can be used to also estimate
the probability of hospitalization or death without a visit to a
general practitioner. A random sample of death certificates
can also be studied to identify influenza cases, reconstruct
the patients’ health-care history, and determine the propor-
tion that would not satisfy the pyramidal assumptions.
Biased pyramidal sCFR estimates can also result from re-

porting biases and inconsistent case ascertainment between
surveillance levels. In this work, for simplicity’s sake, we as-
sumed that cases detected at any 1 level were representative
and that the ascertainment of severity outcomes was com-
plete. Reich et al. (29) discussed in detail the impact of re-
porting rates on estimation of the case fatality ratio. As an
illustration of accuracy issues in pyramidal approaches,
Presanis et al. (10) obtained 2 very different estimates of the
2009 A/H1N1 sCFR (0.048% and 0.007%) by using 2 pyra-
midal estimators, each one relying on a different set of rea-
sonable assumptions. Each of these estimates had very tight
credible intervals (i.e., good precision), and the 2 estimates
were not consistent with each other.
This suggests a need for an analytical study of the accuracy

of pyramidal estimators, which is outside the topic of the pres-
ent paper. Garske et al. (5) described some of the mechanisms
resulting in biases in sCFR pyramidal estimates during the
2009 pandemic. Accuracy will likely need to be ascertained
on a case-by-case basis, and it may depend on organizational
and cultural norms surrounding health-care utilization.
Second, we estimated progression probabilities with simple

ratios so as to find an analytical solution to our optimization
problem. These estimates can be significantly biased when
the incidence of infection increases quickly and the delay be-
tween severity outcomes is long. Other authors have proposed
estimation methods that account for right-truncation of se-
verity events, which should be used in practice (5, 6, 29, 30).
Third, in Table 4 we compared strategies in terms of

budget, yet the most economical strategy might not be the
timeliest. For example, to estimate a 1957-like sCFR with a
coefficient of variation of 0.5, one must “wait” either until
4 deaths are reported within a case series of 1,996 sympto-
matic cases or until 10 deaths are reported within a 3-level
estimation strategy of 256 cases overall. Thus, while the latter
strategy is the most economical (256 cases to recruit vs.
1,996), one has to wait for more fatal events to be reported.
If time to death is highly variable, the delay before precise
sCFR estimation may increase in pyramidal approaches, off-
setting their economic superiority.
Fourth, we assumed fixed costs per recruitment at all surveil-

lance levels. In practice, these costs can vary during an out-
break. This limitation could be addressed by using nonlinear
cost functions. In addition, surveys and surveillance systems
used in pyramidal approaches to sCFR estimation often are not
specifically created for that purpose but are “reused,” avoiding
the delays and costs of setting up ad hoc studies. We took this

possibility into account, and inWeb Appendix 3 we provide an
analysis of optimal resource allocation in situations where
some data sets have a fixed size; in the case of reusing precol-
lected data sets, their cumulative cost can be set to 0.
Fifth, the probabilities of progression along the severity

pyramid have to be stable through time in order for our
method to be feasible. This might not be the case if, for ex-
ample, the symptomatic population is strongly encouraged to
consult a general practitioner midway through an outbreak,
making pMjS, pHjM, and pDjM suddenly change.
Finally, symptomatic cases may not all be homogeneous

with regard to risk of disease and death. For instance, for influ-
enza, while the risk of infection is typically higher among
children, the risks of disease and death conditional on infection
generally increase with age, except for the very young (31).
Estimates of the sCFR can be stratified by risk group, provided
that all surveillance levels used to generate estimates are sim-
ilarly stratified, so that each stratum has its own independent
pyramidal strategy. All of our considerations on precision
and sample sizes then apply to each stratum.
To conclude, we have shown that statistical planning of

surveillance strategies can help researchers achieve precise
estimates of the sCFR with minimal costs through the judi-
cious allocation of resources, even when those strategies
are based on very approximate data early in an epidemic.
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