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Abstract
As a substrate for function, large-scale brain structural networks are crucial for fundamental and systems-level
understanding of primate brains. However, it is challenging to acquire a complete primate whole-brain structural
connectome using track tracing techniques. Here, we acquired a weighted brain structural network across 91 cortical
regions of a whole macaque brain hemisphere with a connectivity density of 59% by predicting missing links from the
CoCoMac-based binary network with a low density of 26.3%. The prediction model combines three factors, including spatial
proximity, topological similarity, and cytoarchitectural similarity—to predict missing links and assign connection weights.
The model was tested on a recently obtained high connectivity density yet partial-coverage experimental weighted network
connecting 91 sources to 29 target regions; the model showed a prediction sensitivity of 74.1% in the predicted network.
This predicted macaque hemisphere-wide weighted network has module segregation closely matching functional domains.
Interestingly, the areas that act as integrators linking the segregated modules are mainly distributed in the frontoparietal
network and correspond to the regions with large wiring costs in the predicted weighted network. This predicted weighted
network provides a high-density structural dataset for further exploration of relationships between structure, function, and
metabolism in the primate brain.

Key words: hemisphere-wide weighted network, link prediction, macaque brain connectome, segregation and integration,
structural network
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Introduction

A complex brain network consisting of a large number of
anatomical interareal pathways forms the structural substrate
of brain functional performance (Purves et al. 2004; Bressler
and Menon 2010; Park and Friston 2013). Research into the
fundamental and systems-level mechanisms of brain functional
performance and cognitive behavior depends heavily on the
accurate and complete data of the structural brain connectome
(Fuster 2000; Miller and Cohen 2001; Jacobs and Scheibel 2002;
Elston 2003; Kaiser 2007; Spruston 2008; Fornito et al. 2013;
Harris and Shepherd 2015; Misic et al. 2015; Bratislav et al.
2016; Luebke 2017). A large amount of analysis and modeling
work have been carried out on the brain connectome in the last
decade to investigate the structure-function relationship of the
brain across various species (Sporns et al. 2004; Markram 2006;
Elston 2007; Honey et al. 2007; Sporns 2014; Chaudhuri et al.
2015); nonetheless, there remains a need for a more complete
and reliable mesoscopic anatomical connectome of the primate
brain across cortical regions, and the search for this information
is a major challenge in the field. Thus, one of the key issues in
several large brain projects is to obtain a complete mesoscopic
mapping of large-scale brain connectivity (Koch and Reid 2012;
Kandel et al. 2013; Van Essen et al. 2013; Sejnowski et al. 2014;
Alivisatos et al. 2015; Jorgenson et al. 2015; Mainen et al. 2016;
Poo et al. 2016).

The macaque monkey, given its phylogenetic proximity to
humans (Kaas 1992; Goldman-Rakic 1995; Preuss 1995; Rakic
1995; Goldman-Rakic 1996; Kaas 1997; Goldman-Rakic 1999;
Preuss 2000; Rakic 2009; Goldman-Rakic 2011; Bianchi et al.
2013), is the ideal animal species to explore the structural and
functional mechanisms of the primate brain (Poo et al. 2016).
Invasive track-tracing techniques applicable to animal brains
can detect the axon projections among brain regions more
reliably than the noninvasive techniques (Oh et al. 2014; Rubinov
et al. 2015). Previously, data on the macaque connectome
were collated into the CoCoMac dataset (Kotter 2004) by
reviewing the projections identified in numerous anterograde
and retrograde tracing experiments from independent studies
(Lanciego and Wouterlood 2011). However, the different datasets
have inconsistency for axon projections, even for the network
statistical properties (Bezgin et al. 2012), and thus it is highly
challenging to combine different datasets to construct the
whole brain connectome. Yet, some datasets are relatively more
consistent than other (Bezgin et al. 2012), such as datasets
of FV91 (Felleman and Van Essen 1991), LV00 (Lewis and
Van Essen 2000a, 2000b), and PHT00 (Paxinos et al. 2000).
Notably, FV91 is a systematic analysis of macaque anatomical
connections proposing the hierarchical structure based on the
laminar pattern, and most broadly applied afterwards (Buzsaki
2006; Bullmore and Sporns 2009; Friston 2010). Previous work
combined the FV91 dataset with LV00, two consistent maps
to build the macaque cortical network (Kaiser and Hilgetag
2006), which was further improved by combining PHT00 to
overcome the relative rough area division for motor cortex
(Chen et al. 2013, 2017). This previously applied dataset (dataset
1, D1) combining three datasets and covering the whole brain
has a connectivity density of approximately 26.3%. However,
the CoCoMac dataset only provides a qualitative assessment of
connection weight, using categories such as weak, moderate,
and strong (Bakker et al. 2012). D1 provides structural network
with a rather complete coverage of cortical regions and thus
has been widely used in the analysis and modeling of brain

networks, but the crude weight information is seldom used
in the analysis (Honey et al. 2007; Sporns et al. 2007; Chen
et al. 2013, 2017). Meanwhile, the CoCoMac dataset was not
acquired systematically under uniform experimental conditions
but collated from various studies with different parcellation
schemes (Markov, Ercsey-Ravasz, et al. 2014).

Recently, an improved retrograde tracing method has
been applied to macaque monkeys to systematically obtain
projections and corresponding quantitative projection strength
(connection weight) from 91 areas to 29 injection areas of one
hemisphere to form a new dataset (dataset 2, D2) (Markov,
Ercsey-Ravasz, et al. 2014). Importantly, this improved tract-
tracing method has revealed many weak projections. The
binary connectivity density of 61.2% (whether two areas are
connected or not, irrespective of the projection strength) in
this new weighted directed91 × 29 network is much higher
than the value in the CoCoMac dataset (D1), overturning the
view of brain as a sparse network (Markov, Ercsey-Ravasz, et al.
2014). The aforementioned quantitative projection weights
span five orders of magnitude (Markov, Ercsey-Ravasz, et al.
2014), statistically decaying with projection distance. However,
these high-resolution anatomical data are still far from being
complete because they cover only approximately one-third
(29/91 regions) of the cortical areas. The connectivity data of 29
target areas of the hemisphere were obtained through labor-
intensive histology and imaging procedures in 28 macaque
monkeys (Markov, Ercsey-Ravasz, et al. 2014). It would be highly
labor intensive, time consuming, and costly to obtain complete
cortical coverage, which would require sacrificing a large
number of macaque monkeys. Therefore, there are currently two
distinct datasets on the connectivity of the macaque brain: 1)
the CoCoMac-based network (D1), which has high brain coverage
but low connectivity density and crude weight information,
and 2) a directed and weighted 91 × 29 network (D2), which is
more accurate but has only partial cortical coverage. Despite
being incomplete, the directed and weighted partialnetworkD2

has provided new insights into the organization of the brain
(Markov, Vezoli, et al. 2014; Song et al. 2014; Chaudhuri et al.
2015; Donahue et al. 2016; Mejias et al. 2016). In the present
era, it will be of great value to use the two existing datasets to
obtain a more complete, high-density, directed, and weighted
connectome across a whole macaque brain hemisphere before
proceeding with expensive experiments to complete it.

In this work, we propose a three-factor multiple-iteration
predictive model to map the hemisphere-wide weighted
structural network based on the previous CoCoMac dataset D1

(Kotter 2004; Chen et al. 2013, 2017). The high-density, weighted,
yet partial macaque brain structural network D2, showing
projections from 91 regions to 29 regions (Markov, Ercsey-Ravasz,
et al. 2014), is used to calibrate and optimize the parameters
of the predictive model and to examine the sensitivity and
specificity of the predicted links and connection weights. The
predictive model here combines three factors that have been
found to relate to brain connectivity, including 1) “spatial
proximity,” measuring the spatial distance between two regions
(Ercsey-Ravasz et al. 2013); 2) “topological similarity,” measuring
the similarity of the connection profiles of two regions in
the network (Song et al. 2014); and 3) “cytoarchitectural
similarity,” describing the relationship between the den-
sity and anatomical complexity (or computational capacity)
of neurons in the two regions (Elston et al. 1999; Elston
2000; Elston et al. 2001; Elston and Rockland 2002; Elston
et al. 2005; Herculano-Houzel et al. 2007; Collins et al. 2010;
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Beul et al. 2017). First, we use the model to acquire the
predicted binary network Pb reaching the same connectivity
density (61.2%) in the 91 × 29subsystem as that in D2 (Markov,
Ercsey-Ravasz, et al. 2014). Second, we assign all connection
weights in Pb based on the prediction scores to obtain weighed
network Pw. This new predicted weighed network Pw reveals
some important features, such as the following: 1) structural
modules closely match anatomical functional domains; 2) the
connector regions with high participation coefficients (PCs)
among anatomical functional domains are mainly distributed
in the frontoparietal network (FPN); and 3) the connector
regions are those with large total axon projection length
(wiring cost).

Materials and Methods
Macaque Brain Connectome

Two datasets are applied in this work to acquire a large-scale,
high-density macaque structural connectome. D1 is the previous
brain connectivity dataset from CoCoMac (“http://cocomac.org”)
(Kotter 2004), which has the complete cortical coverage across
the macaque hemisphere but a low connectivity density of
26.3%. In our previous work (Chen et al. 2013, 2017), we collected
and constructed a binary brain network with 2512 connections
among 103 regions (i.e., a 103×103 binary matrix) from CoCoMac.
D2, with partial cortical coverage, contains the projections from
91 regions to 29 regions as identified by systematic exper-
iments with improved retrograde tracing methods (Markov,
Ercsey-Ravasz, et al. 2014). With the help of the new method, D2

achieves a connectivity density of 61.2%, much higher than that
of D1, and contains the projection weights (extrinsic fraction of
weighted neurons, FLNe), which is not presented in D1. FLNe is
defined as the number of labeled neurons in a source region i
divided by the total number of labeled neurons from all source
regions extrinsic to a targeted region j injected with the tracers.

In this work, we developed a three-factor multiple-iteration
predictive model to predict the missing links from D1 and
assigned all projection weights to form a new weighted connec-
tome network Pw (see below for the predictive model). The model
was calibrated according to D2. The three connectomes D1, D2,
and Pw were all registered on the same template of 91 regions
as the M132 atlas, covering the whole hemisphere shared by the
CARET database (http://sumsdb.wustl.edu/sums/index.jsp). We
used the M132 atlas (Paxinos et al. 2000; Saleem and Logothetis
2012) as a reference for the 3D coordinates of all voxels. The
average surface 3D coordinate of the voxels of a cortical region
in the atlas was taken as the spatial position of the brain region.
All maps in this work were displayed on the M132 atlas using
the BrainNet viewer (Xia et al. 2013).

We also used the neuron densities of two regions as one of
the factors to predict the missing links between them, as neuron
density can be used to characterize cytoarchitectural similarity
between the two regions (Elston et al. 2005). Neuron density was
reported in a series of previous publications (Dombrowski et al.
2001; Elston and Rockland 2002; Barbas et al. 2005; Karaoglu et al.
2005; Collins et al. 2010; Elston et al. 2010; Elston, Benavides-Pic-
cione, et al. 2011; Elston, Oga, et al. 2011; Amunts and Zilles
2012; Young et al. 2013; Herculano-Houzel et al. 2014; Hercu-
lano-Houzel et al. 2015; van den Heuvel et al. 2015; Collins et al.
2016). We relied mainly on a published dataset from a previous
study (Dombrowski et al. 2001); this dataset was also applied in
(Beul et al. 2017).

Further details of data and data processing are presented in
Supplementary Material I.

Link Prediction Model

Three Factors Involved in Link Prediction
The missing links were predicted for unconnected pairs of
regions in D1 with high prediction scores in the model. The
prediction score Pijindicates the probability of connectivity
between regions i and j in terms of three factors: spatial
proximity Dij, topological similarity Tij, and cytoarchitectural
similarity Cij. Previous studies found that the connectivity
probability between a pair of regions follows a statistical pattern
of exponential decay with the spatial distance between the
corresponding regions (Song et al. 2014). Therefore, we took

the spatial proximity Dij as Dij

(
α
)

= e−α∗dij , where α is the

decay parameter and dij, the distance between regions i to
j, is measured by the Euclidean distance of their respective
centers of mass. Furthermore, the connectivity probability was
assumed to be proportional to the topological similarity, which is
quantified by the portion of input or output connections held in
common by a pair of regions (Song et al. 2014). Here, we applied
13 different methods to measure the topological similarity Tij

(see Supplementary material II.1) and selected the best among
them by calibration with dataset D2. Recent studies have also
revealed that cytoarchitectural features, particularly the neuron
density, were strongly associated with connections between
different regions (Beul et al. 2017). Pairs of regions with similar
neuron densities have a high probability of being connected,
independent of the influence of spatial proximity (Hilgetag
and Grant 2010; Beul et al. 2017). We applied the measure of
cytoarchitecture similarity used in a previous study (Beul et al.
2017), Cij = NDi/NDj, where NDi and NDj represent the neuron
density of source region i and target region j, respectively (see
map of neuron density in Supplementary Fig. 1). Taking these
three factors together into account, the connectivity probability
Pij (prediction score) in the predictive model is subsequently
defined as

Pij ∝ Tij (γ ) ∗ Dij (α) ∗ Cij
β . (1)

Here γ = 1, 2, . . . 13 different measures of topological similarity
(Supplementary Table 1). The parameters α, β, and γ were opti-
mized by calibration with dataset D2. The predictive model is
described in further detail in Supplementary Material II.1.

Prediction Process
The predictive model contained a multiple iteration process. The
missing links were predicted and added into the initial network
D1 in batches after each of the multiple iteration steps. The
multiple iteration process terminated when the connectivity
density in the corresponding subset (91×29) achieved 61.2%,
the same as that of D2. For the 91×29 subset, there are 888
missing links in D1 compared with D2. Setting the total iteration
steps as t, at each iteration step, we predicted a number of
new links M1 across the whole hemisphere (i.e., in the 91×91
matrix) to guarantee M0 = 888/t links generated in the 91×29
subset at each iteration. Thus, M1 may vary slightly from step
to step. For the lthiteration step, the prediction scores for the
remaining unconnected pairs of regions were calculated based

on the new connectome network (El−1) up to the
(
l − 1

)
th step,

which included all the newly added links from the previous l − 1
steps. At each step l, the M1 connections with the top prediction

http://cocomac.org
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scores were chosen. By varying the values of parameters (α, β,
and γ ) to adjust different combinations of the three factors in
equation (1), we acquired different groups of M1tentative links.
The M1 links with the highest prediction precision were added
into the network El−1 to produce the new network El. After a
total of t iteration steps, the process yielded the final binary
structural connectome (Pb) with high connectivity density; this
connectome included the existing links in the initial network
D1 and all the links predicted during the iterations. Different
total numbers of iteration steps t were considered, and the one
with the highest sensitivity in the final predicted network (Pb)
was used.

Assigning Connection Weights

The experimentally identified connection weights in D2 were
highly heterogeneous, with values spanning five orders of mag-
nitude (Ercsey-Ravasz et al. 2013) (Fig. 5A). Thus, the predicted
binary network was not accurate and could be misleading in
practical application because it treats weak connections and
strong connections as equally important. As shown in previous
studies (Ercsey-Ravasz et al. 2013; Song et al. 2014; Beul et al.
2017), the three factors of spatial proximity, topological similar-
ity, and cytoarchitectural similarity are related not only to con-
nectivity probability but also to the connection weights (FLNe).
Thus, we also applied equation (1) to assign weights for all links
in the predicted binary network (Pb). Since FLNe follows different
forms of exponential decay at various distance bins from the
experimental dataset (Fig. 5A), we optimized the parameters in
equation (1) for links in different distance bins to refine weight
assignment. Initially, we assigned weights to all connections
in Pbaccording to the prediction scores based on equation (1),
where parameters were chosen when the correlation between
the assigned and experimental weights achieves the maximal
value for the overlapping connections in Pb and D2. Then, we
refined the prediction of weights by allowing different model
parameters for connections in the n different distance bins to
further increase the correlation values. Different distance bin
numbers n were considered, and the one generating the highest
correlation value was used.

Validation Analysis

To evaluate the reliability of the model prediction, we examined
the influences of different strategies for measuring topologi-
cal similarity (see Supplementary Material II.1) and different
parameters for predicting binary connection and connection
weights. The validation analysis is described in further detail
below.

For the multiple iteration prediction of binary connections,
we compared the prediction performance in the training and
testing groups to avoid overfitting and evaluated the sensitivity
by studying the influence of total iteration steps t. 1) For training
and testing of the predictive model, we randomly separated D2

into two subsets and repeated the random division to obtain
500 realizations. For each training subset at different realiza-
tions, we applied the multiple-iteration predictive model and
conducted the receiver operating characteristic (ROC) analysis
(Fawcett 2006) (Supplementary Fig. 2). 2) To further confirm the
reliability of the predictive model, we evaluated the similarity
of sensitivity in the 91×14 training subset and 91×15 testing
subset. Moreover, we applied the Kolmogorov–Smirnov test to
quantify the discrepancy in the sensitivity distributions (across

the 500 realizations) between the training and testing subsets
(Supplementary Fig. 3). 3) We further compared the precision
and AUC of the prediction model by three factors and the models
from different combinations of two factors or the single factor
(Supplementary Figs 4 and 5). 4) We conducted separate analyses
under different total iteration steps t to search for the optimal
t value that maximizes the sensitivity of the final predicted
network (Supplementary Fig. 6). After determining the number
of iteration steps t, we applied the validated model to make
predictions from D1 using all of D2 (91×29) as the training
set. Further details on validating and testing the model are
presented in Supplementary Material III.

For the weight assignments, we evaluated the influence of
the number of distance bins n. We examined the weight assign-
ment by training (91 × 14) and testing (91 × 15) samples from
D2 at different numbers of distance bins n. After comparing
the correlation between the experimental and assigned weights
for correctly predicted links in the testing sample at different
numbers n of distance bins, we acquired the optimal value
of n (Supplementary Fig. 7). After n was determined, weight
assignment was applied to all the links in the predicted binary
network Pb, using the weight of the overlapping links in all of D2

(91×29) as the training set.

Network Measures
After obtaining the predicted hemisphere-wide, high-density
weighted network Pw, we explored the prominent features of
segregation and integration organization in the network and
contrast to the initial CoCoMac-based networkD1. We applied
and compared the following broadly used network properties to
reveal the features.

Modularity.. We adopted the well-established community
detection algorithm (Newman 2006) to find module partition
by maximizing the modularity, defined as

Q = 1
4m

∑
ij

(
Wij − kikj

2m

)
δcij , (2)

where Wij represents the weighted connections between regions
i and j, of which the weighted degrees (total output weight) of
the two regions are denoted by ki and kj, m represents the total
weights for all edges in the network, and δcij = 1if the two regions
belong to the same module C; otherwise, δcij = 0.

Participation coefficient.. This variable measures how uniformly
the connections for a given region i are distributed among
different modules, defined as (Newman 2006)

PCi = 1 −
∑

C

(
kiC

ki

)2

, (3)

where kiC indicates the total weights of connections from region
i to regions in module C, among the total weighted connections
ki of the region (e.g., its degree) in the whole network (Guimera
and Amaral 2005). A region with a PC close to 0 is unimodal (with
connections just to one module), and one with a PC close to 1.0
is a connector in the network involving functional integration
among the modules.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa060#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa060#supplementary-data
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https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa060#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa060#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa060#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa060#supplementary-data
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Wiring cost. This variable estimates the total length of the axon
projections from region i to others, defined as

WCi =
∑

j
Wij × dij, (4)

where dij is the Euclidean distance between region i and j.
The Euclidean distance is supposed to be an approximation
of the length of the fiber projection broadly applied in previ-
ous studies (Bullmore and Sporns 2012; Harriger et al. 2012).
Geodesic distance measures the length of a shortest trajec-
tory going through white matter between barycenters from 91
regions to 29 regions (Markov et al. 2013), which could provide
a good estimation of the fiber length. For this subnetwork, the
Euclidean distance is highly correlated to the geodesic distance
(r = 0.91, P < 1.0 × 10−15). Currently, it is still lacking for the
geodesic distance for the whole brain. Moreover, our analysis
of human brain showed that the streamline length between
the pairs of brain regions is strongly correlated with Euclidean
distance within each hemisphere (left hemisphere: r = 0.89, P <

1.0 × 10−15; right hemisphere: r = 0.83, P < 1.0 × 10−15). Thus,
Euclidean distance is also reliable as a good approximation
compared with geodesic distance. This is plausible, since the
wiring cost constraint plays an important role in shaping the
connectivity of fiber among different regions in mammal brains;
thus the fiber tracts tend to follow relatively straight lines in
the white matter to minimize the total projection length under
wiring cost constraint. Therefore, in this study, we represent the
streamline length with Euclidean distance as in many previous
studies (Bullmore and Sporns 2012), since the information about
the streamline is missing for both the existing connections
in D1 and the newly predicted connections. With the weights
(extrinsic fraction of weighted neurons, FLNe) reflecting the
axon projection number (Markov, Ercsey-Ravasz, et al. 2014), the
wiring cost defined in equation (4) indicates the total length of
the axon projections from region i to other regions in the whole
network.

In addition to the Materials and Methods summarized above,
further details are presented in Supplementary Material.

Results
The Final Binary Network (Pb) Predicted by the
Predictive Model

First, we validated the three-factor, multiple-iteration predictive
model on the training and testing groups from the 91 × 29
experimental networkD2 (see Supplementary Material I) and
determined the best number of iteration steps t (iteration steps
t = 12, see Supplementary Fig. 6 for the validation of the iteration
steps). Then, we applied the predictive model trained by the
whole 91 × 29 experimental networkD2 to acquire the large-
scale network with high connectivity density. Starting from the
original binary network from CoCoMac dataset D1, M1 of the
most likely links (corresponding to the highest prediction scores)
are predicted and added to the 91×91 network so that exactly
M0 = 888

t links are added to the 91 × 29 subset at each iteration
step; thus, M1 may have some variation from step to step during
the iteration. The process repeats to predict another M1 links
from the updated network until the density of the final network
for the 91 × 29subsystem reaches 61.2%, the same density
of D2 (see Materials and Methods). The precision (whether a
predicted link is correct among all the predicted links; see

Supplementary Material) of the M0 newly predicted links in the
subset will decrease as the connectivity density of the predicted
network increases (Fig. 1A). Nevertheless, when the connectivity
density of the 91×29 subset in the predicted network reaches
61.2%, the precision for the newly predicted links remains at a
high level of 74.1%. This result from the combination of three
factors is clearly higher than that from the models using only
a single factor (spatial proximity 67.3%, topological similarity
65.0%, and cytoarchitectural similarity 67.4%; see Fig. 1A), and
is also higher than the models using different combinations
of two factors (topological similarity and spatial proximity:
71.8%; cytoarchitecture similarity and spatial proximity: 72.1%;
cytoarchitecture similarity and topological similarity: 72.1%; see
Supplementary Fig. 4 for the plots of all the models). We have
compered the goodness of the models by AUC. The three-factor
model has AUC = 0.75, P < 1.0 × 10−19 when compared with the
random benchmark (Supplementary Fig. 2). Compared with
the three-factor model, the two-factor models have smaller
values (AUC = 0.69, P < 1.0 × 10−19 for topological similarity and
spatial proximity; AUC = 0.72, P < 1.0 × 10−19 for cytoarchitecture
similarity and spatial proximity; and AUC = 0.72, P < 1.0 × 10−19

for cytoarchitecture similarity and topological similarity). AUC
for single factor is even smaller (AUC = 0.67, P < 1.0 × 10−15 for
spatial proximity; AUC = 0.67, P < 1.0 × 10−19 cytoarchitecture
similarity; and AUC = 0.61, P < 0.001 for topological similarity).
The ROC curves for two factors and single factors are shown
in Supplementary Figure 5. The whole predicted network Pb

combining those newly predicted links with the originally
existing ones of the initial CoCoMac-based network D1 is shown
in Figure 2B (and Supplementary Fig. 8 for more details of
correctly and wrongly predicted links). The precision of Pb in the
91×29 subnetwork is rather stable with respect to increasing
connectivity density, varying between 74% and 80% (Fig. 1B,
red curve), reaching 74.5% in the final predicted networkPb.In
addition, we investigated the weight recovery rate (rweight) by
summing the weights for the correctly predicted links over
the total weights for all links in the 91 × 29 subset D2 (see
Supplementary Material II.2). In the early stage of iterations (up
to an overall density of approximately 35%), the predicted links
have relatively high prediction scores, and they also have high
precision compared with the experimental data in D2 (Fig. 1A);
rweight accordingly increases rapidly, suggesting that those early-
predicted links have large weights in D2 (Fig. 1B). The increase
slows down considerably with further prediction of those links
with relatively weak weights. Interestingly, the weight recovery
rate (rweight) of the final predicted binary network Pb comes to
96.4%, much higher than the aforementioned binary precision
(74.5%), suggesting that the high-weight links have been largely
recovered in Pb and that the unrecovered links are rather weak
(representing approximately 100%–74.5% ∼ 25.5% of the total
links but occupying only 4.6% of the total weight).

This work predicted the missing links from the CoCoMac-
based network (Fig. 2A), thus generating predicted network
across the whole hemisphere (Fig. 2B) with the same con-
nectivity density (61.2% in the 91 × 29 subsystem) as the
high-resolution 91 × 29 experimental network D2 (Markov,
Ercsey-Ravasz, et al. 2014), along with high precision and a high
weight recovery rate. The predicted hemisphere-wide 91 × 91
network Pb reaches a density of 59%, more than twice the density
of 26.3% in the initial CoCoMac-based network D1.If we consider
a predicted network only up to an overall density of 40% (vertical
black lines in Fig. 1), the precision for the newly predicted links
is 88% (Fig. 1A), and the link precision and weight recovery rate
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Figure 1. The precision and weight recovery rate by the predictive model. The predicted network in the 91 × 29 subsystem is compared with the corresponding high-
resolution 91 × 29 experimental network D2. (A) The precision (correctness of predicted links) in the predicted network based on different predictive models (three

factors vs. single factor) with respect to connectivity density for the 91 ×29 subsystem. The gray dashed line is a random benchmark (including error bars from 5000
independent realizations of randomly adding links). (B) The precision (red line) and the weight recovery rate (rweight, blue line) of the predicted network after combining
with the initial CoCoMac-based network D1, versus the overall connectivity density in the whole 91 ×91 network. In both subplots, the black vertical line indicates the
overall connectivity density of the 91 × 91 network at 40%.

Figure 2. Comparison of the CoCoMac-based network D1 across the whole hemisphere before prediction (density 26.3%) (A) and the final predicted network Pb (density
59%) from the three-factor predictive model (B). Each dot shows a binary link from region i (row) to region j (column). The areas are grouped according to functional
systems: V (visual), S (somatosensory), M (motor), T (temporal), and F (frontal).

are 79% and 90%, respectively, when the existing links in the
CoCoMac data D1 are included (Fig. 1B). Thus, we have added
1135 new and important links [(0.4 − 0.263) × 91 × 91 = 1135]
with very high confidence (see Supplementary Fig. 8B for this
network). Experimentally identifying so many new links across
the hemisphere would be highly labor intensive and costly.

Next, we further evaluated the performance of prediction
from two aspects, namely weight and spatial distance of the

connections in four quadrants (Fig. 3A), by evaluating the sen-
sitivity (ratio of correctly predicted links [true positive, TP] over
all the links in D2, see Supplementary Material II.2) of the pre-
dicted networks with three factors compared with only a sin-
gle factor. In the three-factor predictive model, the sensitiv-
ity for the predicted high-weight links (FLNe > 0.0015, half of
the weight range on a log scale) (right quadrants of Fig. 3A) is
0.86, while the sensitivity for low-weight links (FLNe < 0.0015)
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is clearly lower at 0.67 (Fig. 3B). For both groups, the sensitivity
from the three-factor model is higher than that from single-
factor models (spatial proximity 0.84 and 0.62; topological sim-
ilarity 0.80 and 0.63; and cytoarchitectural similarity 0.79 and
0.65, respectively, for high- and low-weight links). These results
further validate that the prediction is more accurate for the
high-weight links in the 91×29 subnetwork than for the low-
weight links. More specifically, upon further dividing the high-
or low-weight links into two groups based on the distance of
the connections, we found that most links in both groups had
short distances (d < 31.3 mm, half of the distance range, Fig. 3A).
Clearly, the sensitivity for the short-distance links predicted
by the three-factor model is quite high for both high-weight
(0.93) and low-weight (0.85) links (Fig. 3C). These values for short-
distance links are slightly smaller than those in the model with
only spatial proximity but higher than those in single-factor
models with only cytoarchitectural similarity or topological sim-
ilarity. The sensitivity for the short-distant links achieves the
highest for both high-weight (1.0) and low-weight (1.0) links by
the two-factor model with cytoarchitecture similarity and spa-
tial proximity (Supplementary Fig. 9B). The long-distance links
(>31.3 mm), irrespective of weights, are especially challenging
to predict by the model with spatial proximity alone; surpris-
ingly, however, the links can be predicted much more effectively
by topological similarity and even better by cytoarchitectural
similarity. When the three factors are combined, a trade-off is
achieved to maximize the overall prediction power for the whole
dataset (Fig. 1A).

Furthermore, we compared the sensitivity of the predicted
links within or between different brain function domains in
the final predicted network Pb by the three-factor predictive
model. Overall, the sensitivity for the intrafunctional links
was very high, reaching 0.97 (random benchmark 0.73 ± 0.01),
clearly higher than that for interfunctional links, which is 0.62
(random benchmark 0.42 ± 0.01). If only the high-weight links
(FLNe > 0.0015) were considered, the sensitivity for intrafunc-
tional links increased slightly to 0.98, and the sensitivity for
interfunctional links increases to 0.75 (Fig. 4). For low-weight
links, the sensitivity decreased slightly for intrafunctional
links but clearly for interfunctional links when compared with
high-weight links. Overall, the sensitivity for interfunctional
links is quite high (>0.8), except for links between visual and
frontal regions or from motor to visual regions and some links
of temporal regions (with very limited number), which have
lower sensitivity (see Supplementary Fig. 10 for sensitivity of
links among different functional systems). The sensitivity for
intrafunctional links under the predictive model combining
three factors is much higher than that under a single factor
(Supplementary Fig. 11).

Assigning Connection Weights in the Final Predicted
Network Binary Pb to Obtain the Weighted Network Pw

An important feature provided by the high-resolution 91×29
experimental network D2is the connection weights (FLNe)
(Markov et al. 2011; Markov, Ercsey-Ravasz, et al. 2014), which
follow a statistical pattern of exponential decay with distance
(Fig. 5A). To assign the connection weights in the predicted
binary network Pb, we estimated the connection weight of
binary links in Pbby the score Pij in equation (1). Assignment
of connection weights was optimized according to different
distance bins (using different parameters α, β, and γ for different
distance bins; see further details in Materials and Methods

and Supplementary Material II.1, and Supplementary Figure 7
for validating the proper number of distance bins n = 12). For
the correctly predicted links of the final predicted network
with a connectivity density of 59%, the maximal correlation
between the assigned and experimental weights is relatively
high (r = 0.55, P < 1.0 × 10−15) (Fig. 5B). Here, the predicted
connection weight for the whole network follows an exponential
form, Wij = eλ×dij , (Fig. 5C), where λ = −0.14 is very close
to the experimental result in the 91×29 subset (λ = −0.15,
Fig. 5A). Moreover, the assigned weights (Fig. 5C) capture the
fluctuation of experimental connection weights (Fig. 5A) with
respect to connection distance, although the range of weight
spreading is not as strong as in the experimental data. For the
correctly predicted links in the predicted network with an overall
connectivity density of 40%, the correlation between assigned
and experimental weights is also high (r = 0.55, P < 1.0 × 10−15)
(Fig. 5D). Thus, the predicted networks with low connection
density (e.g., ∼ 40%) have both high accuracy in the recovery
of binary links (Fig. 1B) and connection strength (Fig. 5D).
For comparison, a previous study proposed to assign weight
using only the single factor of spatial distance, Wij = e−α×dij

(Ercsey-Ravasz et al. 2013). We found that under this single
factor, the correlation between the real and estimated weights
in Pb is clearly reduced (r = 0.42, P = 1.0 × 10−12).

In total, there are 418 predicted projections as the false-
positive links, which are shown as empty in D2yet wrongly taken
as existing projections by our prediction model. However, it is
important to note that the predicted weights of false-positive
links are significantly smaller than the TP predicted links (P <

10−15). It suggests that there are unavoidable false-positive links
in the predicted network, but these wrong connections are
weak in weight and may not significantly affect the analysis
of the relationships between network connectivity, wiring cost,
modules, and participation.

Feature Analysis of the Predicted Hemisphere-Wide
Weighted Network Pw of the Macaque Brain

We have obtained a hemisphere-wide, high-density weighted
network of the macaque brain. Compared with the CoCoMac-
based network D1with a binary connectivity density of 26.3%,
the final predicted network binary Pb has a greatly increased
connectivity density of 59% across the hemisphere, close to that
of the partial-coverage 91 × 29 experimental networkD2 (61.2%).
In the following section, we explore important features revealed
by the large-scale weighted macaque network Pw rather than
the CoCoMac-based binary network D1. Here, we mainly con-
sidered three features from the weighted network: 1) modular
segregation, 2) integration measured by the functional PC, and
3) regional wiring cost.

Functional Segregation and Module Partition
Information processing is segregated in different functional
domains in the macaque brain, including visual (primary and
advanced visual subsystems), somatosensory, motor, temporal
(auditory, olfactory, etc.), and frontal regions (Lewis and Van
Essen 2000). Previously, functional segregation was reflected
by module analysis on the functional network based on the
BOLD signal from fMRI (Sporns et al. 2004; Sporns 2013). It is
not yet clear whether functional segregation is well reflected
in the structural network in the primate brain. Here, we
explored whether the predicted brain network would be a
better match than the CoCoMac-based binary network for
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Figure 3. Prediction performance for links with different weights and distance. (A) Four classes of links from the 91 × 29 experimental network D2 grouped according
to link weight (w) and distance (d). Dots represent all links in D2, including the existing links from CoCoMac dataset D1. Red and blue dots represent links that can be
correctly predicted (TP) or cannot be predicted by a three-factor predictive model, respectively. (B) and (C) compare the sensitivity for different classes of links after

applying predictive models with three factors or a single factor. (B) The sensitivity for the links with high (FLNe > 0.0015, black bars) or low (FLNe < 0.0015, white bars)
experimental weights that are predicted by different models. (C) The sensitivity separately for the four classes shown in (A) by different models. Long (short)-distance
links correspond to the pairs of connected regions with distances greater than 31.3 mm (less than half of the distance range).

Figure 4. Comparison of sensitivity for the intra- and interfunctional links involving all the predicted links (left group) or including only the high-weight (FLNe > 0.0015,

middle group) or low-weight links (FLNe < 0.0015, right group) in the 91× 29 subsystem of the predicted network Pb. Here, the intra- and interfunctional links are within
or between five functional domains (visual, somatosensory, motor, temporal, and frontal regions).

the functional segregation of the macaque brain. Applying
the module detection algorithm (see Materials and Methods)
to the CoCoMac-based binary network D1yielded only two
modules (modularity Q = 0.32). One module covers most of the
occipital regions and temporal lobes, and the other covers

frontal and parietal lobes (Fig. 6A). While the first module
largely aligns with visual regions, the other functional systems
(somatosensory, motor, temporal, and frontal) fail to be properly
segregated into different modules (Fig. 6B). In sharp contrast, in
the predicted weighted network Pw, the same module detection
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Figure 5. Comparison between assigned and experimental weights in the 91×29 subset. (A) Decay of experimental weights with distance in the 91 ×29 dataset in D2. (B)
Assigned weight versus experimental weight (in log-scale) in the 91 ×29 subset for each of the TP links (dots) of the final predicted network with an overall connectivity
density of 59%. (C) Assigned weights for all links in the final 91 ×91 predicted network Pw as a function of spatial distance. The exponential decay parameter is −0.14,
very close to that from the experimental value of −0.15 (Ercsey-Ravasz et al. 2013). The red lines in (A) and (C) are the exponential fitting. The blue lines in (A) and

(C) show the mean values and the standard deviation of the logarithm of experimental connection weights and assigned weights in each of the 12 distance bins,
respectively, which interestingly captures the small peak of relatively high weights for long-distance links. (D) The same as (B), but for the assigned weight versus
experimental weight in the 91 ×29 subset for each of the TP links (dots) of the predicted network with an overall connectivity density of 40%.

algorithm revealed five modules with modularity (Q = 0.58). To
overcome the difficulty of comparing the modularity of the
predicted weighted network and the CoCoMac-based network
with different connection densities (Sporns and Betzel 2016), we
calculated Z-score of modularity for the two networks compared
with the corresponding random benchmarks. We first generated
1000 random networks based on the two networks. Particularly,
we randomly shuffled the weighted connections by rewiring
them while keeping the weights to generate the group of random
networks from the predicted weighted network. Then, for two
groups of the random networks, we measured modularity,
respectively. The Z-score of modularity for the CoCoMac-based
network is 44.5, while that for the final prediction network is
50.6. It indicates that the final prediction network has stronger
modularity than the CoCoMac-based network. The frontal,

parietal, temporal, and occipital lobes are clearly divided into
different modules (Fig. 6D). Notably, there are two modules
in the frontal lobe. One contains regions 12, 44, 45A/B, 8 l,
F4, F5, and ProM, involving most of the dorsal frontal cortex.
The other module contains the rest frontal regions (Fig. 6C),
involving most of the ventral frontal cortex. We compared
the number of matched regions between different functional
domains and structural connectivity modules in the CoCoMac-
based network D1 (Fig. 6B) as well as the predicted weighted
network Pw (Fig. 6D). The matched regions refer to the regions
in the same functional domain, for example, the motor system,
which occupy over 50% of regions in one of the given modules
(pie charts in Fig. 6D). For the CoCoMac-based network D1, there
are 34 matched regions, covering 37.4% of all regions. For the
predicted weighted network Pw, up to 63 regions were matched,
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Figure 6. Comparison between the segregation of functional modules in the CoCoMac-based binary network D1 (A and B) and the predicted weighted network Pw (C
and D). The module detection algorithm (Newman 2006) has identified two modules (M1, M2) in the CoCoMac-based network with modularity Q = 0.32, Z-score = 44.5
(A) but five modules (M1–M5) in the predicted weighted network with Q = 0.58, Z-score = 50.6 (C). For both networks, (B) and (D) correspondingly exhibit the functional

domains (red: visual; green: somatosensory; blue: motor; pink: temporal; and black: frontal) for the regions in each module represented by a pie chart. The areas shown
in different colors in each pie denote the numbers of regions belonging to the corresponding functional domains for each module.

covering 69.2% of all regions. Thus, the large-scale predicted
weighted network can much better reveal the segregation of the
macaque brain into different functional modules.

Integration among Structural Modules
Since the predicted high-density weighted network much better
reflected the functional segregation than the previous dataset,
we next explored how the structural connectors that link the
segregated functional modules in the predicted network are
distributed and whether they overlap with some functional
integrators based on previous fMRI studies.

The importance of the cortical region in functional integra-
tion can be quantified by its functional PC based on the predicted
weighted network (see Materials and Methods). Regions with
high PC distribute connection weights rather uniformly among
different structural modules and are thus normally considered
connectors in the structural network (Sporns 2013; Rubinov et al.
2015). In the predicted weighted network, there are five modules
corresponding to one somatosensory, two visual subsystems,
and two frontal subsystems (Fig. 6D). The regions as connectors
with high PC distribute connections rather uniformly among the
five modules. We found that the connector regions (PC at top
15%) cover the FPN, including SII, Prostriate, 7B, F4, STPc, AIP, 7A,
46v, 8r, 31, 46d, TEO, 9/46v, and 5 (Fig. 7A).

The previous CoCoMac-based network (D1) has only two
modules without proper functional segregation. The high PC
regions in D1 are regions DP, OPAl, F7, 8B, V4, V3, 25, V6A, and V2
(Fig. 7B). Clearly, most of the high PC regions in D1 concentrate
on the primary visual and motor regions, not on the advanced
functional domain. The PC in the predicted weighed network is
uncorrelated with PC in D1 (r = 0.14, P = 0.19) (Fig. 7C).

Generally, the predicted weighted network revealed seg-
regation and integration in the structural network closely
matching the functional domains and advanced frontoparietal
regions.

Connector Regions Align with Regions Having Long Axon Fiber
Lengths
As shown above, the new large-scale predicted weighted net-
work Pw revealed that some frontoparietal regions may be con-
nectors through by distributing connections among functionally
segregated structural modules. Next, we further explored other
features revealed by the new predicted weighted network for the
important connector regions. As shown in Fig. 6C, the function-
ally segregated modules are also spatially segregated. Thus, the
connector regions with high PC should have projection to distant
regions and may have long axon projection lengths.

Indeed, the predicted weighted network across the whole
hemisphere also revealed regions with large total axon projec-
tion lengths (called wiring cost, eq. (4)). The regional wiring cost
reflects the total axon projection length in individual regions.
The regions with the top 15% wiring cost were mainly dis-
tributed in the frontal and somatosensory regions, including
Prostriate, 5, SII, 7B, 7A, thalamus, 46v, AIP, TEpd, 8r, 31, 46d,
TEO, and 9/46v (Fig. 8A). Interestingly, many regions with high
wiring costs overlap with high PC, for example, Prostriate, 5,
SII, 7B, 7A, 46v, AIP, 8r, 31, TEO, and 9/46v. There is a strong
correlation between PC and wiring cost across the whole brain
regions (r = 0.52, P < 1.0 × 10−9, Fig. 8B). For comparison, the
regions with high wiring cost in the CoCoMac-based network
(D1) mainly concentrate on visual and motor primary regions
(Fig. 8C). The regional wiring cost in D1 is uncorrelated with PC
in the predicted weighted network (r = 0.19, P = 0.07) (Fig. 8D).

Notably, the regions with large wiring cost means that
their total fiber length is long, which do not necessarily
refer to regions with long-range connections but could also
include regions with short-/median-range connections with
high weights. Thus, to better consider the spatial-range of
the connections across different regions, we further calculate
the ratio of total fiber length of individual region in the
predicted network to that of the corresponding region with the
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Figure 7. Comparison between PC in the predicted weighted network and the CoCoMac-based network. (A) Map of the PCs in the predicted weighted network Pw. (B)
Map of the PCs in the CoCoMac-based network D1. (C) Scatter plot of the PCs (dots) in the CoCoMac-based network versus the predicted weighted network. The two
measures are uncorrelated (r = 0.14, P = 0.19).

Figure 8. Comparison between PC and regional wiring cost in the predicted weighted network. (A) Map of wiring cost based on the predicted weighted network Pw. (B)

Scatter plot of PCs versus regional wiring cost in the predicted network (dots). The two measures are strongly correlated (r = 0.52, P < 1.0 × 10−9). The region prostriate
has the maximal wiring cost, which is clearly larger than the others. Without considering this region, the wiring cost and PCs are still significantly correlated (r = 0.48,
P < 1.0 × 10−7). (C) Map of the regional wiring cost calculated from CoCoMac-based binary network D1. (D) Scatter plot of the PCs in the predicted weighted network

versus regional wiring cost in the CoCoMac-based network, which are uncorrelated (r = 0.19, P = 0.07).
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same weights in the benchmark random network. When the
ratio is high, the corresponding region tends to project long-
range connections, compared with random benchmark. The
participation of regions is highly correlated with this ratio of
long-range projections (r = 0.67, P < 1.0 × 10−15). Comparing the
regions with large total fiber length due to high weight but
short-/median-range connections, the connector regions are
more contributed by the regions tending to have long-range
connections.

Discussion
It would be both highly expensive and challenging to experimen-
tally acquire the structural connectome among brain regions
using track-tracing methods across the whole macaque brain.
Also, it is challenging to obtain an integrated dataset from
several existing CoCoMac maps which are not consistent. In this
work, we proposed an iterative predictive model to computa-
tionally predict missing links and assign weights to all existing
and predicted links to obtain the hemisphere-wide large-scale
weighted connectivity network Pw with high density by inte-
grating two existing connectivity datasets, the widely applied
CoCoMac-based whole hemisphere brain map (D1) which inte-
grates three relatively more consistent maps in CoCoMac and
the newly acquired high resolution, but partial coverage dataset
(D2) and cytoarchitecture information describing the relation-
ship between the density and anatomical complexity (or com-
putational capacity) of neurons in the two regions (Elston et al.
2005). The predictive model integrated three important factors,
namely topological similarity, spatial proximity, and cytoarchi-
tectural similarity, to assess the prediction score from previous
hemisphere-wide binary structural network with relatively low
density (CoCoMac-based dataset D1). Thus, an additional cytoar-
chitecture dataset showing neuron density for different regions
is also applied in this study. Model parameters are trained and
optimized using the recently obtained partial-coverage yet high-
resolution weighted 91×29 experimental network (D2). Since the
29 target regions were chosen rather uniformly from different
functional domains, it was argued that the 29 target regions are
representative of five major functional domains of the cortex
(Markov, Ercsey-Ravasz, et al. 2014); thus, it is plausible to use
D2 to calibrate the predictive model. The final predicted binary

network (Pb, including existing links in D1

)
with an overall

connectivity density of 59% has a prediction sensitivity of 74.1%
in D2. In particular, the predictive model showed a very high
sensitivity of 86% for the high-weight links and 97% for intra-
functional links. We further assigned weights for all links in Pb to
obtain the high-density weighted network Pw, and the assigned
weights were significantly correlated with the experimental
ones in D2. The unavoidable false-positive link has significantly
weaker link weights compared with true-positive links. Further
analysis of the structural modules of the high-density weighted
network Pw revealed that the identified modules of brain regions
closely match physiological function domains. Moreover, struc-
tural connectors with high PCs for the connections among the
modules are mainly distributed in the FPN. Furthermore, the PCs
and regional wiring cost were shown to be significantly corre-
lated, revealing an important organization feature of the brain
connectome: integration among the well-segregated structural
modules demands high wiring cost and long-range connections.
Therefore, the predicted large-scale weighted structural network
Pwcould serve as a high-resolution and high-density structural

connectome to facilitate future studies of the primate brain.
The methods developed here may also be further extended to
acquire a more complete/reliable connectome in the human
brain from the backbone detected by diffusion MRI (dMRI). Below,
we discuss these aspects of the work in more detail.

Improved Prediction by the Combination of Multiple
Factors

Previous studies have noted that several factors are associ-
ated with the interregional connection probability from the
observed projections. A broadly discussed factor is the spatial
distance between the regions (Bullmore and Sporns 2012; Erc-
sey-Ravasz et al. 2013). For efficient signal transmission under
limited energy cost, the wiring diagram of the brain structural
network is presumed to minimize the wiring cost (Bullmore
and Sporns 2012; Chen et al. 2013, 2017). A number of stud-
ies found that most structural connections in the brains of
different species satisfy wiring cost minimization (Kaiser and
Hilgetag 2006; Bullmore and Sporns 2012; Rubinov et al. 2015;
Chen et al. 2017). Recent analysis on the 91 × 29 experimen-
tal macaque brain network (D2) revealed that the connectivity
probability decays sharply with spatial distance (Ercsey-Ravasz
et al. 2013) (Fig. 5A), consistent with cost minimization to make
short-range projections. Another important factor, topological
similarity, was also discovered to influence the connectivity
probability. That is, pairs of regions with more similar connec-
tion profiles in the network tend to have a higher probability of
being connected directly (Song et al. 2014). More recently, it was
also found that regions with similar cytoarchitecture (especially
neuron density) have a higher chance to be connected (Beul et al.
2017). The neuron density, as an important cytoarchitectural
feature, has been systematically studied and found to range
from low density in regions with few layers that lack an inner
granular layer (agranular) to high density in regions with six dis-
tinct layers, such as the striate cortex (Beul et al. 2017). Notably,
variation in the neuron density implies the potential inverse
relationship with average neuron size (Herculano-Houzel et al.
2014). Regions with high neuron density, such V1, may have large
chance to have small size of neurons, which accordingly have
small dendritic arbors with few inputs (Elston 2002; Collins et al.
2016). Thus, along with large variation of neuron density, the
pyramidal cell structure and the number of input for individual
neuron vary across different brain regions (Elston 2002). Thus,
cortical regions with similar neural density may have similar
neural circuits to support similar functional processing and may
have high probability to be directly connected by fiber projec-
tion to facilitated similar functional processing. Interestingly,
these three factors capture different aspects that affect existing
connections in the primate brain connectome, and they may
compensate for each other. Considering the cytoarchitectural
similarity and spatial proximity as examples, previous studies
showed that although the likelihood of a connection decreases
with long distance (or large difference in cytoarchitecture), it
would be mitigated if the regions have similar neuron density (or
close to each other), which is attributed to the independency of
neuron density from the influence of spatial proximity (Hilgetag
and Grant 2010; Beul et al. 2017).

It has been shown that generative models combining
spatial proximity and topological similarity can reproduce
some statistical properties of actual cortical connectivity, such
as the formation of network modules and probability distri-
butions of clustering, degree, betweenness, and edge length
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(Betzel et al. 2016). These results imply the important joint
roles of these factors in shaping the features of the structural
network. Here, our objective for the predictive model is not to
recover statistical features but to predict the missing links and
build a high-density weighted structural network across the
hemisphere of the macaque brain.

With the combination of the three representative factors
and integrating three datasets (D1, D2, and the neuron density
dataset), the predictive model can much more effectively predict
the binary links. Since a large number of high-weight projections
have a short spatial distance (Fig. 3A) (Ercsey-Ravasz et al. 2013;
Markov, Ercsey-Ravasz, et al. 2014), prediction by the single fac-
tor of spatial proximity could recover most (82%) of the high-
weight links (Fig. 3B) in the 91 × 29 experimental network (D2),
which is further improved by combining the additional factor
of cytoarchitecture similarity (84%). However, for links with high
weights and long distances, which may play an important role
in processing signals across remote functional domains, the
sensitivity of the predictive model with the single factor of
spatial proximity dropped to only 23% (Fig. 3C). In contrast, the
other two factors, topological similarity and cytoarchitectural
similarity, strongly improved the prediction of connections with
high weights and long distance (Fig. 3C, 53–69%). The combina-
tion of these two factors could predict 52% of links with high
weights and long distance, while it also has high sensitivity
(86%) to predict the links with high weights and short distance,
which is better than that by the model with any single one
from these two factors. The situation is similar for weak but
long-distance connections. With the combination of all three
factors, the precision of the predicted network would largely
increase compared with only a single factor, or even two factors
(Fig. 1A and Supplementary Fig. 9), up to 90.4% in the predicted
network with a connectivity density of 40% and 74.1% in the
final predicted network with a density of 59%. Here, we did not
use black-box machine learning methods because our predictive
model combining the three factors can provide insights into
the organization mechanism underlying the heterogeneously
weighted connectome in the primate brain.

Notably, even by our predictive model with three factors
and iterative process, the long-distance links are still relatively
hard to predict when compared with the short-distance ones.
Our previous study (Chen et al. 2013) showed that the majority
(approximately 65%) of the long-range links are interfunctional
connections, especially between the visual and frontal systems.
Such interfunctional connections between spatially segregated
regions have relatively low topological and cytoarchitectural
similarities; hence, they are difficult to predict by the proposed
model (Supplementary Fig. 10). For the 91×29 subset covered by
the experimental weighted network, all intrafunctional links for
the five functions and some interfunctional links of somatosen-
sory or frontal regions have a sensitivity near or above 90%. How-
ever, over 80% of incorrectly predicted (false negative) links are
the interfunctional links of visual regions with motor or frontal
regions. Fortunately, the predicted weights of false-positive links
are significantly smaller than the TP predicted links. Thus,
these links may not significantly affect the analysis of the rela-
tionships between structure (network connectivity), metabolism
(e.g., wiring cost), and function (e.g., modules and participation).
The formation of long-range connections in the brain may be
attributed to the requirement of advanced functional integration
in the connectome, which is not yet sufficiently quantified to be
considered as an influential factor in the predictive model. This
line of research would be interesting to pursue in the future.

Notably, the probabilistic tractography based on dMRI
revealed relatively dense macaque structural connectome using
a consistency-based thresholding method (Donahue et al.
2016; van den Heuvel et al. 2015; Azadbakht et al. 2015; Shen
et al. 2019). The probabilistic tractography data provide binary
connections and connection weights from streamline. However,
previous works also pointed out that the AUC of the dMRI
structural network for both the binary and weighted networks is
not higher than the estimation of new links based on the single
factor of distance. AUC of binary connections from dMRI is 0.68,
which is worse than AUC = 0.75 (Shen et al. 2019) from geodesic
distance-based estimates of connectivity by a regression model
from the 29×29 subset of the Markov dataset D2. Here, in our
method, AUC from the same geodesic distance-based estimates
of connectivity by the prediction model achieves 0.77 in the
29×29 subset. However, the geodesic distance for the whole
brain is still lacking till now. Next, we compared AUC from the
Euclidean distance in the same testing sample of the 29×29
subset in D2. AUC for the single factor of distance equals to
0.71. This difference is probably mainly because in our method,
the prediction score depends on deterministic distance ranking
from low to high, which may not be as good as the statistic
regression model that could better account for distance-related
fluctuation as the statistic regression in (Shen et al. 2019).
When considering the two-factor model with distance and
cytoarchitecture similarity, the multiple-iteration process would
obtain a better prediction with AUC = 0.76. AUC is even higher,
equaling to 0.78 for the three-factor predicting model in the
29×29 testing sample. The latter two AUC values are higher than
the AUC of dMRI and even the best single factor model in the
previous work (Shen et al. 2019). Thus, we still suggest to apply
the three-factor model to predict the macaque brain network
across the whole brain by using the Markov 91×29 subnetwork
D2 as the best available testing sample.

Reciprocity of the Connectivity in the Predicted
Connectome

We stress that the predictive model also took the directionality
of the connections into consideration, since several measures of
topological similarity explicitly considered both the input and
output connections (Supplementary Table 1). Previous studies
have shown that cortical connectivity has a relatively low por-
tion of unidirectional connections (Zamora-Lopez et al. 2008;
Markov, Ercsey-Ravasz, et al. 2014). The 29×29 submatrix covered
by the experimental network D2(Markov, Ercsey-Ravasz, et al.
2014) contains 20% of unidirectional connections, and the others
are reciprocal (weights may be different). This is consistent with
the CoCoMac-based dataset D1 (Kotter 2004; Chen et al. 2013)
with 23% unidirectional connections. However, it was also noted
that at least 10% of all cortical pathways are genuinely unidi-
rectional due to the possible confounding factor of areal het-
erogeneity (Markov, Ercsey-Ravasz, et al. 2014). In our work, the
predicted hemisphere-wide 91×91 network (Pb) with an overall
connection density of 59% contains 8% unidirectional connec-
tions. Therefore, the predicted network (Pb) has relatively higher
reciprocity than the two previous datasets (D1 and D2). Inter-
estingly, the interfunctional connections have low reciprocity
and contribute 84% of unidirectional connections in the pre-
dicted network. In particular, 73% of unidirectional connections
belong to the interfunctional connections of visual (more out-
put, mainly due to sending bottom-up signals) or frontal (more
input, mainly due to receiving bottom-up signals). The relatively

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa060#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa060#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa060#supplementary-data
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low portion of unidirectional connections is mainly due to the
difficulty of predicting such weak, long-distance, interfunctional
unidirectional connections (Fig. 3, Supplementary Fig. 10).

Recovery of Connection Weights
The weights of projections (FLNe) in the 91 × 29 experimental
network (D2) span five orders of magnitude (from 2.64 × 10−6

to 0.88) (Markov, Ercsey-Ravasz, et al. 2014). Compared with the
CoCoMac-based network (D1), the dataset D2 revealed many
more projections, mostly weak, but also including many high-
weight links. This detailed weight index observed in D2 deep-
ened the understanding of the macaque connectome (Markov,
Ercsey-Ravasz, et al. 2014). Notably, the experimental weights
may follow different distance-dependent rules at various dis-
tance bins. The weights decay rapidly for short-distance con-
nections and more slowly for the long-distance connections
(Markov, Ercsey-Ravasz, et al. 2014) (also see Fig. 5). Here, we
assigned the weights of all the links in the final 91×91 predicted
binary network Pb by the prediction scores under the combina-
tion of the three factors in different distance bins, which was
shown to enhance the correlation between the assigned and
experimental weights in D2. Interestingly, for the early predicted
links (iteration until reaching overall binary density 40%), the
precision of the newly predicted links is very high (88%), and
the overall precision (including the initial existing links in the
CoCoMac-based network) was 79%; those correct links in the
91 × 29 subset are accounted for 90.4% of all link weights in D2

(Fig. 1). These results suggest that we may also apply a version
of the predicted weighted network with relatively low binary
density (e.g., 40%) in potential applications of the macaque brain
connectome, as such a network is more accurate (in terms of
precision in binary link and link weights). Compared with the
CoCoMac-based network, this network has [(0.4–0.263)×91×91 =
1135

]
new and important links with very high confidence and

good estimation of all connection weights. Identifying these
links experimentally will be highly labor intensive and costly.
This result demonstrated the value of computational prediction
in this work.

Segregation in the Predicted Weighted Macaque Connectome
The brain network is segregated into different functional groups
to correspondingly perform various specialized functions
(Krubitzer and Kaas 1989; Kaas 1992; Preuss 1995; Kaas 1997;
Preuss 2000; Karlen and Krubitzer 2007; Bullmore and Sporns
2012; Sporns 2013; Yeo et al. 2014). Previous studies have focused
on the relationship between different cognitive functional
domains and the network modules detected from functional
connectivity based on fMRI data (Yeo et al. 2014; Bertolero et al.
2015). Modular structure with dense intramodule and sparse
intermodule connections supports the segregation of each
function and avoids excessive interference by other functional
systems. However, the modular division in the CoCoMac-based
macaque binary structural network D1 cannot properly capture
the functional segregation. There are only two modules that
roughly separate the visual and frontal systems (Fig. 6A,B), both
mixed with other functional regions (Chen et al. 2017). In sharp
contrast, the predicted weighted network Pw has successfully
revealed a more diverse organization of five modules, much
better matching the functional domains (Fig. 6C,D). Therefore,
the predicted high-density weighted structural network may
provide deeper insight into how the structural substrate of
connectivity modules supports functional segregation.

Structural Connectors as Functional Integrators
Together with proper functional segregation, the brain system
also requires the organization of connectors to integrate segre-
gated information processing in different functional domains
(Elston 2007; Zamora-Lopez et al. 2010; Sporns 2013; van den
Heuvel and Sporns 2013; Bertolero et al. 2015). Previous studies
on the functional connectors with uniform link distributions
on the functional modules from BOLD signals (He et al. 2009;
Power et al. 2013; van den Heuvel and Sporns 2013) found
that the FPN, as a flexible functional connector, plays a central
role in cognitive control and adaptive implementation in the
human brain (Barbas and Pandya 1989; Goldman-Rakic 1995,
1996; Pandya and Yeterian 1996; Barbas and Rempel-Clower
1997; Cavada et al. 1997; Goldman-Rakic 1999; Cavada et al. 2000;
Goldman-Rakic 2011; Cole et al. 2013). In the macaque brain,
although many previous works have discussed the relationship
between various cortical regions and cognitive behavior (Preuss
and Goldman-Rakic 1991; Funahashi et al. 1993; Lund et al.
1993; Miller 1999; Elston et al. 2001; Elston et al. 2006; Elston,
Benavides-Piccione, et al. 2011), the relationship between func-
tional connectors in the functional network from fMRI data and
cognitive behavior has not been well explored. However, other
studies in the macaque brain suggest parts of the default mode
network (Miranda-Dominguez et al. 2014), which has elevated
fMRI activity in the resting state, as an important functional
integrator (Vincent et al. 2007; Hutchison et al. 2011; Mantini
et al. 2011; Matsui et al. 2011; Miranda-Dominguez et al. 2014;
Barttfeld et al. 2015). The default mode network in the macaque
brain includes the regions TPOc, SII, 8, 9-46d, and 23. Our analysis
of structural connectors integrating the structural modules from
the predicted weighted network Pw includes almost all regions
of the default mode network, except for region 23. Interestingly,
the structural connectors in the macaque brain and functional
connectors in the human brain are both in the FPN (Braver and
Barch 2006; Dosenbach et al. 2008). This consistency implies
that functional integrators may have the structural basis of
uniformly distributed structural connections among functional
domains.

Although previous studies showed that the overall wiring
cost of rich club regions tend to have relatively higher wiring
cost (Harriger et al. 2012; van den Heuvel et al. 2012), it is still
lack of quantitative comparison, especially at regional level,
between the wiring cost and the PC as a direct measure of
integration among different modules. Interestingly, this work
showed that on the regional level, the functional PCs, measur-
ing how uniform a region distributes its connections across
different modules, is correlated with the regional wiring cost
(Fig. 8). Compared with the regions with large total fiber length
(wiring cost) due to high weight but short-/median-range con-
nections, the connector regions are more contributed by the
regions tending to have long-range connections. This result
clearly shows the property that the connector regions distribute
long-range connections to integrate the spatial segregated mod-
ules. A similar relationship was also found in the human brain,
and both functional participation and regional wiring cost were
found to be related to an important metabolic parameter, the
rate of aerobic glycolysis (Chen et al. In preparation). Previous
studies on the microstructure showed that myelinated axons
are related to metabolic consumption (Vaishnavi et al. 2010;
Funfschilling et al. 2012; Lee et al. 2012; Saab and Nave 2017).
Notably, two factors, integrative capacity for individual neurons
and neuron density, both contributing to metabolism demand,
may have an inverse relationship in their variation across brain

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa060#supplementary-data
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regions; namely, regions with high neuron density typically have
lower integrative capacity (Elston 2007; Herculano-Houzel et al.
2008; Elston and Garey 2009; Elston and Garey 2013; Elston and
Manger 2014; Herculano-Houzel et al. 2014). However, compared
with the regions with high neuron density and low integra-
tive capacity of pyramidal neurons, such as V1 (Elston and
Garey 2009; Elston and Garey 2013), regions with high integrative
capacity of pyramidal neurons and low neuron density, such
as PFC (Elston and Garey 2009; Elston and Garey 2013), have
high metabolic consumption, suggesting that integrative capac-
ity might be dominant in metabolism demand. Together with
these observations, our results suggest that brain regions play-
ing important roles in integrating information from functionally
segregated subsystems may require high metabolic energy due
to the large wiring cost in the underlying structural connectome
to link spatially segregated functional domains. These findings
suggest that the predicted weighted network can be applied
to study the structure-function-metabolism relationship in the
primate brain.

Conclusion and Further Considerations
This work used computational methods to acquire a weighted
network across a hemisphere of the macaque brain with more
than twice the density of the previous CoCoMac-based binary
network. Including the predicted weights, this new macaque
connectome dataset was shown to provide a complete and more
accurate network substrate underlying several aspects in the
structure-function-metabolic relationship for the primate brain.
Therefore, this dataset can be of great value until the necessary
expenses and experimental efforts are invested to systemati-
cally complete the remaining two-third of the connectivity of the
macaque brain compared with the recently established partial
dataset D2. The future studies on tract tracing experiments will
provide empirical data that will ultimately determine the power
of the prediction model in this work.

Our work also provides a basis to investigate the missing
links in the future from the dMRI-based backbone of the human
connectome. Currently, many works consider that the backbone
of the human brain structural connectome that can be reliably
detected by noninvasive dMRI has a much lower connectivity
density of 7%–15% (Hagmann et al. 2008; Gong et al. 2009),
and such backbone has been widely used in graph theoretical
analysis of the brain connectome (Bullmore and Sporns 2009,
2012; Rubinov and Sporns 2010; van den Heuvel and Sporns
2011; Harriger et al. 2012). Using a consistency-based threshold-
ing method rather than a weight-based one can produce reli-
able connectomes of 30% density (Roberts et al. 2017). However,
binary connections and connection weights from streamline
number provided by the dMRI structural network do not outper-
form the estimation based on the single factor of distance (Shen
et al. 2019), which gives worse prediction than the prediction
model with two or three factors here. Therefore, due to the need
for noninvasiveness and the limitations of dMRI, such as fiber
crossing and missed tracing for short fibers, it has been quite
challenging to access human brain high-resolution structural
connectome thus far (Mori et al. 2002; Dauguet et al. 2007; Jones
2010; Jones et al. 2013). The prediction model based on the
connection rules with the combination of cytoarchitecture (He
et al. 2007; Wagstyl et al. 2018), spatial distance, and topology
of the backbone (Hagmann et al. 2008) may help to construct a
more complete, accurate structural connectome for the human
brain in the future.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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