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Computational evidence 
for nitro derivatives of quinoline 
and quinoline N‑oxide as low‑cost 
alternative for the treatment 
of SARS‑CoV‑2 infection
Letícia C. Assis1, Alexandre A. de Castro1, João P. A. de Jesus2, Eugenie Nepovimova3, 
Kamil Kuca3*, Teodorico C. Ramalho1,3 & Felipe A. La Porta2* 

A new and more aggressive strain of coronavirus, known as SARS‑CoV‑2, which is highly contagious, 
has rapidly spread across the planet within a short period of time. Due to its high transmission rate 
and the significant time–space between infection and manifestation of symptoms, the WHO recently 
declared this a pandemic. Because of the exponentially growing number of new cases of both 
infections and deaths, development of new therapeutic options to help fight this pandemic is urgently 
needed. The target molecules of this study were the nitro derivatives of quinoline and quinoline 
N‑oxide. Computational design at the DFT level, docking studies, and molecular dynamics methods 
as a well‑reasoned strategy will aid in elucidating the fundamental physicochemical properties and 
molecular functions of a diversity of compounds, directly accelerating the process of discovering new 
drugs. In this study, we discovered isomers based on the nitro derivatives of quinoline and quinoline 
N‑oxide, which are biologically active compounds and may be low‑cost alternatives for the treatment 
of infections induced by SARS‑CoV‑2.

We are currently facing a new coronavirus disease designated as COVID-19. It started in China and has spread 
rapidly around the world, resulting in serious threats to international health and the  economy1,2. The Interna-
tional Committee on the Taxonomy of Viruses denominated the virus as severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). This denomination is derived from the fact that the RNA genome is approximately 
82% identical to the SARS coronavirus (SARS-CoV)3. In addition, the SARS-CoV-2 reveals a 79% similarity 
with SARS (Severe Acute Respiratory Syndrome) coronavirus and a 50% similarity with MERS (Middle Eastern 
Respiratory Syndrome)  coronavirus4.

The crystallographic structure of SARS-CoV-2 exhibits approximately 88% sequence identity with the other 
two coronaviruses found in bats (bat-SLCoVZC45 and bat-SL-CoVZXC21)5. For this reason, it is believed that 
the original host of the SARS-CoV-2 outbreak was bat-like6. Since discovery, an exponential growth in the num-
ber of cases of infections and deaths has been observed  worldwide3,7,8. The World Health Organization (WHO) 
responded quickly to the COVID-19 threat by developing diagnostics and providing general guidance on patient 
monitoring, as well as up-to-date information; it also declared the outbreak a pandemic on March 11,  20208,9.

The overall situation is progressing daily  worldwide10. In order to further the development of prevention 
and control techniques, we must have a better comprehension of the nature of the  pandemic11,12. It is important 
to know that SARS-CoV-2 replicates in the upper respiratory tract, and infected patients produce a multitude 
of virus particles which further contributes to the spread of  infection13. Similar to MERS and SARS, there are 
no distinguishing clinical features of COVID-19, and symptoms overlap significantly with other severe acute 
respiratory  infections9,14–16.

Clinical characterization protocols are now being collected on patients worldwide to better define the illness, 
in terms of its natural history, mode of transmission, clinical profiles, management, and specific risk factors, to 
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prevent or overcome the damaging effects of the  disease9,17. What is known so far is that a significant proportion 
of individuals infected by COVID-19 remain asymptomatic and are thus an unbeknownst potential source of 
 infection18,19. In symptomatic patients, the characteristic symptoms of the disease usually start less than a week 
after infection, and consist of fever, cough, nasal congestion, and fatigue, along with other signs of an upper 
respiratory tract  infection19.

In early 2003, SARS-CoV was revealed as the causative agent of the emergence of  SARS20,21. The SARS virus’s 
main proteinase  (Mpro), also known as SARS-CoV 3C-like protease (3CLpro), is a key enzyme responsible for 
the processing of viral  polyproteins21–23. Together with the papain-like proteases, the  Mpro is essential for the 
processing of polyproteins translated from the viral  RNA3,24. In a structural analysis, the  Mpro enzyme consists of 
three domains (Fig. 1). Domains I (residues 8–101) and II (residues 102–184) are well-known β-barrels, which 
together resemble the structure of chymotrypsin. Contrarily, domain III (residues 201–306) primarily consists 
of α-helices. Domains II and III, respectively, are connected by a long loop (residues 185–200). Also, located in 
a cleft between domains I and II, the  Mpro active site presents a catalytic dyad formed by the conserved Cys145 
and His41 amino acid residues. Equally important is the presence of a water molecule, which is a hydrogen 
atom bonded to His41; it can give rise to the third component of a catalytic  triad23. It was indicated that domain 
III of  Mpro is necessary for maintaining the proteolytic activity, which takes place by holding domain II and the 
long loop (residues 185–200) in a catalytically favorable  orientation25 and/or orienting the N-terminal residues 
that play an important role for the catalytic activity of the  enzyme26. To date, no human proteases with a similar 
cleavage specificity are known, suggesting that the inhibitors are unlikely to be  toxic3. Based on this information, 
the present work has the main purpose of computationally designing new and more effective drugs to inhibition 
of the SARS-CoV-2  Mpro27–29.

Researchers worldwide are undertaking the search for a vaccine while others search for a treatment regimen 
targeting SARS-CoV-2. Preliminary results demonstrated the application of both chloroquine (CQ) and hydroxy-
chloroquine (HCQ) to be promising treatments for SARS-CoV-233–35. CQ, for instance, exhibits inhibition of 
the SARS-CoV-2 infection at micromolar concentrations. Both compounds are classified as 4-aminoquinoline 
antimalarial  drugs36. However, further studies are needed to ensure the administration of these medicines is 
safe. Given the exposure so far, this work aims to provide significant contributions to accelerate the discovery of 
novel and efficient remediation methods against the damaging effects of COVID-19.

Computational screening is now the prime focus for solving the crisis of SARS-CoV-2 infections. This is likely 
because such strategies reveal rational pathways for the development of fast and efficient drugs. In this regard, 
the combination of quantum mechanics and molecular mechanics calculations are robust tools for investigating 
a vast range of drug candidates, as well as identifying potential molecular targets for the sites of action of these 
therapeutic  agents37. In this work, the nitro derivatives of quinoline (Q) and quinoline N-oxide (QO) were com-
putationally investigated. The choice of these derivatives was predominantly based on the nitration reaction they 
undergo, which is characterized by the replacement of a hydrogen atom with a nitro group, and also because it is 
one of the most industrially used reactions, not requiring the use of sophisticated equipment to be  performed38–42. 
This nitration reaction is therefore extremely attractive since synthesis requires low-cost materials and simple 

Figure 1.  Crystallographic structure of the Covid-19 virus  Mpro enzyme with the co-crystallized ligand 
6-(ethylamino)pyridine-3-carbonitrile (PDB code 5R82) (up)30, and re-docking result of the co-crystallized 
ligand through AutoDock  Vina31 as implemented in the MolAr software (down)32. Image generated in the 
Discovery Studio Software 4.5 https:// disco ver. 3ds. com/ disco very- studio- visua lizer- downl oad.

https://discover.3ds.com/discovery-studio-visualizer-download
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reaction paths, and any country can implement the large-scale manufacturing process for such  products38–42. In 
this context, this research explores new therapeutic alternatives to combat the SARS-CoV-2 outbreak by utilizing 
computational simulations at the Density Functional Theory (DFT) level, molecular docking, and molecular 
dynamics methods as a well-reasoned strategy that provides insights on the physicochemical properties as well 
as the interaction and reactivity of these molecules as potential drug candidates.

Results and discussion
As a first step, we have performed DFT and TDDFT calculations for the nitro derivatives of compounds Q and 
QO to better understand their electronic structure, spectroscopic properties, and chemical reactivity. Figure 2 
shows the electrostatic surface potential for the optimised structure of all the nitro derivatives of Q and QO, 
which have screened in this in silico study. Hence, we can also see that the charge distribution mainly depends on 
the various orientations of the nitro groups—regions with negative potential (red) that act as an excellent electron 
acceptor—that were added to the Q and QO compounds, respectively, with the specific objective of conferring the 
most favorable interaction between the drug and the target. Note also that the nitro group increases the polarity 
of these compounds, which is an attractive characteristic for pharmacological  applications43. Additionally, nitro 
derivatives of QO compounds, in this case, have a more polarized structure. These slight structural changes are 
responsible for modulating the biological activity of these compounds, which may provide new clues for an in-
depth interpretation of their microscopic behavior. These theoretical findings are consistent with the molecular 
docking simulations performed in this study.

All compounds were also identified in terms of computed IR-active modes and UV–Vis absorbance spectros-
copy, as we show in Figure S1. These results can easily be used to distinguish the isomers obtained. In parallel, 
a comparison of the difference between the total electronic energy (ΔE) for the computed Q and QO isomers, 
presented in Table S1, suggests that both N-4-Q and N-4-QO compounds in terms of energy are more stable. 
Additionally, the HOMO–LUMO gaps reveal a minor difference of 4.07 to 4.31 eV for nitro derivatives of Q and 
of 3.11 to 3.69 eV for nitro derivatives of QO, respectively (see Table S1). In this case, a lower HOMO–LUMO 
gap value for QO derivatives, in principle, suggests greater reactivity for these isomers compared to Q derivatives. 
Figure S2 shows the shape of molecular orbitals (MOs) for all ligands studied. A detailed analysis of composition 
and localization of the MO reveals that the HOMO energies are, in principle, insufficient to describe the chemi-
cal behavior of these ligands. From the frontier effective-for-reaction molecular orbital (FERMO) concept, the 
reactions that are driven by HOMO, and those that are not, can be better explained for such  compounds44–47. 
These findings are consistent with previous  studies46,47.

To elucidate the modes through which our drug candidates interact SARS-CoV-2, the crystal structure of the 
 Mpro of the virus in complex with 6-(ethylamino)pyridine-3-carbonitrile was downloaded for  study30. Once the 
enzyme had been prepared, the molecular docking protocol was initiated. In the first part of this investigation, 
re-docking calculations were performed using the MolAr  software32, with implementation of the AutoDock Vina 
 program31. To determine the ideal docking parameters, these re-docking calculations were performed according 

Figure 2.  Optimised structures of nitro derivatives of (a) Q and (b) QO and computed electrostatic potential 
maps with contour value of 0.004. Image generated in the GaussView 6.0 https:// gauss ian. com/ gauss view6/.

https://gaussian.com/gaussview6/
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to the orientation and conformation adopted by the experimental co-crystallised active ligand present in the 
binding pocket. It is important to notice that the  Mpro enzyme used in this work was found in its native form.

The small RMSD variation (0.94) obtained from the re-docking calculations, suggested that the program was 
able to correctly and efficiently simulate the experimental results for the respective ligands. This preliminary 
outcome indicated that the conformational deviation of the molecular docking technique was suitable for our 
purposes and that the method was highly sensitive and specific. The re-docking overlap is presented in Fig. 1. To 
simulate the modes through which our drug candidates interact with the SARS-CoV-2  Mpro enzyme, we employed 
the best parameters provided by the data from the re-docking study carried out with the co-crystallised active 
ligand. All the computed interaction energy results are displayed in Table S2 and S3 in supplementary material.

As shown in Table S2, all the drug candidates studied (i.e., nitro derivatives of Q and QO) interacted well with 
 Mpro active site, with interaction energy values in the range of − 4.3 to − 5.0 kcal  mol−1. Some of the nitro-QO 
compounds, such as the inhibitors N-4-QO, N-9-QO, N-8-QO, together with QO, had slightly more stabilising 
interaction energy values than those of their corresponding nitro-quinolines (Table S2). In general, it is note-
worthy that the compounds studied had a greater affinity for  Mpro than the co-crystallised ligand did (the latter 
showing an interaction energy value of −3.9 kcal  mol−1). In order to assess the potential of such findings, using 
the same protocol, docking procedures were performed with the commercial drugs CQ and HCQ, which are 
currently adopted for the treatment of SARS-CoV-2 infection, and their interaction energy values were found to 
be − 2.8 and − 2.3 kcal  mol−1, respectively. A remarkable trend could be observed from these outcomes. Note that 
all of our drug candidates presented lower interaction energy values than CQ and HCQ, with a significant energy 
difference, of up to 2 kcal  mol−1. Additionally, our study showed that the many of the nitro-QO compounds led 
to a more stabilising interaction energy in the  Mpro active site. Based on these findings, we also investigated the 
chloroquine and hydroxychloroquine N-oxides forms (denoted as CQO and HCQO), which displayed a sig-
nificant improvement in interaction energy values of − 3.0 and − 3.1 kcal  mol−1, respectively. Interestingly, the 
interaction energy of HCQO was almost 1 kcal  mol−1 more stabilizing than that of HCQ. This trend was deeply 
analyzed using molecular dynamics (MD) techniques. The influence of the N-oxide group was also investigated 
at different sites and through different combinations for the CQO and HCQO compounds (Table S3). Accord-
ing to that table, with all combinations investigated, we can observe that no improvement in interaction energy 
was detected for CQO. On the other hand, for HCQO, the presence of the N-oxide group at some sites led to 
slightly more favorable interaction energies. See table S3 for more details. Herein, our main goal was to determine 
whether the inhibitors studied could target the  Mpro enzyme. The molecular docking pose of each drug candidate 
indicated that they could indeed fit accurately within the substrate-binding pocket.

In the case of SARS-CoV-2 virus  Mpro enzyme, the protomer is composed of three domains, as commented 
previously (see Fig. 1). The enzyme has a Cys145–His45 catalytic dyad, and the substrate-binding pocket is 
known to be located in a cleft between domains I and  II48. Hence, the structural features determined from these 
data are important for guiding our assessment of the interaction modes of the inhibitors in the  Mpro active site. 
As shown in Fig. 3, the N-4-QO performed hydrogen bonds with all the residues and the water molecule of 
the catalytic triad. In fact, these specific interactions constitute one of the parameters analysed in this docking 
study. This same trend is not observed for inhibitor N-4-Q, suggesting that the N-oxide version of this ligand 
adopts a more favourable conformation which allows for its interaction with the catalytic triad, resulting in a 
slightly more stabilizing interaction energy. Similarly, the interactions performed by the other ligands can also 
be observed in Fig. 3.

From the molecular docking calculations, it was possible to deduce that our drug candidates had a more 
stabilizing interaction energy effect than CQ and HCQ in the  Mpro binding pocket. To better assess the interac-
tion modes of our inhibitors, N-4-Q and N-4-QO were chosen as representatives of the set for MD simulations. 
Likewise, the same calculations were performed for CQ and HCQ and their N-oxides CQO and HCQO (see 
Figure S3).

Additionally, in this study, the dynamic behavior of complexes  Mpro/N-4-Q,  Mpro/N-4-QO,  Mpro/CQ,  Mpro/
CQO,  Mpro/HCQ,  Mpro/HCQO inside the SARS-CoV-2  Mpro enzyme was investigated. The extracted frame, which 
was considered the representative conformational structure for all inhibitors throughout the MD simulation, 
corresponds to the average of the RMSD value. By analyzing the results of the RMSD plots, it was observed that 
most of the deviations from the N-4-Q and N-4-QO structures were very small, not exceeding 0.5 Å, i.e., these 
ligands are well-accommodated in the SARS-CoV-2  Mpro active site according to Figures S4 and S5.

To get more insights into the intrinsic reactivity of each one of these ligands, in this study, we have performed 
the analysis of the strain effect along the MD simulation. Since these factors have a pivotal role and affect the 
reactivity of these  ligands49,50. In the present study, the strain effect along the MD simulation can be clearly visu-
alized by the overlap of the initial (red) and representative (blue) structures obtained after 20 ns of simulation, 
as shown in Fig. 4. Based on that figure, we notice that our compounds N-4-Q and N-4-QO showed a slight 
bending at the quinoline ring (strain), which makes this compound in principle more reactive, resulting in a 
small oscillation according to the RMSD graphs (Figures S4 and S5). Importantly, this trend is essential because 
it indicates a low variation of strain (deformation of the ligand along simulation), reaching a stabilizing con-
formation more quickly. On the other hand, due to larger molecular mass and bulk of the CQ, HCQ and their 
corresponding oxides, there was a very higher variation of strain (Fig. 4C–F). We believe that this slight strain 
can induce a high intrinsic reactivity for these ligands.

As shown in Fig. 5A, the N-4-Q compound performed hydrogen bond interaction with Cys44 (2.78 Å) and 
hydrophobic interactions with Thr45, Ser46, Met49, Gln189, His41, Val42, Met165, Glu166, His164, Cys145, 
His163, Ser144, Gly143, respectively. These interactions are essential in inhibiting the enzymatic activity of 
 Mpro and are in accordance with some other  studies51–53, as well as the docking results of this work. By analyz-
ing the graph of hydrogen interactions (see Figure S4), we found that the compound N-4-Q performed up to 
three hydrogen bond type interactions. However, there was only one effective interaction that occurred during 
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the entire 20 ns of MD simulation, which is according to the pharmacophoric map (see Fig. 5A). In turn, the 
N-4-QO compound was stabilized by four hydrogen bonds with His41 (2.93 Å), His163 (2.72 Å), Gly143 (3.01 Å), 

Figure 3.  Intermolecular interactions performed by the inhibitors (A) N-4-Q, (B) N-4-QO, (C) CQ, (D) CQO, 
(E) HCQ and (F) HCQO in the  Mpro active site. Image generated in the Visual Molecular Dynamics 1.9.3 https:// 
www. ks. uiuc. edu/ Resea rch/ vmd/.

https://www.ks.uiuc.edu/Research/vmd/
https://www.ks.uiuc.edu/Research/vmd/
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Ser144 (3.04 Å), and hydrophobic interactions with Met49, Ser46, Gln189, Glu166, Met165, His164, Pro39, 
Leu27, Cys145, Gly146, and Ser147, respectively, as shown in Fig. 5B. According to Zhang and  coworkers53, in 
the catalytic site, the residues Glu166, His41, and Gys145, respectively, are key species of the target protease. 
Thus, the interaction of these amino acids with inhibitors is essential for blocking the enzymatic activity of  Mpro. 
Additionally, it is observed that the N-4-QO can make up to three bonds during the trajectory; however, occurs 
only one hydrogen bond in most of the entire simulation (Figure S5).

In the case of the dynamic behavior of both CQ and CQO compounds, we have observed that CQ remained 
unstable over the 20 ns of simulation, as shown in Figures S6. On the other hand, CQO remained stable during 
the same period of simulation. The CQ compound presented large oscillations in the  Mpro active site, by rotating 
the N-diethyl-pentane-1,4-diamine portion. This ligand has many rotatable bonds, and because of the exposure 
to the solvent, this increases the ligand flexibility, making it more unstable in the active site. For the simulation 
with CQO, this ligand was better accommodated in the  Mpro site over the 20 ns of simulation, and this fact leads 
us to believe that this oxo form significantly contributes to the compound stabilization. Although the RMSD 
deviation was high when compared to N-4-Q and N-4-QO compounds, they are coherent since the chemical 
structures of CQ and CQO are bulkier and had a larger molecular mass, as well as several rotatable bonds. 
Consequently, there is a change in the conformation (Fig. 4C,D), further increasing the flexibility of the inhibi-
tors, and therefore is expected a more significant oscillation in the RMSD (see Figures S6 and S7). Through the 
pharmacophoric map, as shown in Fig. 5C, hydrophobic interactions can be observed with the residues Asn119, 
Ile43, Thr45, Cys44, Ser46, Met49 and Gly143. We can also notice a halogen bond with the Asn142 amino acid 
residue (3.22 Å). On the other hand, in the case of CQO, this inhibitor performed hydrogen bonds with Gln189 
(2.78 Å) and Met49 (2.30 Å), together with several hydrophobic interactions, specifically with the residues 
Glu166, Cys145, Cys44, Val42, Thr45, Met165, His41, Ser46, Met49, Asn51, Pro52, Tyr54, Asp187 and Arg188 
(see Fig. 5D). These results are in accordance with the Hydrogen bond graph, since up to two hydrogen bonds 
are observed during the 20 ns of simulation (Figure S7).

Likewise, the HCQ compound remained stable in the  Mpro active site after 7.0 ns of simulation, mainly due 
to many conformational changes (Figure S8), such as in relation to the amino-pentyl(ethyl)aminoethanol group 
that underwent rotation, resulting in a more energetically favourable conformation compared to its initial chemi-
cal structure, i.e., thus decreasing the RMSD value (Figure S8 and Fig. 5E). However, the final configuration of 
HCQ had less strain than CQ. Therefore, we can speculate that the minimum strain, which is associated with a 
low RMSD value, is directly related to the toxicity of these compounds.

As shown in Fig. 5E, the HCQ exhibit one hydrogen bond with Gly143 (2.10 Å), Asn119 (2.46 Å) and Met49 
(2.30 Å), and several hydrophobic interactions with the residues Tyr118, Leu27, Ser144, Cys145, Pro39, Thr26, 

Figure 4.  Overlap of the initial (red) and representative (blue) structures of the 20-ns simulation of MD. Image 
generated in the Discovery Studio Software 4.5 https:// disco ver. 3ds. com/ disco very- studio- visua lizer- downl oad.

https://discover.3ds.com/discovery-studio-visualizer-download
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Asn28, Val42, Thr45, Cys44, Ser46 and Gln189, respectively. Through the Hydrogen bond graph, it was observed 
that for this compound after equilibration in the active site, up to three hydrogen bonds could be accomplished 
(Figure S8). While the HCQO compound showed the RMSD value of around 2.5 Å, due to the structural distor-
tions in the N-diethyl-pentane portion during the 20 ns of simulation (Figure S9). The oscillation of the ligand in 
the site resulted in a less energetically favorable conformation compared to its initial chemical structure (Fig. 4F). 
Also, this compound performed three hydrogen bond interactions with Thr190 (2.98 Å), Gln189 (1.89 Å) and 

Figure 5.  Interactions performed during 20 ns in the MD simulation with the (A)  Mpro/N-4-Q, (B)  Mpro/N-
4-QO, (C)  Mpro/CQ, (D)  Mpro/CQO, (E)  Mpro/HCQ, (F)  Mpro/HCQO complexes. Image generated in the 
Discovery Studio Software 4.5 https:// disco ver. 3ds. com/ disco very- studio- visua lizer- downl oad.

https://discover.3ds.com/discovery-studio-visualizer-download
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His41 (1.70 Å) and hydrophobic interactions with Cys145, Met49, Ala191, Glu166, Pro168, Leu167, Arg188, 
Gln192, Phe181, Met165, Val186, His164, Cys85 and Asp187, respectively, as we show in Fig. 5F. Considering 
the hydrogen graph (Figure S9), the HCQO can make up to five hydrogen bonds.

In order to confirm the structural stabilization in the simulation environment, the RMSF was calculated from 
the average position of each amino acid residue of  Mpro (Figures S4–S9). Higher RMSF values indicate that the 
residues have undergone major changes, corresponding to regions of loops. On the other hand, for the residues 
of the active site region and the alpha-helices/beta sheets regions, there is a lower RMSD value, thereby revealing 
the increased stability of these areas. The regions of loop are freely exposed to the solvent to a larger degree, and 
according to the graphs, we can observe that the sidechain has the largest variation of RMSF, indicating greater 
degree of freedom, that is, larger flexibility. In addition, the backbone presented a low variation of RMSF, this is 
expected because these residues are found in central regions of the protein, for example, inside the active cavity. 
Finally, it was possible to notice, from the RMSF values of the protein structure, the inexistence of large oscilla-
tions, maintaining itself conserved during the whole process of simulation.

From the MD simulation, we have estimated the interaction energies for all cases studied: N-4-Q 
(− 96.54 kJ  mol−1), N-4-QO (− 107.35 kJ   mol−1), CQ (− 100.65 kJ   mol−1), CQO (− 82.27 kJ   mol−1), HCQ 
(− 116.60 kJ  mol−1), HCQO (− 148.20 kJ  mol−1). An important outcome observed in this study is that the majority 
of the N-oxide compounds had an energetically more favorable affinity at the  Mpro active site than their Q coun-
terparts. These findings are consistent with the molecular docking calculations. The existence of intermolecular 
interactions strongly guides these trends. Note that the N-4-QO performed more hydrogen bonds than N-4-Q, 
as shown in Fig. 5. This fact helps explain the more stabilizing interaction energy found for N-4-QO. From the 
pharmacophoric maps shown in Fig. 5, the accomplishment of hydrogen bonds, along with the hydrophobic 
interactions, are key to understand the biological activity of these inhibitors.

Yet, the success of a novel drug candidate is commonly attributed to diverse factors, including their bioactiv-
ity, rich pharmacokinetic (PK) and pharmacodynamics (PD) profiles, as well as toxicity. It would be therefore 
of huge interest to investigate these properties in the preliminary stages to in silico design of safer and more 
efficient drugs. Hence, the ADMET evaluations involve sequential and iterative assessments of the efficacy, 
PK, PD, metabolic and toxicological properties in the model of potential drug  candidates54. From the ADMET 
results, the theoretical parameters of toxicity  (LD50) were obtained for each compound: N-4-Q (2.53 mol  kg−1), 
N-4-QO (2.56 mol  kg−1), CQ (2.95 mol  kg−1), CQO (2.68 mol  kg−1), HCQ (2.66 mol  kg−1), HCQO (2.69 mol  kg−1). 
We can observe that the parameter toxicity slightly varied from N-4-Q to N-4-QO, suggesting that the toxicity 
of these compounds is essentially equal. Similarly, this trend also is observed for HCQ and its corresponding 
N-oxide (HCQO). On the other hand, we have noticed a more significant variation for CQ and CQO compounds, 
indicating that CQO theoretically presents a higher level of toxicity. In addition, these molecular calculations 
also showed that HCQ is more toxic than CQ. Yet, this trend does not corroborate with previous experimental 
 results55. It is essential to highlight that the molecular results obtained do not take into account the effects of the 
counterion and, for this reason, suggest a different trend to the experimental findings previously  reported55. In 
particular, this divergence most-likely is related to the fact that the commercially used HCQ is a salt-based on 
hydroxychloroquine sulfate, while the CQ used is a salt-based on chloroquine diphosphate. It additionally is 
well-known that the counterion has a substantial effect not only on its biological activity but also on the toxicity 
of such compounds as  well56–59. Therefore, our molecular results indicate that the presence of phosphate groups 
contributes to increasing the toxicity of CQ in the treatment of the SARS-CoV-2 infection. Consequently, we 
can conclude that for the same type of salt used, it is expected CQ to be less toxic than HCQ, according to the 
molecular trend observed in this study.

In the last part of this investigation, we carried out new molecular docking calculations with three selected 
α-ketoamide derivatives (known inhibitors of coronavirus protease enzymes)60. Consequently, this strategy might 
provide a more detailed data comparing their interaction modes in the  Mpro active site for these drugs designed. 
As such, the chemical structures of the α-ketoamide inhibitors and biological activities are shown in Figure S10 
of supplementary material. Based on the newly obtained results, the compounds 11n, 11r and 11 s exhibited 
interaction energies of approximately − 6.4 kcal  mol−1, − 6.9 kcal  mol−1 and − 7.0 kcal  mol−1, respectively. From 
these results, note that these compounds showed slightly more stabilized interaction energies in comparison 
with those of our drug candidates. As such, the intermolecular interactions with residues from the active site 
can be observed with more details in Figure S11. In parallel, from the ADMET analysis can be observed that 
α-ketoamide compounds showed  LD50 values of 2.56 mol  kg−1 (for 11n), 2.33 mol  kg−1 (for 11r) and 2.43 mol  kg−1 
(for 11s). These results suggest that α-ketoamide in comparison to our compounds is likely more toxic. In face 
with these theoretical outcomes, we can notice that our drug candidates demonstrate potential to be used as 
therapeutic agents for the COVID-19 treatment.

Conclusion
We conclude that this in silico study to contribute toward the rational design of new and more efficient drugs for 
the treatment of SARS-CoV-2 infection. Hence, the most important lesson from this structure-based study was 
that the QO derivatives are better inhibitors than their Q counterparts. In light of these results, we can suggest 
that in vitro and in vivo experiments be urgently carried out to investigate the nitro derivatives of QO further, 
since there is as yet no efficient treatment for this disease. Finally, we emphasise that these compounds can be 
easily produced on a large scale (at a low-cost), making them a promising treatment option against SARS-CoV-2 
infection.
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Methods
Datasets. Herein, the crystal structure dataset for SARS-CoV-2 virus  Mpro enzyme was obtained from the 
Protein Data Bank (PDB; accession ID: 5R82, resolution 1.31 Å)30. Then, full optimizations and frequencies of 
nitro derivatives of Q and QO were achieved at B3LYP level of theory with 6-31+g(d,p) basis set in the Gaussian 
09  package61. For a better description of the electronic parameters, it was also performed single-point energy 
Time-Dependent DFT (TD-DFT) calculations at B3LYP/6-31+g(d,p) level.

Molecular docking. The molecular docking was conducted with the tool AutoDock Vina (version 1.1.2)31, 
as implemented in the MolAr (Molecular Architecture)  software32. For the crystallographic  Mpro structure prep-
aration, the loop regions were rebuilt using the  Modeller62. The ions and water molecules were removed from 
the original PDB, with the exception of water molecules that were in the  Mpro active site. The addition of polar 
hydrogen atoms were performed according to the protonation state of the receptor at pH 7.4, by using the Chi-
mera  software63. For the docking protocol, the  Mpro enzyme and the structures of Q and QO derivatives were 
used as receptor and ligands, respectively. The grid box was centered on the co-crystallized ligand (6-[ethyl-
amino]pyridine-3-carbonitrile) of SARS-CoV-2 virus  Mpro enzyme (5R82), and the coordinates were x = 12.053, 
y = − 0.871 and z = 24.157, with 1 Å spacing. Docked poses were then selected on the basis of scoring functions 
and protein − ligand interactions. Binding interaction figures were generated using Discovery Studio 2017  R264. 
AutoDock Vina employs the Iterated Local Search global  optimizer31.

Molecular dynamics simulations. In a further theoretical insight, the key docking complexes were evalu-
ated by molecular dynamics (MD) simulation using the GROMOS54A7 all-atom force  field65 and performed 
using GROMACS 5.1  software65,66. The  Mpro complexes were inserted into a 12 Å water box with the SPC sol-
vation model, and sodium and chlorine ions were added for charges neutralization under periodic boundary 
conditions. The calculation of electrostatic interactions was then performed by using the Particle Mesh Ewald 
method with a cut-off of 12 Å and time step of 1 fs. Initially, complexes were minimized over 5000 cycles using 
the steepest descent algorithm. After the minimization, a 500 ps equilibration was done in the NVT ensemble 
slowly increasing the temperature from 50 to 300 K, using Berendsen thermostat. In order to equilibrate the 
pressure of the system, a NPT equilibration was performed employing Parrinello–Rahman  barostat67 to main-
tain the system pressure of 1 bar. After the equilibration of the systems, they were submitted to a MD production 
step with 20 ns of simulation and a 1 fs integration time. Atom trajectories were analyzed using Visual Molecular 
Dynamic (VMD, version 1.9.3)68. Due to the experimental inexistence of acute toxicity data for these com-
pounds, in principle, we also provide a theoretical estimation for the  LD50 values from the using of a rat model-
based admetSAR predictor, which is freely available online at http:// lmmd. ecust. edu. cn: 8000/.
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