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A Novel CNN‑based Bi‑LSTM 
parallel model with attention 
mechanism for human activity 
recognition with noisy data
Xiaochun Yin1, Zengguang Liu2*, Deyong Liu3 & Xiaojun Ren1

Boosted by mobile communication technologies, Human Activity Recognition (HAR) based on 
smartphones has attracted more and more attentions of researchers. One of the main challenges 
is the classification time and accuracy in processing long‑time dependent sequence samples with 
noisy or missed data. In this paper, a 1‑D Convolution Neural Network (CNN)‑based bi‑directional 
Long Short‑Term Memory (LSTM) parallel model with attention mechanism (ConvBLSTM‑PMwA) is 
proposed. The original features of sensors are segmented into sub‑segments by well‑designed equal 
time step sliding window, and fed into 1‑D CNN‑based bi‑directional LSTM parallel layer to accelerate 
feature extraction with noisy and missed data. The weights of extracted features are redistributed by 
attention mechanism and integrated into complete features. At last, the final classification results are 
obtained with the full connection layer. The performance is evaluated on public UCI and WISDM HAR 
datasets. The results show that the ConvBLSTM‑PMwA model performs better than the existing CNN 
and RNN models in both classification accuracy (96.71%) and computational time complexity (1.1 
times faster at least), even if facing HAR data with noise.

Human activity  recognition1 is to classify and recognize the movement behaviors by analyzing the informa-
tion of human activities, which has great commercial value and scientific research significance in the fields of 
human-computer interaction, covid-19 tracking and public safety. Nowadays, most smartphones are equipped 
with quite rich embedded sensors, such as acceleration sensor, gyroscope sensor, magnetic sensor, etc., which 
can provide enough training data of human activities with the advantages of portable, low power consumption 
and low cost. And more, they can provide enough computing units for deep learning models. Therefore, it is 
suitable that smartphones are chosen as the terminals for human behavior recognition. They can not only collect 
data conveniently, but also preprocess data, extract features and recognize real-time behavior. Gradually, human 
behavior recognition based on smart phone sensors has become a prominent research field.

HAR is commonly done by gathering signals from smartphones sensors and processing them through Arti-
ficial Intelligence (AI) algorithms for classification. However, during the process of data collection, the original 
data of sensors usually contains noise (missed value, error value or abnormal value, etc.) introduced by the 
interference of external  environment2. The cumulative effects in long-time dependent sequence may lead to 
wrong classification. To avoid the problem, the existing AI models usually take manual interpolation or feature 
selection methods for the original data. However, these models are time-consuming and effort-consuming, and 
they depend on the experience of researchers more or less. Therefore, it is worth studying to design an automatic 
model to eliminate the influence of noisy data. Wang et al.3 investigated the state-of-the-art literature about 
sensor-based activity recognition based on machine learning. The results verified that the models based on CNN 
did well in features extraction. Thus, a serial of CNN-based models was worked out. Ronao et al.4 proposed a 
deep CNN model to perform efficient and effective HAR based on data of smartphone sensors. The model took 
use of the inherent characteristics of activities and extracted automatically features from 1D time-series signals. 
 Ignatov5 proposed a novel CNN architecture, which could accept both the dynamic features of sensor data and 
the statistical features of HAR. The experiments showed that the proposed model had better performance than 
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the baseline models. Andrade-Ambriz et al.6 designed a temporal CNN network for recognizing HAR that lever-
aged both spatial location features and temporal features. The results told that the accuracy of HAR recognition 
was improved. Gianni et al.7 proposed to generate HAR-Images from the raw data of accelerometer sensors and 
fed HAR-Images as fingerprints into CNN-based model for further handling. Gholamrezaii et al.8 proposed a 
new architecture that consisted solely of convolutional layers, which were removed the pooling layers and added 
strides instead. The computational time of model would decrease notably. Khan et al.9 proposed an attention-
based multi-head model for HAR, which composed of three lightweight convolutional heads. The methodol-
ogy leveraged 1-D CNN in the convolutional head to get features from sensors. Mahmud et al.10 proposed an 
architecture including multiple CNN feature extractors for HAR. Extracted features were optimized through a 
combined training stage or multiple sequential training stages. Ali et al.11 proposed the use of a combined CNN 
and Naive Bayes for accuracy and robustness to distinguish between false and true alarms of HAR. Lai et al.12 
proposed 1-D dense attention neural network model for HAR. The model had the ability of frequency attention 
after applying attention mechanism.

The above models had good performance when extracting sptial location features. But they came across the 
problem of extracting temporal features. Thus, Amer et al.13 proposed two-step approach to recognize HAR. One 
was to transform the data into time-frequency representation by applying spectral analysis. The other was to 
classify the time-frequency representation using CNNs. With the emergence of LSTM network, it is playing an 
important role in recognizing long-time dependent sequence samples. Ai et al.14 investigated these existing clas-
sifiers for HAR. The results shown that LSTM-based classifiers had advantages on inferring the long-term human 
activities. Zhu et al.15 used LSTM network to learn long-term temporal representations from the trajectories of 
human skeleton joints. And they designed a fully connected deep LSTM network for end-to-end HAR recogni-
tion. Chen et al.16 conveyed complementary information by feature embedding method and fed those embeded 
features into a deep LSTM network to improve recognition accuracy. CNN-based network and LSTM-based 
network have their own advantages. Researchers integrated them for higher accuracy. Khan et al.17 proposed an 
ensemble model of CNN and LSTM. The model utilized CNN for spatial features extraction and LSTM network 
for temporal features extraction. Shalaby et al.18 presented deep learning model composed of CNNs, GRUs and 
LSTMs, which was used to extract high dimensionality and time sequence features. Shakerian et al.19 proposed a 
fuzzy softmax classifier based on CNN and LSTM. The classifier used CNN for extracting the high-level features 
of the sensors data, and then used LSTM for learning the time-series behaviors of the abstracted data. Yadav 
et al.20 proposed a novel deep convolutional long short-term memory model for HAR. The proposed model was 
a sequential fusion of CNNs, LSTMs, and fully connected layers. Thakur et al.21 proposed a DL-based unified 
model composed of CNNs, autoencoders, and LSTMs. The model learnt both spatial features and temporal fea-
tures from smartphone sensor data. Gao et al.22 presented a new dual attention method, which blended channel 
and temporal attention on residual networks to improve feature representation ability of CNNs and LSTMs.

During the processing of HAR, time consumption is as important as accuracy. Nevertheless, according  to23, 
these LSTM-based models spent a lot of time to handle long time-series problem. And they split the continuous 
time sensor data into samples for processing one by one. This kind of sequenced structure with corresponding 
splitting technology is obviously slower than parallel ones. At the same time, the accuracies of the mentioned 
models were low when facing noisy data. Thus, in this paper, we propose a novel CNN-based Bi-LSTM paral-
lel model with attention mechanism for human activity recognition with noisy data. The contributions of this 
paper are as follows:

• We adopt a well-designed equal time step sliding window method for maximizing data utilization, splitting 
raw multi-variate data into serveral single-variate ones, and speeding up the frequency of detection.

• We propose a ConvBLSTM-PMwA model, which uses CNN-based bi-LSTM network for dimensionality 
reduction and elimination of noisy data; which uses a parallel structure for time complexity reduction; which 
also uses attention mechanism for high accuracy by redistribution of the weights of key representations.

• We compare the experimental results of ConvBLSTM-PMwA model with state-of-the-art models on two 
different HAR datasets. The ConvBLSTM-PMwA model has enhancement in both classification accuracy 
and computational time complexity, even if facing HAR data with noise.

The rest of the paper is organized as follows: In “Methods” section, the equal time step sliding window method 
and the architecture of ConvBLSTM-PMwA model have been expressed in detail. In“Results” section, datasets 
and the experiment environment are described, and the experiment results are shown in terms of the recognition 
accuracy and the time complexity. In “Discussion” section, the experimental analysis for the results is presented. 
Finally, in “Conclusions” section, the overall model is concluded with suggestive future enhancements briefly.

Methods
In this section, a CNN-based bi-directional LSTM parallel model with attention mechanism is proposed and 
discussed including the tuning of training parameters detailed. As shown in Fig. 1, the original HAR data is 
segmented and fed into parallel 1-D CNN networks with 1× 3 kernels for features extraction. The number of 
CNN-based bi-LSTM blocks n depends on the channels of HAR dataset. And then, the full connection layer 
activated by sigmoid is used for the purpose of feature representation. Next, the bi-LSTM networks are used to 
learn the valid information from noisy data in their hidden states through forward and backward propagation. 
Sequentially, an attention mechanism is used to merge important features together and choose the critical fea-
tures by redistributing the weights. At last, a full connected layer is used for classification. Some key technolo-
gies are used in the ConvBLSTM-PMwA model to avoid over-fitting problem, such as the dropout layer and 
L2-normalization loss function.
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Segment and feature extraction. CNNs are used as dominant networks for the representation of HAR 
features. HAR data is captured as a sequential time series, and has n channels, such as body_acc-[x,y,z], body_
gyro_[x,y,z] and total_acc_[x,y,z] etc. Every time step is related with the front and back ones. That is, HAR data-
set is a time related information set, which can be represented by a matrix comprised by smartphone different 
sensor data in same time step. The shape and content of represent matrix looks like Eq. (1), where A, G, M are 
various sensors, x, y, z mean the directions of the sensors, and t represents the time step of activities.

In order to speed up the classifying time, a parallel structure is worked out to deal with these long time-series 
signals. Corresponding to this, training data should be segmented reasonably. Thus, an equal time step sliding 
window method is proposed. As Fig. 2 shown, the shape of above matrix is t × n. Normally, the number of paral-
lel units equals to n. That is, the partitions should be n. The time step sliding window is used to segment time 
series data into fixed-length sub-segments, and pad time series missed and agnostic data. Assume that the time 
step sliding window is T. Then the input shape of every CNN-based bi-LSTM blocks should be equal to (1, T). 
The sliding stride sw is used to locate the next position of detection sub-segments. If the first sub-segment starts 
from t0 , the next position would be t0 + sw . The benefit in detection phase is that the sub-segments in given 
sw × ts can be sent for detecting in time without waiting for all the data of their whole lifecycle, where ts means 
sampled interval. And the benefit in training phase is maximizing data utilization. After above pre-processing, 
the original big matrix is translated to several smaller matrixes.

Bi‑directional LSTM. The HAR data is a sequence of sensors signals with noise. Noisy data is hurt to the 
final predicting result. In order to estimate and eliminate these noise, Bi-LSTM network is adopted. Normally, 
LSTM network is for one-way time series data prediction. But Bi-LSTM network has two-way stacked LSTM 
network. As illustrated in Fig. 3, the forward LSTM network is for learning from the previous values in the 
forward direction, and the backward LSTM network is for learning from the upcoming values in the inverse 

(1)
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Figure 1.  The block diagram of the proposed methodology.

Figure 2.  Equal time step sliding window method.
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direction. Both the learnt information by above hidden states is combined in latter layer. Equation (2) explains 
the operations performed in bi-LSTM unit,

where xt is the input at time t. w’s are the weights of gates of LSTM cells. ht and h′t are the forward and backward 
output, respectively. The output gate ogt keeps information about the bi-directional steps.

In this paper, the generated vector of chosen features by CNN and dense is fed to the bi-LSTM in parallel. 
A regularizer of L2 and an activation tanh are adopted to finish normalize, which can help to reduce the over-
fitting. When running the network, the vector with a size of n× o are combined by the next layer, where o is the 
number of the hidden neurons of each bi-LSTM unit.

Attention mechanism. In the attention layer, there are two tasks. One is to merge the output of the 
upstream layer. This task is simple. The layer needs only to put the output together in channel order, since the 
original input data to parallel structure contains the channel dependency. As known, the different representa-
tions are contributed differently. Thus, the other task is to filter the important representations out for the purpose 
of recognition. An attention  mechanism24 is used to redistribute the weights of representations. As Figure 4 
shown, firstly, attention mechanism calculates the last hidden state and attention score vectors based on inputted 
data from different channels of Bi-LSTM networks. Next, the scores of representations are gotten by dot-product 
function. Here, we adopt the dot-product attention, which benifits to time complexity. After this, a softmax func-
tion runs on these scores for getting the normalized ones. Next, they are aligned and summed up for context 
vectors by the Eq. (3),

(2)

ht = σ(w1xt + w2ht−1)× tanh(Ct),

h′t = σ(w3xt + w4h
′

t−1)× tanh(C′

t),

ogt = w5ht + w6h
′

t .

Figure 3.  Basic structure of three-stage Bi-LSTM network.

Figure 4.  Attention mechanism of the ConvBLSTM-PMwA model.
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 where µt means the representation information of hidden layer, µd is the similarity of feature vectors. αt is the 
normalized weight.

Other common layers in the ConvBLSTM‑PMwA model. 1-D CNN is being used since it can capture 
all the tiny changes in each time step. The changes are critical for sequenced learning in bi-LSTM for activity 
recognition. The layer is equipped with 64 filters and activated by ReLU nonlinear activation function. There is a 
full connection layer in the beginning and end part of model. They are playing different roles. The former is used 
to generate an input vector, and the latter is used to reduce the dimension of the features for producing the classi-
fication outcome. Thus, sigmoid and softmax activations are used for different purposes. To avoid the overfitting 
problem, a dropout layer with 0.6 dropout ratio is followed by the first dense layer, which permits the hidden 
layer to drop out certain neurons during training randomly. During model compiling, categorical_crossentropy 
loss function is used to calculate cost in training set and validation set. And rmsprop optimizer is used to adjust 
weights and biases through back propagation.

Ethics approval and consent to participate. The data of experiments about human activities comes 
from the UCI and WISDM public datasets. The UCI HAR dataset is approved by UC Irvine, and the WISDM 
HAR dataset is approved by the Wireless Sensor and Data Mining lab. The authors confirm that all researches are 
performed in accordance with relevant guidelines and regulations.

Results
In this section, we give the detailed description about the public UCI and WISDM datasets firstly. Next, we revise 
UCI dataset to the balanced one with noisy data, and keep WISDM as the unbalanced one without noisy data. 
And then, hyperparameters are well-tuned through testing the output of different values. At last, comparable 
experiments are carried out in terms of accuracy and computational time complexity by using the above two 
datasets.

HAR datasets introduction and revision. To prove the effectiveness of the proposed ConvBLSTM-
PMwA model, two public smartphone-based HAR datasets are adopted. One is the blanced dataset, and the 
other is the unblanced dataset.

The UCI  HAR25 is a public dataset, which is carried out with 30 subjects within an age between 19 and 48 
years old. Each volunteer finished six activities wearing a smartphone (Samsung Galaxy S II) on the waist: 
walking, going upstairs, going downstairs, sitting, standing and lying. The data of embedded accelerometer and 
gyroscope sensors is sampled by the rate of 50 Hz. And then, the data is pre-processed and labeled manually. The 
size of samples is 128 with 50% overlap. At last, the training dataset is randomly partitioned into two small sets 
by 80%:20%. The 80% one is for training and the 20% one is for validation. In order to verify the ConvBLSTM-
PMwA model, 10% values on both training and testing datasets are changed to 0 randomly, which is simulating 
the noisy data. And then, we process the check about data balance and exploratory data analysis. In Fig. 5, the 
numbers of different activities are between 1,000 and 1,400, the average number is 1,225, thus, the dataset is 
good for training and testing. It is not necessary to do undersampling or oversampling. In Fig. 6, the boxplot 
comparison of the original and revised data of the mean value of acceleration magnitude, as an example, is drawn. 
The minimum, maximum and Q2 are changed. But the activities can still be classified.

The WISDM HAR  dataset26 is a standard public dataset provided by the Wireless Sensor and Data Mining 
lab. The dataset was collected from 36 subjects using smartphone accelerometer sensors. Each volunteer finished 
six activities, such as sitting, standing, walking, jogging, walking upstairs, and walking downstairs. The data of 

(3)
µt = tanh(wd × flatten(og ′t s)+ bd),

αt =
exp(µtµd)

∑

t exp(µtµd)
,

Figure 5.  The distribution of activities on UCI HAR dataset.
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3-axial linear acceleration measurements is sampled by the rate of 20 Hz. We use raw time series data, and split 
them into sub-segments every 128 samples. We split this dataset into training sets including the data from users 
1-26 and test sets with the data from the rest 10 users. And the training sets is randomly partitioned into two 
small sets by 80%:20%. The 80% one is for training and the 20% one is for validation. As Fig. 7 shown, this is an 
unblanced dataset.

Experiment environment setup. The experiment is finished on a laptop with Intel(R) Core(TM) 
i5-7200U CPU. GPU is not used here, since most smartphone has not high-performance GPU, too. But for the 
purpose of the comparison of time complexity, the same experiment environment is used, which is a machine 
with Intel Xeon E5-2695 v4 CPUs and NVIDIA Tesla M40 GPUs. The library keras with tensorflow as backend 
is imported into the ConvBLSTM-PMwA model implementation.

The validation of bi-LSTM layer and attention mechanism is tested and compared with other RNN models 
on UCI HAR dataset. In Fig. 8, the accuracy and loss of LSTM, bi-LSTM, CNN-based bi-LSTM and CNN-based 
bi-LSTM with attention are compared. The training is done in 40 epochs. Obviously, the proposed CNN-based 
bi-LSTM with attention network has best performance, whose accuracy is as high as 95.6% and cross entropy 
loss is lower than 0.11. The epoch with best performance is chosen to validate on testing set. In Fig. 9, the results 
on testing set are listed. The ConvBLSTM-PMwA model still has best performance thinking about accuracy and 
loss at the same time. Its accuracy is 96.71%, which is little higher than CNN-based bi-LSTM models, but the 
loss is far better than them. Thus, CNN and attention are used and added into our proposed model.

After getting the model, hyperparameters are well-tuned through testing the output of different values. A 
greedy-wise tuning method named GridSearch is used to achieve the optimal performance as much as possible. 
The different dropout values and the number of neuron units are tested in UCI HAR dataset. As shown in Fig. 10, 
when dropout rate is 0.6, both the loss and accuracy have the best performance. Thus, we use 0.6 as the drop-
out rate in the ConvBLSTM-PMwA model. After applied the chosen dropout rate, different number of neuron 
units in 1D CNN layer is tested by GridSearch. As Fig. 11, the best number is 32. It can learn the representation 
features and get an accuracy of 94.46%. Learning rate is not necessary, since rmsprop is used. It tries to use the 
best learning rate automatically. The accuracy is increasing step by step during tuning process. Once the above 
exploration is done, the hyperparameters are gotten. Table 1 lists parts of the hyperparameters.

Classification accuracy. As Fig. 12 shown, they are the heatmaps of classification in revised UCI HAR 
dataset and WISDM HAR dataset. In Fig. 12a, The model on UCI HAR dataset has a good performance in walk-

Figure 6.  The boxplot of acceleration magnitude on original and revised UCI HAR dataset.

Figure 7.  The distribution of activities on WISDM HAR dataset.
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ing, sitting, standing and laying. The predication accuracy can reach to 99.89%. As to upstairs and downstairs, 
there is a higher error rate. But the overall accuracy of 96.71% is good to do HAR. In Fig. 12b, The model on 
WISDM HAR dataset almost has the same performance, and get an accuracy of 95.86%. This shows that the 
proposed model is stable in both balanced and unbalanced datasets.

The comparison with other classic models is listed in Table 2. Obviously, the accuracy of the ConvBLSTM-
PMwA model is a little better than these state-of-the-art models. The reason is that more feature extraction 
processes are executed by numerous transformations for obtaining variegated representations of the features 
encoded in raw data before feeding to the ConvBLSTM-PMwA model.

Computational time complexity. The time consumption experiments are run in the mentioned laptop. 
As Fig. 13 shown, the size of dataset is divided by 2,000. The time consumption in above dataset size is experi-

Figure 8.  The accuracy and loss comparation of different models on validation set.

Figure 9.  The accuracy and loss comparation of different models on test set.

Figure 10.  The accuracy and loss comparation with different dropout ratio.
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enced. From the results, with the increase of data size, the computational complexity is increased linearly. Thus, 
the ConvBLSTM-PMwA model is good on long time-series datasets.

The comparison of time complexity between different models on testing datasets is listed in Table 3. We shrink 
the scale of WISDM dataset, which has the same size with UCI dataset. Compared with deep CNN models, the 
ConvBLSTM-PMwA model performs better. Since we can see that the mean number of parameters in CNN-
based bi-LSTM units are about 6,150, which is much smaller than deep CNN models. But compared with other 
parallel models, its time consumption is little higher, since the CNN network is introduced for feature extraction 
on a long time-series sample input.

Discussion
In this study, we propose a novel CNN-based bi-LSTM parallel model with attention mechanism for human activ-
ity recognition with noisy data. During pre-processing, a well-designed equal time step sliding window method 
is used to split raw multi-variate data into several single-variate ones for parallel handling. And the method is 
also used to segment data into fixed sub-segments in time domain. Once the required data length of sub-segment 

Figure 11.  The accuracy and loss comparation with different neuron units.

Table 1.  Table of hyperparameters.

Hyper-parameters Values

Number of parallel CNN-based Bi-LSTM units 80% of CPU cores

Hidden neurons of 1D CNN units 32

Batch size 16

Dropout ratio 0.6

Dominant layers Bi-LSTM, Attention, Dropout

Figure 12.  The heatmap of classification of the ConvBLSTM-PMwA model.
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is met, the HAR starts. This is maximizing data utilization on training phase, and speeding up the frequency of 
detection in real scenarios. CNNs are efficient in extracting representations from those single-variate data. And 
the output of CNNs is fed into bi-LSTM for getting temporal features. Considering these noisy data, bi-LSTM 
network is more accurate and effective. Since sensor data streams are split into different groups of channels, the 
representations from different CNN-based bi-LSTM network have different impact on final results. Hence, an 
attention mechanism is adopted for weighing these representations and assembling them together.

In computational time complexity, a parallel handling model is adopted. Time consumption of bi-LSTM 
network is grown quickly with the scale of inputted representations increasing. Hence, we split raw multi-variate 
data into several single-variate ones for dimensionality reduction firstly, and then, we use CNNs for automatic 

Table 2.  The classification comparation on the UCI and WISDM datasets.

Models Accuracy (%) Accuracy (%)

on UCI on WISDM

Inherent Features-based  CNN4 91.75 91.50

Coherent Features-based  CNN5 92.31 92.20

HAR-image  CNN7 93.27 91.64

Multi-stage  CNN10 94.29 93.19

Attention-based Multi-head  CNN9 95.62 94.90

Temporal  CNN6 96.31 95.71

Feature Embedding-based  LSTM16 96.31 95.55

ConvAE-LSTM21 96.41 95.60

Attention-based  LSTM22 95.18 93.74

Hybrid CNN and  LSTM17 96.55 95.65

Proposed Method 96.71 95.86

Figure 13.  The time consumption on different scale HAR datasets.

Table 3.  The comparison of time consumption among models on the UCI and WISDM datasets.

Models Time (ms) Time (ms)

on UCI on WISDM

Inherent Features-based  CNN4 23.61 23.01

Coherent Features-based  CNN5 25.61 24.22

HAR-image  CNN7 27.46 25.31

Multi-stage  CNN10 54.29 49.89

Attention-based multi-head  CNN9 25.62 23.22

Temporal  CNN6 16.31 13.57

Feature Embedding-based  LSTM16 65.02 60.04

ConvAE-LSTM21 67.08 61.17

Attention-based  LSTM22 75.18 72.61

Hybrid CNN and  LSTM17 60.03 54.14

Proposed Method 14.71 12.11
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dimensionality reduction further. By reducing the numbers of inputted representations of bi-LSTM network, the 
ConvBLSTM-PMwA model gets recognition results in an acceptable amount of computational time.

Furthermore, we design classification accuracy and computational time consumption experimentations. 
These experimentations are done on two standard smartphone-based HAR datasets. To prove the effectiveness 
of the proposed ConvBLSTM-PMwA model, we compare our results with state-of-the-art models. The results 
show that the ConvBLSTM-PMwA model performs better than the existing CNN and RNN models in both 
classification accuracy (96.71%) and computational time complexity (1.1 times faster at least), even if facing 
HAR data with noise.

Conclusions
HAR based on smartphones has a world-wide need, especially in human-computer interaction, covid-19 tracking 
and public safety etc. An equal time step sliding window method and a ConvBLSTM-PMwA model are proposed 
for recognizing human activity, even if facing HAR data with noise. Before experimentation, we tune the key 
hyperparameters in model by GridSearch method, and train the model with well-tuned hyperparameters. The 
proposed model can have a good performance in both accuracy (96.71% on the UCI dataset and 95.86% on the 
WISDM dataset) and time consumption (14.71 ms on the UCI dataset and 12.11ms on the WISDM dataset). 
But recently, we also notice that some small-scale AI networks for smart phone and other IoT equipment have 
come into the world. Next, we will try and integrate these ideas of classic mobile AI networks into our proposal. 
Maybe this will improve the time performance further.

Data availability
The datasets analysed during the current study are available in the UCI Machine Learning Repository, http:// 
archi ve. ics. uci. edu/ ml/ datas ets/ Human+ Activ ity+ Recog nition+ Using+ Smart phones, and in the WISDM Lab 
webpage, https:// www. cis. fordh am. edu/ wisdm/ datas et. php.
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