
useeior: An Open-Source R Package for Building and Using US
Environmentally-Extended Input–Output Models

Mo Li1,*, Wesley W. Ingwersen2,*, Ben Young3, Jorge Vendries3, Catherine Birney2

1General Dynamics Information Technology, Inc., Fairfax, VA 22042, USA

2Office of Research and Development, US Environmental Protection Agency, Washington, DC
20460, USA

3Eastern Research Group, Lexington, MA 02421, USA

Abstract

useeior is an open-source R package that builds USEEIO models, a family of environmentally-

extended input–output models of US goods and services used for life cycle assessment,

environmental footprint estimation, and related applications. USEEIO models have gained a

wide user base since their initial release in 2017, but users were often challenged to prepare

required input data and undergo a complicated model building approach. To address these

challenges, useeior was created. In useeior, economic and environmental data are conveniently

retrievable for immediate use. Users can build models simply from given or user-specified

model configuration and optional hybridization specifications. The assembly of economic and

environmental data and matrix calculations are automatically performed. Users can export model

results to desired formats. useeior is a core component of the USEEIO modeling framework. It

improves transparency, efficiency, and flexibility in building USEEIO models, and was used to

deliver the recent USEEIO model.

Keywords

environmentally-extended input–output; life cycle inventory; life cycle assessment; input–output
analysis; environmental impact; open-source software

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/).
*Correspondence: mo.li@gdit.com (M.L.); ingwersen.wesley@epa.gov (W.W.I.).
Author Contributions: Conceptualization, W.W.I.; methodology, M.L., W.W.I., B.Y. and J.V.; software, M.L., W.W.I., B.Y. and J.V.;
validation, M.L. and W.W.I.; formal analysis, M.L., W.W.I. and B.Y.; investigation, M.L. and W.W.I.; resources, M.L., W.W.I., B.Y.,
J.V. and C.B.; data curation, M.L., B.Y., J.V. and C.B.; writing—original draft preparation, M.L.; writing—review and editing, M.L.,
W.W.I., B.Y. and J.V.; visualization, M.L.; supervision, W.W.I.; project administration, W.W.I.; funding acquisition, W.W.I. All authors
have read and agreed to the published version of the manuscript.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/
app12094469/s1. Table S1: A portion of the model crosswalk table.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

EPA Public Access
Author manuscript
Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

About author manuscripts | Submit a manuscript
Published in final edited form as:

Appl Sci (Basel). 2022 April 28; 12(9): 1–21. doi:10.3390/app12094469.E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/article/10.3390/app12094469/s1
https://www.mdpi.com/article/10.3390/app12094469/s1

1. Introduction

Environmentally-extended input–output (EEIO) analysis is a widely used method to identify

opportunities for reducing environmental impacts, material use, and waste generation

from economic activities or products. EEIO models were developed to calculate direct

and indirect environmental impacts in many countries for various applications. In the

United States (US), the Environmental Protection Agency (EPA) developed a family of

EEIO models, referred to as USEEIO, to support the agency’s Sustainable Materials

Management (SMM) program and broader mission [1]. The USEEIO was developed to

meet the recommendations of the US source code policy [2], and the recommendations

of the National Academies of Sciences, Engineering, and Medicine on reproducibility for

computational science [3]. The model was developed with the USEEIO modeling framework

[4]. This framework has evolved toward a fuller realization of the recommendations and

objectives of transparency, reproducibility, and at the same time, has become more robust.

1.1. Background

Prior to the creation of the modeling framework, we reviewed computer languages and

modeling tools that would be most pertinent in creating and maintaining USEEIO models.

The criteria that the languages/tools should meet included:

• Be free and open-source;

• Use and produce human-readable, non-proprietary data formats;

• Be easily distributed, and installed and used in common computing environments

(Windows, MacOS, Linux);

• Support high-level and efficient matrix mathematical operations;

• Be able to be maintained on GitHub or a similar git-based cloud version control

platform;

• Have a simple syntax, and support structured programs (modules, sub-route);

• Have an active community;

• Optionally permit graphical user interface development.

Languages and tools that were evaluated and found suitable included Python, Go, R, Julia,

Scilab, Java, and Jupyter. Python was initially selected based on it being used by the

research team to reassemble the openIO model (See SI2 of [1]), because of its rapidly

developing libraries for data science, and its growing usage in the life cycle assessment

community. An open source Python package for USEEIO assembly called the input–output

model builder (iomb) was the first tool created for the USEEIO modeling framework.

The iomb required that users independently generate all model economic, environmental,

and indicator components in standard .csv data files, with type-specific formats. The

first USEEIO model [1] was assembled with the iomb. However, collecting various data

components and preparing them in correct formats in a way that is reproducible is a

challenging process. A simple Python package used to organize some of the USEEIO

input data for feeding into the iomb, called useeiopy, was later developed to assist users

Li et al. Page 2

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

with assembling these data to recreate USEEIO models. Nevertheless, the acquisition and

transformation of core economic input data were not performed with the package. These

data, along with the indicators and environmental data, were each prepared with a large

set of independent Excel® models that were not managed in a version control system

and were unique to a given USEEIO model. As a result, a lot of core data, such as

industry output, lists of environmental flows, and economic data, were replicated across

these various Excel® models, which also posed a risk of lack of synchrony or data errors

and required more labor to update. Some of the Excel® models of the environmental data

grew large enough to consume all available RAM on a typical scientific laptop computer

(8–16 GB), which made operation slow and increased the risk of program failure. The R

language, which has many similarities in data science applications to Python [5], was also

used in USEEIO model component development, initially to retrieve and process larger

environmental datasets such as the National Emissions Inventory and USDA chemical use

survey. The use of the R language in USEEIO model component preparation continued

to grow as USEEIO expanded to cover new datasets, such as the addition of the waste

datasets in v1.2 [6], and was used to assemble the simplified two-region USEEIO state

models [7]. The early work in the USEEIO modeling framework in R culminated in a set of

interdependent R scripts coupled with the useeiopy and iomb packages that:

• Retrieved and processed Bureau of Economic Analysis (BEA) input–output

tables and industry gross output;

• Performed flow and sector mapping using stored .csv files;

• Used a model build script, specific to a given model version, for formatting and

writing all the core economic direct requirements and market shares matrices,

the environmental and indicator components, and demand vectors for use by

useeiopy/iomb to assemble the model;

• This work was captured in v0.1 of the USEEIO modeling framework [8].

While the USEEIO modeling framework continued to evolve, a need grew for an increased

variety of USEEIO models for various applications. USEEIO was rebranded as a “family

of models,” rather than just a single, national US model. An increasing number of

contributors and users provided additional evidence of the challenge of synchronizing

and fully recreating the latest models. Experience gained in other tools, including in

Standardized Emission and Waste Inventories (StEWI) [9] and ElectricityLCI [10], also

provided examples of more transparent and reproducible model build paths from data

acquisition through to final output, as well as embedded model validation procedures. In

response to these needs and challenges, the useeior R package was developed, along with

a versioning scheme [4] for USEEIO models. useeior replaces the iomb/useeiopy tools and

integrated fully with tools in the USEPA ecosystem of tools for industrial ecology [11].

1.2. Overview

useeior is an R package for building and using USEEIO models. It was created following the

R packages design manual [12] and has advantages including, but not limited to, clear help

pages for functions, convenient build checks, explicit dependency installation, and, most

Li et al. Page 3

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

importantly, ease of sharing. Consolidating USEEIO model construction in useeior not only

provided full transparency of data, but also ensured reproducibility of the model.

useeior is actively developed and maintained in a public GitHub repository (https://

github.com/USEPA/useeior, (accessed on 14 March 2022)), with a primary focus on

constructing and enabling technical use of USEEIO models. Using GitHub as the project

repository not only allows for a built-in method of version control, but also provides

automated build and test checks for useeior, utilizing the continuous integration and

continuous delivery (CI/CD) platform by GitHub Actions [13]. A configured GitHub

Actions workflow, defined by R-CMD-check.yaml in the ’.github/workflows/’ folder, is

triggered when an event occurs in the repository, such as a pushed commit or a pull request

being opened and updated. In the workflow, a job to execute R CMD check will “run in

sequential order or in parallel inside its own virtual machine runner, or inside a container”

[13]. The R CMD check examines if the requirements for successfully building the R

package are met, such as code, R dependencies, and documentation, and if the validation

on a selection of models is successfully completed [12]. This check is a fundamental

and easy-to-use quality assurance (QA) tool for useeior, and can be combined with more

configured workflows to serve as the QA of useeior.

useeior builds USEEIO models according to a given model configuration/specification

and optional hybridization specification, e.g., disaggregation and aggregation, and returns

the primary output, model object. A limited set of model specifications and associated

hybridization specifications for EPA-validated models are included in the ‘format_specs’

folder in the package. The package offers various functions for calculating, validating,

visualizing, and writing out models and/or their components.

In useeior, underlying input-output (IO) tables, economic gross output data, and chain-type

price indices (CPI) compiled by BEA are downloaded and pre-saved in native R data

formats (.rda) in the ‘data/’ folder, using the usethis package [14], and made available

for immediate use; other critical datasets, including sector crosswalk tables that map BEA

sectors to the North American Industry Classification System (NAICS) industries, BEA

sector code and name correspondence tables, and configuration files for model component

attributes are also prepared and saved as .rda files in the ‘data/’ folder. Functions used

to download, format, and save the .rda files are available in the ‘data-raw/’ folder. Model

aggregation and disaggregation specifications, as well as supporting data, are available for

optional use in the ‘inst/extdata/’ folder. Environmental flow data generated by FLOWSA

[15], and life cycle impact assessment (LCIA) characterization factors generated by the

LCIA formatter [16], can be specified for inclusion in a model and retrieved from the EPA

Data Commons. Therefore, to build desired USEEIO models, users do not have to prepare

data or LCIA factors; instead, they only need to choose from available models in useeior
to allow model building functions to construct the desired EEIO models. For advanced

users, useeior can take user-defined model specifications, and the accompanying data and

metadata files, then construct EEIO models using the same model building functions.

Detailed instructions are found in the Wiki page in the GitHub repository.

Li et al. Page 4

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://github.com/USEPA/useeior
https://github.com/USEPA/useeior

Once a USEEIO model is successfully built, a set of validation steps can be performed to

ensure the model is correctly calculated. Then, the model can be conveniently exported

to .csv files, Excel® workbook (.xlsx), .bin format, or .json format, which suit various

applications. Furthermore, users use built-in visualization functions to inspect and compare

the model including matrix coefficients, indicator scores, and sector ranking.

useeior was developed and deployed in an iterative pattern, and the release described here is

v1.0.0 [17]. To use useeior, it is recommended to install it from GitHub, then load it upon

successful installation.

install.packages(“devtools”)

devtools::install_github(“USEPA/useeior@v1.0.0“)

library(useeior)

useeior v1.0.0 is capable of building USEEIO v2.0 models [18] and variants, such as

USEEIO v2.0.1s. In the model name, ‘USEEIO’ is the main model name indicating the

model is a US (single-region) model; ‘v2.0.1’ is the major (‘v2’) + minor (‘.0.1’) version

number; and ‘s’ indicates that the IO data level of detail is summary. Further explanation

about USEEIO model naming is available at versioning scheme [4].

USEEIO models prior to v2.0, including USEEIOv1, and its variants v1.1 and v1.2, were

not built with useeior. Major advances from USEEIOv1 to v2 models included not only

the updated economic data (from 2007 to 2012), and environmental data prepared with

improved methods, but also novel methodologies about waste sector disaggregation, final

demand vectors, and a domestic form of the model. A high-level summary comparison of

content differences between the USEEIOv1 and v2 models is available in technical content

of USEEIO models [19].

The objective of this paper is to provide a comprehensive introduction of the novel useeior
package. This paper serves as the primary documentation of useeior v1.0.0 and enhances

transparency of the package and reproducibility of USEEIO models. Users can follow the

explicit guidelines described in the paper to build and use v2.0 and v2.1 national USEEIO

models with useeior. Details of model construction, calculation, validation, and exporting in

useeior v1.0.0 are described in Section 2. A single-region, summary level (73 commodities

and 71 industries) [20] USEEIO model, USEEIOv2.0.1s, was used as the example to

demonstrate and discuss selected results that can be generated from useeior v1.0.0 in Section

3.

2. Materials & Methods

The complete model building process in useeior v1.0.0 requires the following six successful

steps and returns a model object as the primary output:

1. Initialize model;

2. Load IO data;

Li et al. Page 5

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

3. Load and build satellite tables;

4. Load and build indicators;

5. Load demand vectors;

6. Construct EEIO matrices.

For hybrid models, hybridization processes such as aggregation and/or disaggregation of

sectors are incorporated in step 2 and 3.

To simplify the model building process, the six steps are integrated into a wrapper function,

buildModel, that builds a USEEIO model in one line of code, and provides logging of the

build process using the logging package [21]:

model <- buildModel(modelname)

Before building a model, it is recommended to check if the model is available in useeior
using this function:

seeAvailableModels()

useeior v1.0.0 comes with nine built-in national models (Table 1), and their configuration

files are found in the ‘inst/extdata/modelspecs/’ folder.

Model configurations are stored in relevant .yml (interchangeable with .yaml) files. YAML

is a simple text-based format used to store configuration data across the USEEIO tool

ecosystem [11]. useeior uses the configr package [22] to parse YAML files.

2.1. Model Initialization

The first step in the model building process is to initialize the model according to the input

model name, and paths to configuration files if provided. This step establishes the scope,

e.g., single-region or two-region, and focus, e.g., specific or all environmental impacts, of

the model.

model <- initializeModel(modelname, configpaths)

If the desired model is available in useeior, it is initialized based on modelname only, i.e.,

configpaths = NULL. This loads the built-in model configuration .yml file with that model

name, and related aggregation/disaggregation configuration, and .yml and data .csv files.

Alternatively, a user-customized model can be initialized as long as its configuration files,

including model and related hybridization configuration (in .yml format only), as well as

data files (in .csv format only), are prepared following the format of configuration and data

files of the available models. All configuration and data files must be accessible in the user

directory specified in model configuration, i.e., configpaths = user_directory.

Model initialization returns a model object in list form that contains two elements: model

specs and crosswalk. Specs stored the model specifications sourced directly from the model

configuration files include:

Li et al. Page 6

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

• Basic information including the name of the model, model region acronym,

model type, and pointers to hybridization, such as aggregation and

disaggregation;

• Basic IO specifications including base IO schema, base IO level, IO year, model

region acronym, IO data source, base price type, base with redefinitions or not,

commodity or industry type, and scrap included or not;

• Satellite table specifications including the name of environmental satellite tables,

years represented by flows included in the satellite table, path of the source file,

source category used for sectors in the satellite table, year and level of resolution

of the sectors, original flow source, function name for additional processing of

the satellite table, and metadata of satellite table;

• Indicator specifications including name, code, group, and unit of indicator, path

of the source file, function name and parameters for additional processing of the

indicator, and metadata of indicator; and

• Demand vectors specifications including a pointer to default demand vectors

(i.e., a production vector, a consumption vector, and domestic version of the two

vectors), and optional demand vectors, such as household purchase that contains

name, type, year, system, and location information.

The crosswalk is a sector correspondence table of five columns for sets of BEA and NAICS

codes, and any custom codes used in the current model:

1. NAICS—2- to 6-digit NAICS codes (7–10 digit codes exist for manufacturing

and mining industries);

2. BEA_Sector—code used at the BEA sector level;

3. BEA_Summary—code used at the BEA summary level

4. BEA_Detail—code used at the BEA detail level;

5. USEEIO—code used at the model level of detail, including any adjustments for

hybridization.

The crosswalk is a fundamental table in the useeior model building process, as it connects

the BEA and NAICS classification systems, which have notably different commodity and

industry sectors, and enables mapping from one system to the other. An example of the

crosswalk is presented in Table S1 in the Supplementary Information (SI). In useeior v1.0.0,
the crosswalk is built based on 2012 BEA and NAICS codes, with an inclusion of 2007

NAICS codes, according to the 2012 to 2007 NAICS concordance by Census Bureau

[23]. The correspondences between BEA and NAICS codes were adopted from the BEA–

NAICS relationship table, published in national IO accounts by BEA [20], which presents

a hierarchy of the BEA codes at sector, summary, and detail levels, as well as how each

level relates to the NAICS code structure. Two adjustments were applied to the original

BEA–NAICS table in order to create a crosswalk that captured all correspondences between

BEA and NAICS sectors:

Li et al. Page 7

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

1. For BEA codes not aligned with specific NAICS industries, their

correspondences are approximated after careful inspection and comparison of

their definitions in the BEA and NAICS systems;

2. For BEA codes that do not have correspondences with the complete hierarchy

of NAICS codes (2- to 6-digit), the correspondences are extended to all related

NAICS codes, based on the Census 2- to 6-digit NAICS code table [24].

With a complete crosswalk, useeior successfully and seamlessly harmonizes economic and

environmental data that are categorized by BEA, NAICS, and original classifications.

2.2. Economic Input–Output Data

In useeior, the most recent IO data are the form of “Make” (showing the production

of commodities by industries) and “Use” (showing the consumption of commodities by

industries and by final demand) tables compiled by BEA [20], saved in native R data

formats, .rda, via automated downloading and writing functions. These tables are available at

three levels of sector resolution: “Detail” (405 commodities by 405 industries), “Summary”

(73 commodities by 71 industries), and “Sector” (17 commodities by 15 industries).

The summary and sector levels tables are released annually by BEA, while the detailed

tables are produced roughly every five years, with 2012 representing the most recent release

[20]. Therefore, in useeior v1.0.0, the summary and sector make and use tables are available

for years 2010–2018, while the detail tables are only available for the year 2012.

The Make and Use tables compiled by BEA were available “before redefinition” and “after

redefinition”. Redefinition adjusts secondary products “from the industry that produced it to

the industry in which it is primary”. [25] In useeior, “before redefinition” tables are used,

as they are more aligned with the majority of environmental data that reflect the original

industry activities that occurred [1].

Additionally, the use tables are available in producer price and purchaser price. Existing

model configuration files in useeior used the use tables in producer price. useeior provides

the option to convert the model from producer to purchaser price, with additions of trade and

transportation margins [26].

In EEIO modeling, the direct requirements matrix A and domestic direct requirements

matrix Ad can be derived from the Make and Use tables to build EEIO models in two

forms: industry-by-industry or commodity-by-commodity. useeior is capable of building

industry (industry-by-industry) and commodity (commodity-by-commodity) models. The

former was the most suitable for EEIO models, with a focus on industries and environmental

impacts from related producing processes; the latter was most relevant for EEIO models

concerned with products and services and their associated materials. A direct requirements

matrix derived based on two distinct assumptions, industry–technology and commodity–

technology, yields different results. The former assumes that all commodities produced

by the same industry have the same input structure, while the latter assumes that each

commodity has a unique input structure, regardless of the industry that produced it [25].

useeior v1.0.0 implements the industry–technology model.

Li et al. Page 8

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Other economic data, including multi-year economic gross output, gross output chained

price index, the margins table, and the import matrix, are also prepared and made available

for immediate use in useeior.

Model IO data are loaded upon model initialization and with paths to configuration files if

provided.

model <- loadIOData(model, configpaths)

After this step, the model object is expanded to include core IO data and related metadata for

building the desired model, including:

• The Make table in industry-by-commodity form;

• Use and domestic use tables split into intermediate consumption, final demand,

and value added in commodity-by-industry and commodity-by-component forms

(note: domestic use table = use table – import matrix);

• Commodity and industry output in model year, as well as in a range of multiple

years in commodity-by-year and industry-by-year forms;

• A Margins in commodity-by-margin-sector form disclosing producer price,

trade (retail and wholesale) + transportation cost, and purchaser price of each

commodity, used for converting from producer price to purchaser price, and vice

versa;

• Metadata of the IO data-code, name and group details about commodity,

industry, final demand component, value added component, and margin sector;

• IO data and metadata of hybridization if pointers to hybridization, such as

aggregation and disaggregation, were not NULL in model specifications.

It is during this step of the model building process that custom hybridization of the model

object occurs, when specified in the model configuration file. Currently, useeior only

supports hybridization in the form of model aggregation and disaggregation, though support

for other forms of hybridization is in progress. For model aggregation, the user only needs

to input one additional .yml file to specify which sectors are to be aggregated. For model

disaggregation, several additional input files need to be provided:

• A .yml file containing a list of sectors, including the sector to be disaggregated

and the new sectors that will take its place;

• Two .csv files for the Use and Make tables (one for each) that specify the

allocation values from the original to the disaggregated sectors. If the user does

not have the data available to provide the allocation values, both .csv files can

be omitted and the disaggregation proceeds uniformly based on the number of

sectors specified;

• A .csv file providing inputs for disaggregation of the satellite tables (see next

section).

Li et al. Page 9

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

For all aggregation and disaggregation procedures, the commodity and industry sums are

compared for equality across the Use and Make tables to ensure that the economic balance

is maintained. If user inputs result in an unbalanced model, useeior attempts to balance the

tables using a RAS approach. If this balancing is unsuccessful, the program execution halts

and requests revised input files that will result in a balanced model.

2.3. Environmental Data and Satellite Tables

useeior characterizes the amount of environmental releases/losses, resource use, waste

generation, and employment by model-specified industry, through the use of national totals

of flows by NAICS industry and the crosswalk created in Section 2.1. National totals of

flows by NAICS industry data used in useeior can be generated by a Python-based tool

called FLOWSA [15], which structures data in a flow-by-sector (FBS) format. The latest

version of FLOWSA, v1.0.1, delivers FBS data that covers a variety of flow types, including

criteria and hazardous air emissions, point source industrial releases to water and soil, use

of land, use of water, and employment. To support impact assessment and a consistent flow

naming system across data sources, flows in FLOWSA conform to the Federal Elementary

Flow List (FEDEFL) [27]. The FBS data to build the models specified in useeior v1.0.0 are

retrieved from the EPA Data Commons [28] via automated functions in useeior.

These flow-by-NAICS-industry data are transformed into flow-by-model-sector format, and

loaded as satellite tables via the NAICS-to-BEA crosswalk. Value added by BEA industry

are also considered flow data, but are directly loaded from the IO data that was added in the

previous step.

model <- loadandbuildSatelliteTables(model)

A Satellite Tables component is added in the model object after this step. In the new

component, the satellite tables are stored in totals_by_sector, while flow metadata were

stored in flows. Each type of flow had a designated satellite table. Following the loading

of all satellite tables, useeior identified instances of flows reported by the same sector

from multiple satellite tables as a means to avoid double counting. All satellite tables were

formatted into a standard structure that included the following columns:

• Flow name, context, universally unique identifier (UUID), amount, unit, location,

and data year;

• Sector code and name;

• Data quality scores for data reliability, temporal correlation, geographical

correlation, technological correlation, and data collection.

Flow metadata displays unique flows found across all satellite tables with names, contexts,

UUIDs, and units were sourced from FEDEFL.

Satellite, or totals_by_sector, tables provide a full picture of flows from and to the

environment. They are used to calculate impact coefficients and validate the model.

If aggregation or disaggregation is specified during model build, each satellite table is

aggregated or disaggregated upon loading. Specifications for disaggregating environmental

Li et al. Page 10

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

data can be provided in one of two ways. If flow totals are provided for a given flow for any

of the new sectors, useeior replaces the existing satellite table data for that flow with the data

in the supplementary disaggregation file. Alternatively, flow ratios can be provided for one

or more flows in a satellite table. If the FlowRatio field was supplied, useeior disaggregates

each flow to the new sectors according to the supplied ratios. In either case, if data for a

specific flow are not provided, useeior disaggregates the existing satellite table data for that

flow proportional to gross industry output of the new sectors.

2.4. Indicators and Life Cycle Impact Assessment Characterization Factors

Model indicators quantitatively aggregate the environmental flow data to their corresponding

impact categories, through the use of life cycle impact assessment (LCIA) characterization

factors. For example, flows of greenhouse gases are valued as carbon dioxide equivalencies.

To support the use of environmental flow data retrieved from FLOWSA, standard LCIA

characterization factors generated by the LCIA formatter were used to populate model

indicators [16]. Users can choose from a number of available methods in the LCIA formatter

including the Tool for Reduction and Assessment of Chemicals and Other Impacts (TRACI)

[29], ReCiPe [30], etc., to generate LCIA factors that suit their needs. For any model, the

method parameter is customizable and can be modified under the indicators section in model

specifications (see Supplementary Information S2 for example of model specifications).

model <- loadandbuildIndicators(model)

A new component Indicators is added in the model object after this step. In the new

component, factors table presents the LCIA characterization factors linking one unit of the

flow to its indicator, while meta table includes metadata for the indicators included in the

model.

2.5. Final Demand

The final demand vectors represent purchases of goods and services by final consumers,

including households, investors, and governments. This function generates final demand

vectors specified by model specs:

model <- loadDemandVectors(model)

A new component DemandVectors is added in the model object after this step. In the new

component, vectors contain numeric vectors of final demand, while meta table includes

metadata for the demand vectors included in the model.

In useeior, two primary final demand vectors, a production vector and a consumption vector,

plus the domestic version of the two vectors are prepared as default vectors for all models.

They are the same final demand vectors described in the USEEIO v2.0 documentation [18].

Additional demand vectors, such as household purchases, can be added in DemandVectors if

declared in model configuration.

Li et al. Page 11

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

2.6. EEIO Matrices Construction

The last step to build a complete USEEIO model is to construct EEIO matrices based on

previously loaded IO, satellite, and indicator tables.

model <- constructEEIOMatrices(model)

Satellite tables are first combined into one totals_by_sector table, TbS. The TbS table is then

used to calculate coefficients-by-sector and generate a CbS table.

IO tables loaded by previous step are formed into matrices and vectors with standard

notations:

• The Make matrix, V, is an industry x commodity matrix with amounts in

commodities in year USD produced by industries;

• The Use matrix, U, is a commodity x industry matrix with total amounts in

model year USD of commodities used by industries for intermediate production,

or used by final consumers. U also includes commodity imports, exports,

and change in inventories as components of final demand, and value added

components as inputs to industries;

• The domestic Use matrix, Ud, is a commodity x industry matrix that provides

commodity and value added use totals by industries, and final demand, only from

the US;

• The commodity output vector, q, and the industry output vector, x, contain

economic gross output in model year US dollars;

• The market shares matrix, Vn, is a q normalized form of V, also in industry x

commodity format;

• The commodity mix matrix, Cm, is an x normalized and transposed form of V in

commodity x industry format.

Model matrices are then prepared. The direct requirements matrix, A, is a sector x sector

matrix that contains in each column, i, the direct sector inputs required to produce USD 1 of

output from sector i. A is created from the normalized forms of the model make, V, and use,

U, tables in one of two ways, depending on if the model type was set to be commodity or

industry (Equations (1) and (2)).

A(c) = Un ∗ V n (1)

A(i) = V n ∗ Un (2)

Un = Ux−1 (3)

V n = V q−1 (4)

Li et al. Page 12

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

The domestic direct requirements matrix, Ad, is a sector x sector matrix that provides direct

sector inputs per dollar sector output, only from the US. Similar to A, Ad is created from the

normalized forms of the model Make, V, and Use, Ud, tables in one of two ways, depending

on if the model type is set to be commodity or industry in the model configuration file

(Equations (5) and (6)).

Ad(c) = Udn ∗ V n (5)

Ad(i) = V n ∗ Udn (6)

Udn = Udx−1
(7)

The total requirements matrix, L (the Leontief inverse of A), is a sector x sector matrix that

contains in each column, i, the total requirements of the respective sectors inputs per 1 USD

of output from sector i. L is obtained from A, using Equation (8).

L = (I − A)−1 (8)

The domestic total requirements matrix Ld (the Leontief inverse of Ad), is a sector x sector

matrix that provides total sector inputs per dollar sector output, only from the US. Ld is

obtained from Ad, using Equation (9).

Ld = (I − Ad)−1 (9)

The direct emission and resource use matrix, B, is a flow x sector matrix that contains in

each column, i, the amount of a flow given in the reference units of the respective flow (e.g.,

kg) per USD 1 output from sector i. To obtain B, B(i) is first derived from E, a emission x

industry matrix of national totals of each flow by industry sector in year y, and xz,y, a vector

of gross output by industry in year z, given in year y dollars (Equation (10)).

B(i)y = Ezxz, y
−1 (10)

The industries in the E columns match the industries in x.

For x to be in year y USD, the year of the IO data, x, must first be price adjusted using

Equation (11), where xz is the year industry output for industry, i, in the currency year, z,

corresponding to the year of the national flow totals.

xy = xz ∗ ρz − > y (11)

If model type is Industry, B(i) is essentially B flow x industry form.

Li et al. Page 13

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

If model type is Commodity, B(i) is transformed with the market shares matrix Vn and

becomes B(c) in flow x commodity form (Equation (12)).

B(c) = B(i)V n (12)

The original relation between the environmental data in the form of national totals by

industry, E, and the model economic data uses the model industry output, as described in

Equation (10).

The characterization factor matrix, C, is an indicator x flow matrix that contains in each

column, k, the characterization factors of the indicators related to one reference unit of

flow k. The factors in C are inherited from indicators, and used to convert and aggregate

individual environmental flows, e.g., carbon dioxide, methane, etc., to total impact of the

corresponding indicator, e.g., greenhouse gas. The price year conversion matrix, Rho, is a

sector x year matrix that contains in each column y model-IO-year-to-year USD ratios. The

price type conversion matrix, Phi, is a sector x year matrix that contains in each column, y,

producer to purchaser price ratios.

Lastly, the following core EEIO matrices are constructed to complete the model.

The direct impact coefficient matrix, D, is an indicator x sector matrix that contains in each

column, i, the direct impact (e.g., kg CO2 eq) per USD output from sector i. D is derived

from the multiplication of C and B in one of two ways, depending on if the model type is set

to be commodity or industry (Equations (13) and (14)).

D(c) = CB(c) (13)

D(i) = CB(i) (14)

The direct and indirect flow coefficient matrix, M, is a flow x sector matrix that contains

in each column, i, the direct and indirect amount of a flow given in the reference units

of the respective flow (e.g., kg) per USD 1 output from sector i. M is derived from the

multiplication of B and L in one of two ways, depending on if the model type is set to be

commodity or industry (Equations (15) and (16)).

M(c) = B(c)L (15)

M(i) = B(i)L (16)

The domestic form of M, Md, is a flow x sector matrix that contains in each column, i, the

direct and indirect amount of a flow given in the reference units of the respective flow per

USD 1 sector output, only from the US. Similar to M, Md is derived in one of two ways,

depending on if the model type is set to be commodity or industry (Equations (17) and (18)).

Li et al. Page 14

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Md(c) = B(c)Ld (17)

Md(i) = B(i)Ld (18)

The direct and indirect impact coefficient matrix, N, is an indicator x sector matrix that

contains in each column, i, the direct and indirect impacts (e.g., kg CO2 eq) per USD output

from sector i. N is derived from the multiplication of D and L in one of two ways, depending

on if the model type is set to be commodity or industry (Equations (19) and (20)).

N(c) = D(c)L (19)

N(i) = D(i)L (20)

The domestic form of N, Nd, is an indicator x sector matrix that contains in each column, i,
the direct and indirect impacts per USD sector output, only from the US. Similar to N, Nd

is derived in one of two ways, depending on if the model type is set to be commodity or

industry (Equations (21) and (22)).

Nd(c) = D(c)Ld (21)

Nd(i) = D(i)Ld (22)

At this point, a complete USEEIO model is successfully constructed. The environmental

impact coefficient matrices, i.e., B, D, M, and N, are directly usable for life cycle

assessment, input–output modeling, footprint, and related applications.

2.7. Matrix Price Adjustment

A coefficient matrix (B, D, M, or N) can be further adjusted to desired currency year (e.g.,

2018) and price type (e.g., purchaser price) via

matrix_adj<- adjustResultMatrixPrice(matrix_name, currency_year = 2018, purchaser_

price = TRUE, model)

The returned matrix has the same dimensions and format as the original coefficient matrix.

useeior v1.0.0 supports currency year adjustment from 2007 to 2018, to control for the

influence of inflation on the model. The conversion from producer to purchaser price is most

useful from a consumer perspective, as the purchaser price, i.e., the price paid by consumers,

equals to producer prices plus any associated margin, which generally includes distribution,

wholesale and retail costs, and price type adjustment from producer to purchaser price.

Li et al. Page 15

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

2.8. Model Calculation

Model matrices can be used to calculate life cycle inventory (LCI) and life cycle

impact assessment (LCIA) results given a user-specified perspective, demand vector (from

DemandVectors in the model object or a user-provided vector), and a selected requirements

matrix (complete or domestic).

result <- calculateEEIOModel(model, perspective = “DIRECT”, demand = “Production”,

use_domestic_requirements = FALSE)

The return result list contains two matrices: either LCId and LCIAd, where d indicates the

“DIRECT” perspective, or LCIf and LCIAf, where f indicates the “FINAL” perspective.

The direct perspective calculation associates the total impact with the sectors that produce

the given flows (e.g., direct emissions, waste generation, or resource use), while the final

perspective calculation associates the total impacts with the final consumption sectors that

drives that impact.

The direct perspective LCI, i.e., the direct flows matrix, is calculated with Equation (23).

LCId = Bs (23)

where s, a scaling vector, is the product of L and the given final demand vector, y, as shown

in Equation (24).

s = Ly (24)

A similar approach is used to calculate the direct impacts with the direct perspective

Equation (25).

LCIAd = Ds (25)

The direct + indirect flows matrix with the final perspective, LCIf is calculated with

Equation (26).

LCIf = My (26)

The direct + indirect impacts are calculated as in Equation (26), but use U in place of M, as

shown in Equation (27).

LCIAf = Ny (27)

To calculate any domestic result, the Ld and a demand vector derived from yd are used. The

difference between any full result calculation and the domestic calculation can be used to

derive rest of world region results, as in Equation (28).

Li et al. Page 16

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

LCIAd, RoW = LCIA − LCIAd, US (28)

where LCIAd,RoW is the contribution from rest of world, and LCIAd,US is the contribution

from the US.

To calculate a flow’s contribution to total impacts of an indicator in a sector, divide the

product of the flow’s total impact, in M or M_d, and its indicator factor, in C, by the sum of

total impacts in the sector.

flow_impact <- calculateFlowContributiontoImpact(model, sector, indicator, domestic =

FALSE)

To calculate a sector’s contribution to total impacts of an indicator, divide the product of the

sector’s total requirements, in L or L_d, and the indicator’s direct impact by flow, in D, by

the sum of total impacts of the indicator.

sector_impact <- calculateSectorContributiontoImpact(model, sector, indicator, domestic =

FALSE)

To calculate the total impact of an indicator passed from one sector to another through

purchase, the diagonalized form of the indicator’s direct impact, D, is multiplied by the

product of total requirements, L, and the diagonalized form of the demand vector, y. y
can be a calculated demand vector in model or a user-specified vector that has the same

dimension with any model demand vector. sector2sector_impact is a matrix of total impacts

in the form of sector purchased x sector sourced, where negative values are interpreted as

reduced impacts.

sector2sector_impact <- calculateSectorPurchasedbySectorSourcedImpact(y, model,

indicator)

Margin impacts are calculated via multiplying the normalized impact of margin sector

(i.e., retail, wholesale, and transportation sectors) on each commodity by the total impact

coefficients (amount per dollar in producer price) of each commodity. As a result, margin

impacts are delivered in by-flow and by-indicator forms based on the model M and N
matrices.

margin_impact <- calculateMarginSectorImpacts(model)

Any sector x flow matrix can be normalized by the total of respective flow (column sum) for

usage in further applications.

matrix_n <- normalizeResultMatrixByTotalImpacts(m)

Any sector x flow matrix can be aggregated by row or by both row and column to a

user-defined sector’s level of detail.

matrix_aggbyrow <- aggregateResultMatrixbyRow(matrix, to_level, crosswalk) matrix_agg

<- aggregateResultMatrix(matrix, to_level, crosswalk)

Li et al. Page 17

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

2.9. Model Validation

A series of validation functions are available to validate that model calculation results were

equivalent to known IO and EEIO identities. As model calculation results would not be

expected to match exactly, due to rounding in original datasets, the margin of error is

customizable to meet different restrictions, with a default setting of 1% error. Complete

model validation checks were performed in ValidateModel.Rmd in the ‘inst/doc/’ folder.

Knit ValidateModel_render.Rmd in the same folder to run all validation checks on selected

models specified under the YAML header. This returns an .html and a .md file in the

‘inst/doc/output/’ folder containing validation results for each model.

A full model validation is performed via verifying that national flow totals by sector used as

inputs to the model can be recalculated using appropriate model components.

model_val <- compareEandLCIResult(model, use_domestic = TRUE, tolerance = 0.01)

This validation was performed using Equation (29).

E = Bχ̇Ly (29)

If model is a commodity model, E on the left side becomes E(c), which is the original flow

by industry totals, E(i), put into a flow x commodity form. E(i), a national total of flow by

industry per year, consisting of the concatenation of all the satellite tables described above,

and is available for various years. E(c) is obtained from E(i) by multiplying its transpose by

the commodity mix matrix, Cm, and transposing the result (Equation (30)).

E(c) = CmE(i)′ ′ (30)

Cm = V ′x−1 (31)

Cm is obtained from Equation (31), where V′ is the transposed model make table, which is

normalized by multiplying it by the diagonalized form of the inverse of model output, x.

Given the commodity model, the right side of Equation (29) is a slightly modified form of

the matrix, calculated using the direct perspective, where B becomes B(i) representing the

satellite matrix in industry form from Equation (10).

As the original flow totals in E(i) may be in varying years, while the model IO data are

all in the IO year (e.g. 2012 for USEEIO v2.0), to validate the model, B(i) requires an

output adjustment via multiplication with χ, an output adjustment matrix. χ is composed

of xs : x output ratios and in the same form, as well as rows and column identifiers, as

B(c). The element-wise product of B(i) and χ adjusts B(i) for the flow year differences,

and effectively converts B(i) into a harmonized IO year form. Before being multiplied

with the commodity-based Ly product, B(i) is further transformed using Equation (12) into

commodity form, B(c), via the market shares matrix, Vn, obtained from Equation (4).

Li et al. Page 18

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

If model is an industry model, E on the left side of Equation (29) becomes E(i), which is the

original flow by industry totals, while B on the right side becomes B(i). As L and y are also

in industry form, they can directly times B(i) and χ, then the product is comparable against

E(i) on the left side of Equation (29).

Additional validations were performed to:

• Check that economic output, industry output (if model is an industry model), or

commodity output (if model is a commodity model) can be recalculated by final

demand multiplying the Leontief matrix in Equation (32) or Equation (33).

econ_val <- compareOutputandLeontiefXDemand(model, tolerance = 0.01)

x = Ly (32)

q = Ly (33)

• Check that a commodity model’s final demand and commodity output can be

recalculated by summing domestic use.

q_val <-

compareCommodityOutputandDomesticUseplusProductionDemand(model,

tolerance = 0.01)

q = ydomestic, production (34)

• Check that total commodity output can be recalculated by industry output via

transformation of CPI ratios.

q_x_val <- compareCommodityOutputXMarketShareandIndustryOutputwithCPI-

Transformation(model, tolerance = 0.01)

qρc, z − > y = Cmxρi, z − > y (35)

Output from the validation functions included the compared objects, their relative

differences, passing records, and failing records. Quickly showing whether there are failures,

and which sectors failed, is a primary goal of model validation, and provides clear directions

to address the failures.

print(paste(“Number of sectors failing:”, model_val$N_Fail))

print(paste(“Sectors failing:”, paste(model_val$Failure$rownames, collapse = “, “)))

2.10. Model Exporting

Models can be conveniently exported to .csv files, Excel® workbook (.xlsx), or .bin format,

in a user-specified directory that suits various applications. Recently exported model files

overwrite existing files by default.

Li et al. Page 19

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

One outlet for the USEEIO model is the USEEIO API [31], which was designed for

dynamic access by applications or other uses. This wrapper function exports model

components required by the API to a user-specified directory basedir and sub folders.

writeModelforAPI(model, basedir)

To comply with format requirements of the API, model matrices, including V, U, Ud, A,

Ad, B, C, D, L, Ld, M, Md, N, Nd, Rho, and Phi, are written to .bin files in the ‘basedir/build/

data/modelname/’ folder, where modelname is the name of the given model. Model demand

vectors are written to .json files in ‘basedir/build/data/modelname/demands/’ folder. Model

description and metadata of indicators, demands, sectors, flows, and years are written to .csv

files in the ‘basedir/build/data/’ folder.

A Python script (https://github.com/USEPA/USEEIO/blob/master/olca/u2o.py, (accessed on

14 March 2022)) is available to generate a fully-linked JSON-LD model compatible with the

openLCA JSON-LD schema [32], which leverages the output of writeModelforAPI.

The matrices that are written to .bin files for the API use can also be exported to

individual .csv files, by specifying to_format = “csv”. The files can be saved to any user-

specified folder, outputfolder, and do not have to be the same basedir in writeModelforAPI.

writeModelMatrices(model, to_format = “csv”, outputfolder)

A consolidated Excel® workbook (.xlsx) may be created to store the model matrices

mentioned above, model commodity and industry output (q and x), model demand vectors,

and model sector crosswalk, plus the metadata of demands, flows, indicators, commodities,

or industries (depending on if the model was a commodity or industry model), final demand,

and value added..

writeModeltoXLSX(model, outputfolder)

A 16-digit hash of the full model object can be created to assign the model object a unique

id.

generateModelIdentifier(model)

2.11. Model Visualization

Good visualizations present critical analysis and findings in the most effective ways. useeior
provides a series of visualization functions to showcase fundamental results from the model,

and assist further analysis.

Model coefficient matrices such as N can be visualized to show coefficients for a

given model, or compare coefficients across models. Users choose to view a single

indicator (coefficient_name) or multiple indicators at once. They can also remove sectors

(sector_to_remove) if a close-up examination on certain sectors is desired.

Li et al. Page 20

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://github.com/USEPA/USEEIO/blob/master/olca/u2o.py

plotMatrixCoefficient(model_list = list(modelA, modelB), matrix_name = “N”,

coefficient_name = “Greenhouse Gases”, sector_to_remove = ““,y_title = “Greenhouse

Gases”, y_label = “Name”)

Indicator scores calculated from totals_by_sector and displayed by BEA sector level can

be visualized to show scores for a given model, or scores can be compared across models.

Users specify the sectors (sector) that interest them in terms of their scores for a given

indicator (indicator_name).

barplotIndicatorScoresbySector(model_list = list(modelA, modelB), totals_by_sector_ name

= “GHG”, indicator_name = “Greenhouse Gases”, sector = FALSE, y_title = “Greenhouse

Gases”)

Model LCI and LCIA results can be visualized to show flows or impacts split by a region,

and the rest of the region. For example, users calculate and then visualize impacts associated

with domestic consumption as a portion of total consumption in the US.

fullcons <- calculateEEIOModel(model, perspective = “DIRECT”, demand

= “Consumption”) domcons <- calculateEEIOModel(model, perspective

= “DIRECT”, demand = “Consumption”, use_domestic_requirements =

TRUE) barplotFloworImpactFractionbyRegion(R1_ calc_result = domcons$LCIA_d,

Total_calc_result = fullcons$LCIA_d, x_title = “Domestic Proportion of Consumption

Impact in the US”)

Model LCI and LCIA results can also be visualized to show sector rankings according to

given indicators.

result <- calculateEEIOModel(model, perspective = “DIRECT”, demand = “Production”,

use_domestic_requirements = FALSE) heatmapSectorRanking(model, matrix =

result$LCIA_d, indicators = c(“ACID”, “GHG”, “WATR”), sector_to_remove = ””,N_sector

= 20)

Flow data coverage can be visualized to show the presence or absence of flows from the

various environmental and employment flow datasets.

heatmapSatelliteTableCoverage(model, form = model$specs$CommodityorIndustryType)

2.12. Model Comparison

Comparison between two models was accomplished by executing compare functions in a

built-in CompareModel.Rmd in the ‘inst/doc/’CompareModels.Rmd)’ folder. To perform

comparison on selected models, use CompareModel_render.Rmd in the same folder to

specify model names under the YAML header, then knit the document. This returns an .html

and a .md file in the ‘inst/doc/output/’ folder containing comparison results for each model.

Currently, only flow totals between two models are compared with built-in function. More

comparisons will be added in the future.

model_comparison <- compareFlowTotals(modelA, modelB)

Li et al. Page 21

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

3. Results

A single-region, summary level (73 commodities and 71 industries) USEEIO model,

USEEIOv2.0.1s, is used as the example to demonstrate and discuss selected results in this

section. The model is built with 2018 Summary IO data, 2010–2017 environmental flow

data and a collection of indicators used with other v2 models like USEEIO v2.0.1–411 [18].

Total impact (direct + indirect) coefficients by sector, i.e., N (see Equation (19)), are

examined through the plotMatrixCoefficient function. Results of three impact categories,

including acidification potential (ACID), greenhouse gases (GHG), and freshwater

withdrawals (WATR), are presented in Figure 1. It should be noted that coefficients of these

impact categories are generated using LCIA characterization factors from the TRACI2.1

method [33]. The farms sector has the largest ACID (0.02 kg SO2 eq/USD) and WATR (460

kg/USD) coefficient, and the second largest GHG coefficient (2.4 kg CO2 eq/USD)—only

smaller than that of the utilities sector (2.8 kg SO2 eq/USD), which is carbon intensive

due to primarily fossil fuel-based electric power generation in the US. Utilities also has a

notably large WATR coefficient (230 kg/USD), for the same reason. Energy intensive sectors

including resource exploitation (i.e., oil and gas extraction and mining), manufacturing,

transportation, and waste management sectors have relatively large GHG coefficients. This

illustration provides a clear view of total impact coefficients by sector in the model year.

With more environmental flow data over years, multiple snapshots of the illustration could

reflect changes in impact coefficients potentially caused by technological advancement in

industries, or structural changes in the economy.

Ranking sectors based a composite score of selected total impacts associated with total

US demand is an effective means to identify prioritization opportunity in practices, such

as the EPA’s Sustainable Materials Management program. Comparing rankings is another

form of model validation that incorporates the demand vectors and the indicators, as well

as the matrices. The composite score for the rankings is calculated as a sum of fractions of

sector impact relative to total impact across all sectors, by each selected indicator. This is

represented using Equation (36), where s represents this score and t, calculated in Equation

(37), is a vector of the column sums of the given LCIA (see Equation (25)) matrix.

s = (LCIAt −1)i (36)

t = i′LCIA (37)

The first ranking uses LCIAd with the US production vector (left in Figure 2), while

the second ranking is performed with LCIAf (see Equation (27)), along with the US

consumption vector (right in Figure 2). The sets of commodities in the top 20 from the

two rankings (left and right in Figure 2) are nearly identical, with some notable substitutions

and some exchanging of places. Farms, utilities, and construction are in the top places in

both rankings, but the orders and the distance (darkness of shade) separating Construction
from the other commodities are different. Food and beverage and tobacco products is not in

top 20 in the impact ranking created with LCIAd and the US production vector (left), but

Li et al. Page 22

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

is in the top place in the other impact ranking created with LCIAf and the US consumption

vector, as the latter calculation captures impacts, e.g., human health—respiratory effects

(HRSP), associated with the use phase of commodities, e.g., tobacco.

Contribution from the top five flows to total acidification potential in the Utilities sector

is shown in Table 2. As fossil fuels are still significant resources used by the Utilities
sector in the US, and sulfur dioxide and nitrogen dioxide emissions are the main cause for

acidification potential, it is natural that they are the top two flows, and together contribute to

more than 96% of the total impact. The other contributing flows are ammonia, sulfuric acid,

and hydrofluoric acid, which together contribute to less than 4% to the total impact.

Contribution from the top five sectors to direct freshwater withdrawals in the Food and
beverage and tobacco products sector is shown in Table 3. The Farms sector contributes

the most, because most inputs to the Food and beverage and tobacco products sector come

from Farms. The Utilities sector is in the second place, with less than 5% contribution,

most likely due to water use in processing food, beverages, and tobacco products. The other

contributing sectors are the Food and beverage and tobacco products sector itself, which

relates to by-products in the sector, the Forestry, fishing, and related activities sector, which

relates to seafood produced in the food sector, and the Fabricated metal products sector,

which most likely relates to canning of food and beverage.

4. Conclusions

The USEEIO modeling framework requires model building tools to be free, open-source,

and easily distributed, installed, and used in common computing environments. The

programming languages behind the tools should have simple syntax and an active user

community; support structured programs, and high-level, efficient matrix mathematical

operations; use and produce human-readable, non-proprietary data formats; and be able

to be maintained on GitHub, or a similar git-based cloud version control platform. Among

suitable languages, Python was initially selected to create two packages, iomb and useeiopy,

for USEEIO assembly and organizing some of the USEEIO input data, respectively, but

collecting and preparing the core economic data, the environmental data, and indicators

was not performed by either package. To assist data acquisition and transformation, the R

language, which has many similarities in data science applications to Python, was used to

create a set of interdependent R scripts, coupled with the useeiopy and iomb packages, to

retrieve and process larger environmental datasets and assemble the simplified two-region

USEEIO state models.

With a growing need for increased variety of USEEIO models for various applications,

USEEIO was rebranded as a “family of models”, and received significant redesign in the

modeling process. In response to the needs for more transparent and reproducible model

build paths from data acquisition through to final output, as well as embedded model

validation procedures, the useeior R package was developed, along with a versioning scheme

[4] for USEEIO models. useeior simplifies and streamlines the modeling process and

enables transparent and reproducible model construction. Users are provided with not only

fundamental data and metadata to build default USEEIO models, but also great flexibility

Li et al. Page 23

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

to customize models of their own. useeior replaces the iomb/useeiopy tools, and now serves

as a core component of the US EPA’s USEEIO modeling framework, as it integrates

the up-to-date IO tables prepared within itself with the environmental data generated by

other tools within the framework, and then produces EEIO results in standard formats and

software-ready LCI.

Designed and created with the principles of open-source software, useeior is continuously

improved to be more comprehensive and up-to-date in a transparent and iterative way.

Currently, useeior is capable of building USEEIO models that reflect the US national

average economic and environmental conditions. Users should be aware of the limitations

of using the national average to estimate environmental impacts of goods and services

produced in a sub-national scope. To address user demand for sub-national models,

regionalized versions of the model are being incorporated into useeior to enable construction

of two-region (a US state and a rest of US region) USEEIO state models. Future

improvements, such as physical hybrid models and linkage to global multi-regional input-

output (MRIO) models are planned to facilitate additional extensions in useeior.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Funding:

The U.S. Environmental Protection Agency, through its Office of Research and Development, funded and
conducted the research described herein, under an approved Quality Assurance Project Plan (K-LRTD-0030017-
QP-1-3). It has been subjected to the Agency’s peer and administrative review and has been approved for
publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement
or recommendation for use. This research was supported through USEPA contract HHSN316201200013W,
Task Order EP-G16H-01256 with General Dynamics IT (GDIT) and contract EP-C-16-015, Task Order
68HERC19F0292 with Eastern Research Group (ERG). Internal peer reviews of useeior code and this manuscript
were performed by Sabitri KC, Michael Gonzalez, and Thomas Barnum (USEPA); quality assurance was provided
by Jill Hoelle (USEPA). Bill Michaud (GDIT), Bhagya Subramanian (USEPA), and Sarah Cashman (ERG) assisted
with project and contract management.

Data Availability Statement:

Data used to demonstrate useeior are available as part of the useeior software package.

Source code for useeior is available at https://github.com/usepa/useeior, (accessed on 14

March 2022).

References

1. Yang Y; Ingwersen WW; Hawkins TR; Srocka M; Meyer DE USEEIO: A New and Transparent
United States Environmentally-Extended Input-Output Model. J. Clean. Prod 2017, 158, 308–318.
[PubMed: 30344374]

2. Scott T; Rung A Federal Source Code Policy: Achieving Efficiency, Transparency, and Innovation
through Reusable and Open Source Software; Office of Management and Budget: Washington,
DC, USA, 2016. Available online: https://www.whitehouse.gov/sites/whitehouse.gov/files/omb/
memoranda/2016/m_16_21.pdf (accessed on 11 October 2021).

3. National Academies of Sciences, Engineering, and Medicine. Reproducibility and Replicability in
Science; National Academies Press: Washington, DC, USA, 2019; ISBN 9780309486163. Available
online: https://www.nap.edu/catalog/25303 (accessed on 14 March 2022).

Li et al. Page 24

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://github.com/usepa/useeior
https://www.whitehouse.gov/sites/whitehouse.gov/files/omb/memoranda/2016/m_16_21.pdf
https://www.whitehouse.gov/sites/whitehouse.gov/files/omb/memoranda/2016/m_16_21.pdf
https://www.nap.edu/catalog/25303

4. Ingwersen W; Li M; Young B United States Environmentally-Extended Input-Output (USEEIO)
Modeling Framework for USEEIOv2.0; Zenodo, 2022. Available online: https://zenodo.org/record/
6370073#.YmoAQdNBzIU (accessed on 14 March 2022).

5. Karakan B Python vs. R for Data Science. Available online: https://towardsdatascience.com/python-
vs-r-for-data-science-6a83e4541000 (accessed on 22 December 2021).

6. Meyer DE; Li M; Ingwersen WW Analyzing Economy-Scale Solid Waste Generation Using the
United States Environmentally-Extended Input-Output Model. Resour. Conserv. Recycl 2020, 157,
104795. [PubMed: 32831477]

7. Yang Y; Ingwersen WW; Meyer DE Exploring the Relevance of Spatial Scale to Life Cycle
Inventory Results Using Environmentally-Extended Input-Output Models of the United States.
Environ. Model. Softw 2018, 99, 52–57. [PubMed: 29456453]

8. Ingwersen W; Li M; Yang Y United States Environmentally-Extended Input-Output
(USEEIO) Modeling Framework; Zenodo, 2018. Available online: https://zenodo.org/record/
1248955#.Ymos59NBxPY (accessed on 14 March 2022).

9. Young B; Ingwersen WW; Bergmann M; Hernandez-Betancur JD; Ghosh T; Bell E; Cashman S
A System for Standardizing and Combining U.S. Environmental Protection Agency Emissions and
Waste Inventory Data. Appl. Sci 2022, 12, 3447.

10. Cooney G; Skone TJ; Jamieson M; Zaimes GG Open-Source Life Cycle Baseline for Electricity
Consumption in the United States—LCI Public Release. In Proceedings of the AGU Fall Meeting
Abstracts, San Francisco, CA, USA, 9–13 December 2019; Volume 2019.

11. Ingwersen W Open Source Tool Ecosystem for Automating LCA Model Creation and
Linkage; U.S. Environmental Protection Agency: Washington, DC, USA. Available online: https://
cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=350369 (accessed on 21 October 2021).

12. Wickham H; Bryan J R Packages, 2nd ed.; O’Reilly: Sebastopol, CA, USA, 2021. Available
online: https://r-pkgs.org/ (accessed on 14 March 2022).

13. GitHub, Inc. GitHub Actions Documentation. Available online: https://docs.github.com/en/actions
(accessed on 14 March 2022).

14. Wickham H; Bryan J; Barrett M Usethis: Automate Package and Project Setup; Comprehensive
R Archive Network (CRAN), 2021. Available online: https://CRAN.R-project.org/package=usethis
(accessed on 14 March 2022).

15. Birney C; Young B; Conner M; Specht J; Li M; Ingwersen W FLOWSA v1.0.1; Zenodo. 2021.
Available online: https://zenodo.org/record/6370115#.Ymn_6NNBzIU (accessed on 14 March
2022).

16. Young B; Srocka M; Ingwersen W; Morelli B; Cashman S; Henderson A LCIA Formatter. J. Open
Source Softw 2021, 6, 3392.

17. Li M; Ingwersen W; Young B; Vendries J; Birney C useeior v1.0.0 2021. Available online: https://
zenodo.org/record/6370101#.Ymoz19NBxPY (accessed on 14 March 2022).

18. Ingwersen W; Li M; Young B; Vendries J; Birney C USEEIO v2.0, The U.S. Environmentally-
Extended Input-Output Model v2.0. Sci. Data 2022.

19. U.S. EPA US Environmentally-Extended Input-Output (USEEIO) Technical Content.
Available online: https://www.epa.gov/land-research/us-environmentally-extended-input-output-
useeio-technical-content (accessed on 26 January 2021).

20. U.S. Bureau of Economic Analysis Input-Output Accounts Data. Available online: https://
www.bea.gov/industry/input-output-accounts-data (accessed on 28 January 2021).

21. Frasca M Logging: R Logging Package; Comprehensive R Archive Network (CRAN), 2019.
Available online: https://CRAN.R-project.org/package=logging (accessed on 14 March 2022).

22. Li J Configr: An Implementation of Parsing and Writing Configuration File (JSON/INI/YAML/
TOML); Comprehensive R Archive Network (CRAN). 2020. Available online: https://CRAN.R-
project.org/package=configr (accessed on 14 March 2022).

23. U.S. Census Bureau 2012 NAICS to 2007 NAICS Concordance. Available online: https://
www.census.gov/naics/concordances/2012_to_2007_NAICS.xls (accessed on 5 March 2021).

24. U.S. Census Bureau 2–6 Digit 2012 NAICS Code File. Available online: https://www.census.gov/
naics/2012NAICS/2-digit_2012_Codes.xls (accessed on 5 March 2021).

Li et al. Page 25

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://zenodo.org/record/6370073#.YmoAQdNBzIU
https://zenodo.org/record/6370073#.YmoAQdNBzIU
https://towardsdatascience.com/python-vs-r-for-data-science-6a83e4541000
https://towardsdatascience.com/python-vs-r-for-data-science-6a83e4541000
https://zenodo.org/record/1248955#.Ymos59NBxPY
https://zenodo.org/record/1248955#.Ymos59NBxPY
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=350369
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=350369
https://r-pkgs.org/
https://docs.github.com/en/actions
https://CRAN.R-project.org/package=usethis
https://zenodo.org/record/6370115#.Ymn_6NNBzIU
https://zenodo.org/record/6370101#.Ymoz19NBxPY
https://zenodo.org/record/6370101#.Ymoz19NBxPY
https://www.epa.gov/land-research/us-environmentally-extended-input-output-useeio-technical-content
https://www.epa.gov/land-research/us-environmentally-extended-input-output-useeio-technical-content
https://www.bea.gov/industry/input-output-accounts-data
https://www.bea.gov/industry/input-output-accounts-data
https://CRAN.R-project.org/package=logging
https://CRAN.R-project.org/package=configr
https://CRAN.R-project.org/package=configr
https://www.census.gov/naics/concordances/2012_to_2007_NAICS.xls
https://www.census.gov/naics/concordances/2012_to_2007_NAICS.xls
https://www.census.gov/naics/2012NAICS/2-digit_2012_Codes.xls
https://www.census.gov/naics/2012NAICS/2-digit_2012_Codes.xls

25. Horowitz KJ; Planting MA Concepts and Methods of the U.S. Input-Output Accounts; U.S.
Bureau of Economic Analysis: Suitland, MD, USA, 2009. Available online: https://www.bea.gov/
resources/methodologies/concepts-methods-io-accounts (accessed on 14 March 2022).

26. Miller R; Blair P Input-Output Analysis: Foundations and Extensions, 2nd ed.; Cambridge
University Press: Cambridge, UK, 2009.

27. Edelen A; Hottle T; Cashman S; Ingwersen W The Federal LCA Commons Elementary Flow
List: Background, Approach, Description and Recommendations for Use; U.S. Environmental
Protection Agency: Washington, DC, USA, 2019. Available online: https://cfpub.epa.gov/si/
si_public_record_report.cfm?dirEntryId=347251 (accessed on 14 March 2022).

28. Zhuang X; Balassiano K EPA Data Commons v0.1. Available online: http://edap-data-
commons.s3.amazonaws.com/data_commons_search.html (accessed on 12 December 2021).

29. Bare J TRACI 2.0: The Tool for the Reduction and Assessment of Chemical and Other
Environmental Impacts 2.0. Clean Technol. Environ. Policy 2011, 13, 687–696.

30. Huijbregts MAJ; Steinmann ZJN; Elshout PMF; Stam G; Verones F; Vieira MDM,; Hollander
A; Zijp M; van Zelm R ReCiPe 2016: A Harmonized Life Cycle Impact Assessment Method
at Midpoint and Endpoint Level Report i: Characterization. Int. J. Life Cycle Assess 2017, 22,
138–147.

31. Srocka M; Ingwersen WW USEEIO API v1.0. 2019. Available online: https://github.com/USEPA/
useeio_api/ (accessed on 14 March 2022).

32. Ciroth A ICT for Environment in Life Cycle Applications openLCA—A New Open Source
Software for Life Cycle Assessment. Int. J. Life Cycle Assess 2007, 12, 209.

33. Young B; Srocka M; Ingwersen W; Morelli B; Cashman S; Henderson A TRACIv2.1 for
FEDEFLv1; U.S. Environmental Protection Agency: Washington, DC, USA, 2021.

Li et al. Page 26

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://www.bea.gov/resources/methodologies/concepts-methods-io-accounts
https://www.bea.gov/resources/methodologies/concepts-methods-io-accounts
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=347251
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=347251
http://edap-data-commons.s3.amazonaws.com/data_commons_search.html
http://edap-data-commons.s3.amazonaws.com/data_commons_search.html
https://github.com/USEPA/useeio_api/
https://github.com/USEPA/useeio_api/

Figure 1.
Total impact coefficients by commodity for acidification potential, greenhouse gases, and

freshwater withdrawals.

Li et al. Page 27

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Figure 2.
Top 20 commodities by composite impact score for USEEIOv2.0.1s calculated using the

total US production demand vector and the direct perspective (left), and using the total

US consumption demand vector and the final perspective (right). Darker shade indicates a

relatively higher score. Color of text on the vertical axis follows the color grouping in Figure

1.

Li et al. Page 28

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Li et al. Page 29

Table 1.

Built-in models in useeior v1.0.0. All models are single-region USEEIO models, with the 50 states of the US

modeled as one region. IO data used in all models are before BEA’s redefinition and in producer price.

Model Name Description Number of
Sector

Number of
Impact

Category

IO
Data
Year

Environmental
Data Years

USEEIOv2.0 A detail level commodity model with full life
cycle inventory 405 23 2012 2010–2017

USEEIOv2.0-411
A detail level commodity model with waste
sector disaggregation and full life cycle
inventory

411 (404 + 7) 23 2012 2010–2017

USEEIOv2.0.1-411

A detail level commodity model with waste
sector disaggregation and full life cycle
inventory, including updated satellite tables with
UUIDs

411 (404 + 7) 23 2012 2010–2017

USEEIOv2.1-422
A detail level commodity model with waste
sector disaggregation and electricity sector
aggregation and disaggregation

422 (403 +
19) 23 2012 2010–2017

USEEIOv2.0 GHG A detail level commodity model with life cycle
inventory of greenhouse gas (GHG) 405 1 2012 2016

USEEIOv2.0-i-GHG A detail level industry model with life cycle
inventory of greenhouse gas 405 1 2012 2016

USEEIOv2.0-s-GHG A summary level commodity model with life
cycle inventory of greenhouse gas 73 1 2012 2016

USEEIOv2.0-79-GHG
A summary level commodity model with waste
sector disaggregation and life cycle inventory of
greenhouse gas

79 1 2012 2016

USEEIOv2.0-is-GHG A summary level industry model with life cycle
inventory of greenhouse gas 71 1 2012 2016

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Li et al. Page 30

Table 2.

Contribution from top 5 flows to total acidification potential in the Utilities sector.

Flow Contribution

Sulfur dioxide/emission/air/kg 56.1%

Nitrogen dioxide/emission/air/kg 40.0%

Ammonia/emission/air/kg 2.8%

Sulfuric acid/emission/air/kg 0.7%

Hydrofluoric acid/emission/air/kg 0.2%

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Li et al. Page 31

Table 3.

Contribution from top 5 sectors to direct freshwater withdrawals in the food and beverage and tobacco

products sector.

Sector Contribution

111CA/US—Farms 92.1%

22/US—Utilities 4.7%

311FT/US—Food and beverage and tobacco products 1.6%

113FF/US—Forestry, fishing, and related activities 0.9%

332/US—Fabricated metal products 0.1%

Appl Sci (Basel). Author manuscript; available in PMC 2022 June 08.

	Abstract
	Introduction
	Background
	Overview

	Materials & Methods
	Model Initialization
	Economic Input–Output Data
	Environmental Data and Satellite Tables
	Indicators and Life Cycle Impact Assessment Characterization Factors
	Final Demand
	EEIO Matrices Construction
	Matrix Price Adjustment
	Model Calculation
	Model Validation
	Model Exporting
	Model Visualization
	Model Comparison

	Results
	Conclusions
	References
	Figure 1.
	Figure 2.
	Table 1.
	Table 2.
	Table 3.

