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Large-scale integrated super-computing platform for next
generation virtual drug discovery
Wayne Mitchell1,2 and Shunji Matsumoto3
Traditional drug discovery starts by experimentally screening

chemical libraries to find hit compounds that bind to protein

targets, modulating their activity. Subsequent rounds of

iterative chemical derivitization and rescreening are conducted

to enhance the potency, selectivity, and pharmacological

properties of hit compounds. Although computational docking

of ligands to targets has been used to augment the empirical

discovery process, its historical effectiveness has been limited

because of the poor correlation of ligand dock scores and

experimentally determined binding constants. Recent progress

in super-computing, coupled to theoretical insights, allows the

calculation of the Gibbs free energy, and therefore accurate

binding constants, for usually large ligand–receptor systems.

This advance extends the potential of virtual drug discovery. A

specific embodiment of the technology, integrating de novo,

abstract fragment based drug design, sophisticated molecular

simulation, and the ability to calculate thermodynamic binding

constants with unprecedented accuracy, are discussed.
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Introduction
Drug discovery is distressed. The number of approved

new molecular entities has declined steadily for 15 years

[1], the cost per new approved compound has breached

the one billion United States Dollar (USD) benchmark

[2] and, by one informed estimate, the financial return

provided by all therapeutic product categories does not

even recover the capital costs of their development.
www.sciencedirect.com 
Moreover, when biologics are removed from this model,

the net present value of pharmaceutical Research and

Development (R&D) investment is actually negative [3].

Disturbingly, poor research performance occurs in the

context of increasing social need. The rising incidence of

drug resistant bacteria is well documented [4], viral

pathogens such as Severe Acute Respiratory Syndrome

(SARS), Dengue and H1N1 pose pandemic threats [5],

and an aging and more affluent global population drives

up the prevalence of chronic diseases that are if anything

more difficult than infectious diseases to drug. In the

United States, where by 2023 the Census Bureau projects

�15% of males and �19% of females will be 65 years old

or older, rates of cancer are expected to rise from 33% to

62%, of diabetes from 33% to 53%, of cardiovascular

complaints from 6% to 39%, of mental disorders from

35% to 54%, for a total increase in chronic morbidity in the

U.S. population from 17% to 42% [6]. An increase in

successful drug discovery, especially against difficult

chronic targets, is clearly desirable. However, progress

must materialize in the framework of reduced per com-

pound cost and enhanced efficiency, since capital will not

continue to flow into a sector that offers net negative

returns. Computational or ‘virtual’ drug discovery strat-

egies, potentially cheaper and faster, offer attractive

alternative, or at least complimentary, routes to improved

R&D performance in the therapeutics sector [7].

Computational drug discovery
The physiological effect of a drug is mediated by elec-

trostatic and geometrical interactions of the atoms of the

ligand with the atoms of its corresponding receptor,

interactions which conform to the laws of physics and

quantum chemistry, and which can therefore be

described by predictive mathematical models [8�].
Although these models are complex (and in the quantum

case inherently non-exact), researchers active in the

computer intensive field of molecular graphics realized

thirty years ago that in silico assessment of drug-receptor

binding could be deployed to accelerate drug discovery

[9,10]. They also realized that continuing operation of

Moore’s Law, with 18 month doublings in computing

efficiency and economy, implied an on-going improve-

ment and refinement in computational techniques. The

crux of the computational drug discovery paradigm is

this coupling of the fundamental laws of biophysics with

the accelerating technological performance of the semi-

conductor industry. The former inspires faith that the

approach can work in theory, the latter that it will work in

practice.
Current Opinion in Chemical Biology 2011, 15:553–559
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Virtual compound screening
Virtual screening, whether of compounds or molecular

fragments, has two stages. First, the algorithms attempt

to find the correct conformation and position the ligand

in the active site of the receptor, and then they try to

quantify the quality of particular atomic arrangements

by assigning a score. Several technically different

approaches to predicting ligand–receptor interactions

have been developed, but all are known as ‘docking’

algorithms after the suggestively named primogenitor

program, ‘DOCK’ [9]. The modeling of ligand–receptor

atomic interactions presupposes an accurate three-

dimensional molecular structure of the receptor so that

inter-atomic forces can be calculated. Since protein

folding cannot yet be modeled, this means having an

X-ray crystal or NMR structure of the receptor, or a

homology model which maps a related protein sequence

onto a known structure. A priori one might suppose the

experimentally determined crystal structure to be inevi-

tably superior. Surprisingly, a meta-analysis of DOCK-

ing studies concluded that in some cases virtual

screening was more successful on homology models

compared to experimental structures [11��]. This seems

counter-intuitive, but may indicate that the relaxed

precision of the homology models indirectly capture

conformational flexibility that is lost in ‘frozen’, possibly

subtly distorted crystal structures. In any case, an

homology model must start from a closely related exper-

imental structure, so an important contributing factor

in the increased utility of computational drug discovery

is the rapid growth in the number of available protein

structures (currently approaching 75,000 structures

in the Protein Data Base http://www.pdb.org/pdb/

statistics/contentGrowthChart.do?content=total&seqid

=100), a number which in turn reflects improvements in

protein production, robotic crystallization regimens, and

the wide availability of sophisticated advanced light

sources [12]. Another positive development in virtual

screening infrastructure is the creation of curated virtual

compound databases that provide large prebuilt sets of

virtual representations of commercially available mol-

ecules suitable for input to virtual screens. ZINC at the

University of California San Francisco [13], and EDU-

LISS at Edinburgh University [14], are two examples.

The much larger Chemical Universe Database GDB-13

takes a different approach, attempting to construct the

universe of ‘synthetically plausible’, rather than ‘avail-

able’ compounds [15].

Molecular docking: successes and limitations
At a high level the performance of dock programs can be

measured by two criteria: ‘DOCKing power’ (the ability

to identify the correct experimental ligand binding pose

in a collection of incorrect, computer generated ‘decoy’

poses, i.e. the ability to correctly position ligands in the

active site, or to ‘pose’ them); and ‘scoring power’ (the

ability to produce dock binding scores that correlate with
Current Opinion in Chemical Biology 2011, 15:553–559 
experimentally determined binding affinities). In the past

decade a large number of comparative studies of the

performance of various dock programs have been under-

taken, in both academic and pharmaceutical settings

[11,16,17��,18�,19–22]. Despite the diverse backgrounds

of the investigators, and although these studies differ in

methodology and are not directly comparable, they never-

theless unanimously agree on two points. One, dock

algorithms fairly accurately pose ligands in the active site,

and two, the same dock algorithms poorly score those

ligands’ affinity. In other words, dock programs correctly

identify the geometry of ligand–receptor systems, but, do

not in general accurately predict the binding energy, and

therefore cannot predict ligand potency. To make this

concrete, a typical dock screen might produce 1000 ‘hit’

compounds, but, the most potent compounds are as likely

to be ranked at the bottom of that list by the scoring

function as they are to appear near the top. This is a

significant deficiency since the expected potency of a

compound often will be the operational feature of in-

terest, for example in prioritizing compounds for medic-

inal chemistry. In sum, Dock algorithms can ‘pose’

ligands well but they ‘score’ them poorly.

Beyond dock scores: accurate binding affinity
from thermodynamic calculation with MAPLE
CAFEE
DG = RT ln Kd exactly relates the computed Gibbs free

energy difference DG and experimentally measured dis-

sociative constant Kd under temperature T (where, R is

the gas constant). Free energy differences between

bound and unbound equilibrium states of a protein–
ligand–water system (DG) gives the binding affinity of

the ligand, which in general translates into drug efficacy.

In other words, correct computation of DG values for a

series of ligands leads immediately to a ligand list accu-

rately ranked by potency.

Computational methods to perform the DG calculation

have been studied enthusiastically since the late 1990s

when it was proved that a nonequilibrium process in

finite-time can derive the binding free energy exactly

[23–25]. This theoretical insight was followed up in 2005

when DG was shown to be approachable by massively

parallel computation. Scaling up to thousands of concur-

rent CPUs reduced the computational requirement from

years to days, and allowed binding free energy of real

molecular systems to be computed. Access to this high

performance computational resource made possible an

important series of proof of concept experiments that in

turn produced calculated binding affinities in excellent

agreement with corresponding experimental values

[26,27]. Subsequently, the computational methodology

has been improved, a better force field refining method

has been implemented, and the platform, christened

Massively Parallel Computation of Absolute binding

Free Energy with well Equilibrated system (MAPLE
www.sciencedirect.com
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CAFEE), has been further validated in follow-on projects

[28–30]. Useful thermodynamic calculation comes with a

heavy computational burden (an example of the trade-

offs between speed and accuracy that turn up in many

computational problems), but recent advances in the

construction of large-scale computing environments have

shrunk the envelope of computational time and brought

these methods into the realm of practical application

([31], http://www.nsc.riken.jp/index-eng.html, http://

www.fujitsu.com/global/news/pr/archives/month/2010/

20100928-01.html). Cumulatively, improved compu-

tational methodology, enhanced infrastructure, and

theoretical advances have combined to achieve chemical

thermodynamic calculations that are sufficiently accurate

to provide reliably ordered and prioritized lists of hit

compounds, either from virtual libraries or de novo design.
Figure 1
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Controlled comparison of four binding affinity prediction methods on the

same 17,000 atom FK506-FKBP data set. Each graph shows the

correlation between observed (experimental) binding affinity (on the

horizontal axis) and computed binding free energy (on the vertical axis).

The dotted lines show a slope of 1 (perfect correlation, with possible

offset). The yellow box shows the area with no X–Y offset. (a) Massively

Parallel Computation of Absolute binding Free Energy with Well

Equilibrated system (MAPLE CAFEE). (b) Molecular Mechanics Poisson–

Boltzmann Surface Area (MM-PBSA). (c) Quantum Mechanics/Molecular

Mechanics (QM/MM). (d) Fragment Molecular Orbital Method (FMO).

www.sciencedirect.com 
Comparison of binding affinity calculation by
four methods
In 2008, three separate organizations compared binding

affinity prediction methods on a defined data set using

identical force field parameters [32]. The system of interest

was FK Binding Protein (FKBP)–ligand–water of about

17,000 atoms, with water explicitly modeled with TIP3P. A

co-crystal structure of the FKBP-FK506 complex was

obtained from the Protein Data Bank (PDB). Then other

ligands replaced FK506 one by one. The four methods

tested were Fragment Molecular Orbital method (FMO),

Molecular Mechanics Poisson–Boltzmann Surface Area

(MM-PBSA), the hybrid Quantum Mechanics/Molecular

Mechanics (QM/MM) and MAPLE CAFEE.

Figure 1a–d, reprinted from [32], shows the correlation

between observed binding affinity and computed binding

free energy for the four methods. While the computational

time required for each method conformed to expectation,

and each computational method produced results that

correlate somewhat with experimental values, there were

significant differences in the scale and shifts from the origin

of the vertical axis. MAPLE CAFEE produced the best

agreement with a difference from observed affinities

within 0.5 [kcal/mol] (an error of 1.4 [kcal/mol] is a good

benchmark for computational accuracy since the error of

experimentally measured affinity is in this range).
Figure 2
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Blind-test of MAPLE CAFEE. The binding energies of five ligands on a

cancer related protein were calculated by MAPLE CAFÉ, then plotted

against the experimentally determined binding energies. The dotted lines

define a band within 1.5 kcal of perfect correlation. The binding constant

of the outlier was measured a second time in a repeat experiment. The

recalculated value is shown by the red arrow.
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OPMF

MAPLE CAFEE

The OPMF and MAPLE CAFEE workflows. The standard drug-design process of OPMF comprises five steps. (a) Search energetically stable positions for

each abstract fragment in/on a targeted protein with molecular mechanics simulation (MM). At the discretion of the investigator, physically discovered

molecular fragments, for example from NMR or crystal soaks, can be substituted for the virtual fragment inputs. (b) Select a stably positioned set of

Current Opinion in Chemical Biology 2011, 15:553–559 www.sciencedirect.com
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A blind challenge of MAPLE CAFEE
In 2009, MAPLE CAFFE was challenged by a pharma-

ceutical industry collaborator to a blind-test of binding

affinity prediction (unpublished results). The algorithm

was given the structure of a cancer related protein and five

ligands, one a co-crystal structure, three without co-crystal

data but where the small molecule was similar to the first,

and a final ligand without co-crystal data and structurally

dissimilar to the others. The experimentally determined

binding affinities were hidden. As seen in Figure 2 the

results showed very good agreement between binding

free energies computed by MAPLE CAFEE, and exper-

imentally measured dissociation constants. There was

one outlier, however, the pharmaceutical partner

suggested this particular experimental measurement

was unreliable, and indeed, when repeated, the exper-

imental value fell within 1.4 kcal/mol of the computed

value.

A coherent structure based drug-design
platform
MAPLE CAFEE is part of a larger Structure and Simu-

lation Based Drug-Design (SSBDD) platform (Figure 3),

that also includes the Optimum Packing of Molecular

Fragments (OPMF) module, an abstract fragment based,

de novo, drug-design tool (Figure 3a–e). Each component

of SSBDD can be applied to specific purposes indepen-

dently, but the platform is designed as an integrated

system for creating novel and active chemical entities.

OPMF is a virtual fragment based de novo drug-design

tool that generates chemical structures predicted to bind

and modulate the activity of target proteins whose 3D

structures are known. In order to examine the vast virtual

chemical space efficiently, OPMF generalizes real-atom

fragments to abstract conceptual fragments at the first

step. This strategy allows a small number of abstract

fragments to represent thousands of real fragments. For

example, benzene, pyridine, pyrimidine, triazine are

generalized to an abstract six-membered aromatic ring

built of abstract atoms having representative diameter

and properties. The approximation is reversed later when

abstract structures are replaced by precisely assigning

real-atoms that rigorously capture exact physical features

including electrostatics, orbitals and van der Waals radii.
(Figure 3 Legend Continued) abstract fragments following drug-design strat

generate as many abstract molecular skeletons as possible, then stabilize the

considering biophysical constraints and synthetic feasibility. (e) Screen out un

pharmacophores that raise toxicological ‘red flags’. The standard MAPLE CA
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refined force field parameters is essential as well as efficient algorithms with rel
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divided into microstates with decoupling parameters, and the trajectories for 

representative binding free energies between microstates with the BAR (Benne

binding free energies to get the total binding free energy. Molecules can be su

example, they might originate as proposed molecules in a medicinal chemistr
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MAPLE CAFEE is a binding affinity prediction system,

as already mentioned, that computes DG as precisely as

possible using a massively parallel sampling method

reinforced by many molecular dynamic (MD) simulations

[26] (Figure 2f–j). Parallelization, via the Message Passing

Interface (MPI) plays a critical role in the system equi-

libration step of MAPLE CAFEE (Figure 3g), for

example by allowing information such as hydrogen bond

frequency to be derived and fed back into the drug-design

process. Computing the nonequilibrium work term

(Figure 3h) invokes numerous MD jobs, and this is made

practical by adopting a massively parallel approach. Each

MD job generally takes a couple of days on a single CPU

core, but MPI parallelism for a microstate MD job would

reduce the computational time almost in proportion to the

number of cores. Therefore, if 10,000 CPU cores were

available, it would be possible to examine hundreds of

novel structures in a week without any actual synthesis.

This is the biggest advantage of in silico technologies. As

an alternative to generic parallelization on commodity

clusters, it has recently been shown that specialized,

purposed built computer architecture can accelerate

MD calculations by two orders of magnitude [33].

Conclusion and future works
An integrated SSBDD platform has been built to create

active novel chemical structures for chemical synthesis. A

novel feature of the platform is its ability to calculate

ligand affinity constants with great accuracy. Despite the

substantial computational resources required to achieve

this accuracy, the approach is cost effective because it

dramatically reduces the time and expense associated

with unnecessary experimental synthesis and assays,

enabling chemists to focus their synthetic efforts chemi-

cal structures that are most likely to lead to therapeutic

success. Currently, binding affinity prediction with

MAPLE CAFEE tends to be unstable when the actual

affinity is very weak or ligands are protonated. We are now

improving the sampling algorithms for weak binding

state, and charge correction methods for protonation.

We are also reducing the requisite CPU resources as

much as possible without sacrificing accuracy.

The availability of next generation super-computers puts

a practical thermodynamic guided drug-design platform,
egies. (c) Exhaustively connect the selected fragments with constraints to

m with MM. (d) Assign possible real-atoms to the abstract skeletons

favorable structures using heuristics such as the occurrence of

FEE workflow comprises five steps (f)–(j). (f) Setup molecular models for

ld Formulator for Organic Molecules (FF-FOM) [28]. When no co-crystal is

other methods. It is notable that having realistic molecular models with

iable computational method for estimation. (g) Equilibrate the system in the

n bound and unbound equilibrium states. Actually, the two end states are

each microstate are computed with MD jobs. (i) Estimate the most likely

tt Acceptance Ratio) statistical method [34]. (j). Finally, sum up all the micro

bmitted to MAPLE CAFEE for free energy calculation from any source. For

y series (k), or from a DOCK type virtual screen (l).
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both accurate and swift, within reach. Moving forward,

accelerated computation, and the virtual drug discovery

platforms it will support, will bolster successful thera-

peutic R&D outcomes and contribute to better human

health.
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