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There are increasing demands for informative cancer biomarkers, accessible

via minimally invasive procedures, both for initial diagnostics and for follow-

up of personalized cancer therapy, including immunotherapy. Fine-needle aspi-

ration (FNA) biopsy provides ready access to relevant tissue samples; however,

the minute amounts of sample require sensitive multiplex molecular analysis to

be of clinical biomarker utility. We have applied proximity extension assays

(PEA) to analyze 167 proteins in FNA samples from patients with breast can-

cer (BC; n = 25) and benign lesions (n = 32). We demonstrate that the FNA

BC samples could be divided into two main clusters, characterized by differ-

ences in expression levels of the estrogen receptor (ER) and the proliferation

marker Ki67. This clustering corresponded to some extent to established BC

subtypes. Our analysis also revealed several proteins whose expression levels

differed between BC and benign lesions (e.g., CA9, GZMB, IL-6, VEGFA,

CXCL11, PDL1, and PCD1), as well as several chemokines correlating with

ER and Ki67 status (e.g., CCL4, CCL8, CCL20, CXCL8, CXCL9, and

CXCL17). Finally, we also identified three signatures that could predict Ki67

status, ER status, and tumor grade, respectively, based on a small subset of

proteins, which was dominated by chemokines. To our knowledge, expression

profiles of CCL13 in benign lesions and BC have not previously been described

but were shown herein to correlate with proliferation (P = 0.00095), suggesting

a role in advanced BC. Given the broad functional range of the proteins ana-

lyzed, immune-related proteins were overrepresented among the observed

alterations. Our pilot study supports the emerging role of chemokines in BC

progression. Due to the minimally traumatic sampling and clinically important

molecular information for therapeutic decisions, this methodology is promising

for future immunoscoring and monitoring of treatment efficacy in BC.
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luminal HER2-positive; MWL, maximal whisker length; NPX, normalized protein expression; PEA, proximity extension assay; PR,

progesterone receptor; RIPA, radioimmunoprecipitation assay buffer; TNB, triple-negative breast cancer.
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1. Introduction

One of the main current challenges for breast cancer

(BC) therapy is to device methods that allow repeated

and minimally invasive sampling with the capacity to

identify informative molecular signatures. This may

provide support for the choice of neoadjuvant and/or

immune therapy, and a possibility to monitor the dis-

ease characteristics during the course of the disease. In

addition to classical BC biomarkers, such as ER,

PGR, HER2, and Ki67 (referred to as ‘key proper-

ties’), there is a need for biomarkers reflecting the

microenvironment and immunodynamics in BC.

Therefore, considerable efforts are made to implement

measurement of biomarkers via liquid biopsies of

peripheral blood. However, tumor sampling via fine-

needle aspiration (FNA) provides direct access to

tumor tissue material. FNA sampling is a well-estab-

lished cancer diagnostic procedure, where cells, tissue

fragments, and/or fluid may be recovered from tumor

tissue via a puncture using a very thin needle. The tip

of the needle is placed in the center of a lesion, fre-

quently under ultrasound guidance (Ly et al., 2016;

Rimsten et al., 1975). Cells can then be aspirated via a

syringe during gentle oscillation back and forth. The

minimally traumatic FNA is often used for diagnosis

of small nonpalpable, deeply located, or otherwise

hard-to-reach lesions, both for primary tumors and for

lymph node and other metastases. Traditionally, these

samples have been subjected to cytological analysis

with staining for a small number of proteins. By con-

trast, modern molecular technologies allow more com-

prehensive analyses of the state of the sampled tissues.

In this pilot study, we have explored one FNA-com-

patible technology for multiplex molecular profiling

that meets stringent requirements for sensitivity and

reproducibility: proximity extension assays (PEA,

www.olink.com; Assarsson et al., 2014).

We have previously demonstrated that ‘leftover’

FNA sample material from BC can be analyzed by

PEA with high sensitivity, and with results that corre-

lated with routine assessments. In addition, our results

revealed a tentative 11-protein signature that discrimi-

nated BC from benign lesions (Franz�en et al., 2018).

In this study, we have used the same patient mate-

rial analyzed with the same protein panels as previ-

ously described, to further explore the protein

expression in benign lesions in relation to BC subtypes

and to several routine parameters such as proliferation

and hormonal status. The two protein panels used in

these studies—Oncology II and Immuno-Oncology I

(https://www.olink.com/products/immuno-oncology/)—
include many proteins that may be relevant for

characterization of clinical and biological properties of

BC, including proteins involved in immune reactions.

Twenty-seven of the proteins of the ‘Oncology II’

panel and 66 proteins of the ‘Immuno-Oncology I’

panel are immune-related according to their annota-

tions [https://www.olink.com/products/]. Due to some

overlap between the two panels, the analysis measured

levels of a total of 167 different proteins. We applied

three complementary statistical approaches to analyze

data relative to BC subtypes, and to histological/im-

munohistochemical (IHC), clinical, and cytology infor-

mation: (a) hierarchical clustering of protein profiles to

examine BC subtypes, (b) multiple-regression modeling

of signatures linking to key properties of BC, and (c)

univariate correlations between protein levels and key

properties of BC.

The long-term aim of the study was to explore the

potential value for FNA-based molecular profiling by

PEA for diagnosis, therapy selection, and evaluation in

an objective and cost-effective manner for BC patients.

Our working hypothesis was that the analysis of key

immune signatures in FNA samples using a simplified

process may provide a valuable basis for choice of ther-

apy and evaluation of responses to treatment.

2. Materials and methods

The materials and methods have been described previ-

ously (Franz�en et al., 2018) and are briefly given below.

2.1. Patient samples

The study was approved by the Ethical Committee of

the Karolinska Institutet, Stockholm (Dnr 2016/1432-

31/4), and the methodologies conform to the standards

set by the Declaration of Helsinki. Female patients

from the age of 18 years with mammography-detectable

lesions were invited to participate in the study after tak-

ing part of the project information and accepting the

informed consent form. The patient cohort was subject

to routine diagnostic examination (primary lesions in

the breast and axillary metastases), and the material

was collected during a period of 6 weeks. All FNA

samples were obtained under ultrasound guidance by

experienced radiologists using 21- to 22-gauge needles,

and after sampling for routine cytology, leftover mate-

rial from FNA needles was processed immediately. For

complete information on all samples, see Tables S1–S3.

2.2. Sample preparation

After sample collection, the FNA needles were rinsed

with ice-cold medium, and cells were pelleted, frozen,
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and stored at �80 °C until approval and quality con-

trol by cytology. Up to three samples were collected

per patient, and each sample was assigned a consecu-

tive FD# sample code. Samples approved by cytologi-

cal examination were lysed in RIPA buffer (Sigma,

Stockholm, Sweden R0278), debris was removed by

centrifugation at 13 000 g for 15 min, and total pro-

tein concentration was determined using a micro-BCA

assay (ThermoFisher, G€oteborg, Sweden).

2.3. Subtype classification

Routine core needle biopsy (CNB) tissue samples from

primary lesions of BC patients, acquired in parallel with

the FNA samples, were used for IHC analysis of estro-

gen receptor (ER), progesterone receptor (PR), the pro-

liferation marker Ki67, and HER2 (ERBB2) according

to routine guidelines. Classification of molecular sub-

types was based on recommendations according to the

St. Gallen classification system (Goldhirsch et al., 2011)

and defined by the Swedish National Guidelines for

treatment of BC (‘Nationella V�ardprogrammet f€or

br€ostcancer’, version 2.0, SweBCG 2018 [in Swedish;

https://www.cancercentrum.se/samverkan/om-oss/nyhete

r/2018/februari/nationellt-vardprogram-brostcancer-upp

daterat/]) and the Quality and Standardization Com-

mittee (KVAST) of the Swedish Society of Pathology

(2018, in Swedish).

2.4. Quality control and characterization by

cytology

Routine cytology smears were stained (May–
Gr€unwald–Giemsa), scanned at high resolution, and

examined by an experienced cytopathologist. Each

sample was checked for being representative and of

sufficient quality by cytology evaluation. Samples with-

out tumor cells or otherwise nonrepresentative were

excluded. At least 20 different areas per preparation

were examined for tumor cells and macrophages

(MØ). Semiscore evaluation was performed as follows:

If no MØ was found in a sample, the MØ score was

set to = 0; if only one MØ was found in a sample, the

MØ score was set to = 1; and if 2–3 MØ were found,

the MØ score was set to = 2. If MØ were found in

about 50% of fields examined, the MØ score was set

to = 5, and if MØ were found in about > 80% of

fields examined, the MØ score was set to = 10.

2.5. Protein profiling by PEA

One microlitre sample (0.5 lg total protein) per panel

was analyzed by Olink Multiplex Immuno-Oncology I

and Oncology II panels (Olink Proteomics, Uppsala,

Sweden) according to the manufacturer’s instructions

and as described previously (Larsson et al., 2015). Each

panel consists of 92 protein assays and four internal

controls. However, due to some overlap between the

panels, in total data for 167 proteins were recorded

(Table S6). Results were exported from the Biomark

reader and normalized using Olink Wizard for GenEx

software for further statistical data analysis.

2.6. Statistical analysis

Quality control and data preprocessing (including nor-

malization) of PEA data were done in accordance with

the manufacturer’s recommended procedures, including

the routine Olink normalization into NPX values, and

the analysis was performed in R environment. We log2-

transformed the values to render them normally dis-

tributed (e.g., for Pearson linear correlation and

ANOVA). Since clinical and other phenotypical vari-

ables were not necessarily normally distributed, we

applied nonparametric statistics, such as chi-square

tests, Fisher’s exact test, and Spearman’s and Kendall’s

rank correlation, as indicated for the respective results.

The P-values from the correlation analyses were either

adjusted by Benjamini–Hochberg correction (Benjamini

and Hochberg, 1995), or by Bonferroni (Tables 2 and

S5), or are shown as original unadjusted P-values

(Fig. 3B)—as specified in respective legends. The two-

way hierarchical clustering was performed on normally

distributed protein profiles as well. The input to the

PEA data analysis were the normalized protein expres-

sion values (NPX) as specified by Olink Proteomics.

For the lasso/ridge multiple-regression modeling, we

employed package glmnet (available from http://web.sta

nford.edu/~hastie/glmnet/glmnet_alpha.html). In the

latter analysis, parameter alpha equaled 1, while other

parameters were set to their defaults. The two-way hier-

archical clustering was also performed on the normally

distributed protein profiles. For this hierarchical cluster-

ing (shown at the heatmap figures), we employed the

function heatmaply (R package heatmaply v. 0.15.12

https://cran.r-project.org/web/packages/heatmaply/)

using the default methods for distance matrix calcula-

tion (‘euclidean’) and clustering (‘complete linkage’).

3. Results

3.1. Patient cohorts and PEA analysis

In total, 38 samples from 33 patients with benign

breast lesions and 34 samples (≥ 8 mm in size) from

25 BC patients were analyzed for protein expression
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by PEA as described previously (Franz�en et al., 2018).

All information on patients and samples is listed in

Tables S1–S3. For an overview of samples and IHC-

based subtype assignment, see Table 1.

3.2. Hierarchical clustering of protein profiles

To explore similarities between samples from BC

patients, protein profiles were compared by hierarchi-

cal clustering (Fig. S1). Pairwise correlations between

sample profiles were calculated using PEA values for

134 proteins, that is, after excluding 33 proteins for

which > 25% of the sample values were below the pro-

tein-specific limits of detection (LOD; Table S6). The

between-samples clustering showed that the same or

similar IHC subtypes clustered closer with each other.

Also, when several multifocal (MF) lesions from the

same patients were available, these clustered next to

each other. There was one exception from the latter:

One sample was diagnosed as ductal carcinoma in situ

(DCIS, #FD93), while the other sample from the same

patient was diagnosed as invasive ductal carcinoma

(IDC). There were three cases where both primary

tumor (P) and lymph node metastases (M) from the

same patient were analyzed. In two out of these three,

P and M failed to cluster adjacent to each other. All

the three cases of lobular cancer were found in Cluster

#2. Clusters #1a and #1b represent 53% ER-negative

samples, and Clusters #1c and #1d represent 100%

ER-positive samples. Thus, the protein-based cluster-

ing indicated consistence with IHC subtypes. Interest-

ingly, the sample #FD11 (Cluster #2) represented a

small 12-mm lesion, mammography code = 2 (i.e.,

presumably benign), but received triple-negative breast

cancer (TNB) as the final diagnosis. The remaining

TNBs had mammography code = 5 (i.e., cancer) and

being 25–40 mm in size; all ended up in Clusters #1a

and #1b.

To explore how proteins levels could determine sam-

ple clustering, we applied a two-way hierarchical clus-

tering of samples vs protein profiles (Fig. 1). Again,

samples tended to cluster according to subtype. One

cluster labeled ‘ER Low & Ki67 High’ had only 10%

(1/10) samples of LumA type, while another ‘ER High

& Ki67 Low’ cluster included 53% (10/19) samples of

LumA type. A third cluster (‘Mixed cluster’) contained

all three samples with lobular cancers. The first two

clusters are significantly associated with different BC

subtypes (chi-square test, P < 0.05). ER and Ki67

expression values as determined by IHC (% positive

cells) are significantly different between the first two

clusters (t-test, P < 0.05). In addition, the amount of

MØ estimated by cytology was higher in the ‘ER Low

& Ki67 High’ vs the ‘ER High & Ki67 Low’ cluster

(t-test, P < 0.05). In order to exclude possible influence

of repeated samples available for a few patients in this

analysis (i.e., multifocal cancers and metastases), we

also performed clustering by leaving only one sample

per patient. After reclustering, only two samples

shifted cluster location compared to the previous clus-

tering: #FD81 (TNB) and #FD92 (LumHER); both

moved from the ‘ER High & Ki67 Low’ cluster to the

‘ER Low & Ki67 High’. Thus, clustering of samples

seemed to be robustly correlated with biological fea-

tures of subtypes and indicated the different biology

between ductal and lobular cancers.

Table 1. Overview of samples from benign lesions and cancers according to subtype. The molecular subtypes were defined according to

the following criteria: ‘LumA’, luminal A-like (ER- and/or PR-positive, i.e., more than 10% positive cells; low Ki67, i.e., < 25% positive cells;

and HER2-negative); ‘LumB’, luminal B-like HER2-negative (ER-positive and/or PR-positive, and high Ki67, i.e., more than 25% positive cells;

and HER2-negative, i.e., 0 or 1+ according to IHC); ‘LumHER’, luminal B-like HER2-positive (ER-positive and/or PR-positive, any value for

Ki67, and HER2-positive, i.e., 2+ or 3+); ‘HER’, HER2-positive, nonluminal (ER-negative, PR-negative, any value for Ki67, and HER2-positive,

confirmed by HER2 amplification using routine FISH technology when IHC is 2+ or 3+); and ‘TNB’, triple-negative (ER- and PR-negative,

HER2-negative, and any Ki67).

No. of

patients

Sample types. Subtype based

on IHC (St. Gallen) Grade

No. of samples

for PEA

No. of patients with

two samples

No. of patients with

three samples

Total: 32 Benign lesions NA 38 6

Total: 25 Cancer subtypes

9a Luminal A (LumA) I–II 14 3b 1

4 Luminal B (LumB) II–III 5 1

5 Luminal HER (LumHER) II–III 6 1b

3 Nonluminal HER (HER) III 5 2b

4 TNB (TNBC) II–III 4 0

Cancer samples 34 7 3

aTwo of nine patients were diagnosed with lobular cancer. All other were ductal cancers. bIncludes one patient with samples from both pri-

mary tumor and axillary lymph node metastasis.
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Fig. 1. Heatmaps of protein expression for the patient samples: Two-dimensional hierarchical clustering of samples vs protein profiles.

Proteins for which > 25% of the values were below LOD were excluded. Compare Fig. S1 which shows a very similar clustering of

samples. Clustering of proteins and samples indicates correlations between subtypes and protein functions. A zoom-in view of Branches #1

is shown in Fig. S2. An interactive representation providing data values can be explored at http://research.scilifelab.se/andrej_alexeyenko/d

ownloads/PEA/heatmap.PEA.34x124.v10.html.
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With respect to the protein dimension, we observed

two prominent protein dendrogram branch groups

(Branches #1 and Branches #2) that showed elevated

expression levels in the ‘ER Low & Ki67 High’ sample

cluster compared to the ‘ER High & Ki67 Low’ clus-

ter. Notably, both Branches #1 and #2 were domi-

nated by immune-related proteins including in total

twelve chemokines and three granzymes.

Dendrogram Branches #1 included the MØ/M2-

related protein MMP12 and several protumorigenic

chemokines (e.g., CCL2, IL-8/CXCL8, CXCL1), the

T-cell-related markers CD8A and CD5, the angiogenic

chemokines CXCL9 and CXCL10, and three gran-

zymes known to be produced by cytotoxic T and NK

cells (Lyons et al., 2017). A clustering pattern of sam-

ples was found, similar to that in Fig. S1. A zoom-in

view of the chemokine rich group of Branches #1 is

shown in Fig. S2.

An estimation of the number of tumor-infiltrating

MØ showed that 80% (8/10) of samples in the ‘ER

Low/Ki67 High’ cluster contained MØ (average

score = 3.1). In contrast, only 31% (5/16) of samples in

the ‘ER High/Ki67 Low’ cluster contained MØ (aver-

age score = 0.7). The MØ scoring revealed a significant

difference between the two clusters (P = 0.011). Thus,

high levels of MØ were more associated with the ‘ER

Low & Ki67 High’ PEA phenotype and with TNB. All

(4/4) TNB and 80% (4/5) HER samples contained MØ,

while only 18% (2/11) in the LumA samples did. Cytol-

ogy image samples from two patients with multifocal

HER2 (FD17 and FD18) and multifocal LumA (FD21

and FD22) cancers are shown in Fig. S3. These repre-

sentative subsets showed few or no MØ in the LumA

samples, but greater numbers in the HER2 samples

(MØ score = 5).

Given the key role of tumor-infiltrating lymphocytes

(TILs) in BC (Stanton and Disis, 2016), and the clus-

tering neighbors to CD8A (as marker of CD8+ TILs),

we performed a correlation analysis using CD8A pro-

tein values as a proxy reference of CD8+ TILs

(Table S4). A correlation analysis of all protein pro-

files in all samples using CD8A as a reference con-

firmed significant correlation between several proteins

(CD5, GZMBA, GZMH, CXCL10, CXCL9, GZMB,

and CCL4) within Branches #1, increasing the support

for higher CD8+ T-cell-related activity in samples rep-

resenting the ‘ER Low & Ki67 High’ cluster

(Table S4). The elevated granzyme levels also indicate

the presence of activated CD8+ T cells.

The clustering of samples in Fig. 1 indicated clear

differences in protein levels between the ‘ER High &

Ki67 Low’ vs ‘ER Low & Ki67 High’ clusters. To

explore differences specifically related to BC subtypes,

the protein levels of ER-negative (HER and TNB)

cancers were compared to those representing the least

aggressive IHC subtype, that is, LumA for the com-

plete protein dataset (167 proteins).

There were significant differences (t-test, P < 0.05) in

53 proteins, with the levels of 50 of these proteins

increased in ER-negative compared to LumA samples.

Notably, CA9, IL-8, CXCL17, CCL20, CCL7, CCl4,

and IL-6 all differed significantly upon Bonferroni cor-

rection, and among the top proteins in the fold-change

ranking list, there was an overrepresentation of cytoki-

nes (16 of top 34, odds ratio = 9.24, P = 0.000036,

Fisher’s exact test) demonstrating pronounced immune-

related differences between these subtypes. Twenty out

of the top 32 proteins were included within the dendro-

gram Branches #1 or #2 (Fig. 1). Interestingly, the

hypoxia marker CA9 and the MØ-related protein

MMP12 showed the highest fold increases in ER-nega-

tive vs LumA samples (> 36-fold), followed by the

chemokines CXCL8, CCL2, CCL7, CXCL10, and

CXCL9. All the latter proteins were > 10-fold higher in

ER-negative vs LumA samples (Table S5).

3.3. Prediction of Ki67, ER status, and tumor

grade by multiple-regression protein level

signatures

The next step in the analysis addressed whether pro-

tein profiles could be identified that correlated with

key biological properties of BC, as this might reveal

important proteins within the tumor microenviron-

ment. Current subtyping of BC depends on subjective

IHC-based microscopic examination by experienced

pathologists and, according to the standard protocols,

involves binary cutoffs for ER, Ki67, and HER2 levels.

Therefore, we explored an alternative approach to

determine ER, Ki67, and HER2 levels along a contin-

uous scale via protein signatures, potentially relevant

to key biological properties of BC.

We succeeded in producing significant predictive

models for the Ki67 and ER IHC clinical variables

and for the tumor grade (i.e., malignancy grade

according to Nottingham histological grading), but

not for the HER2 status (Fig. 2A–C). In these models,

the predictive score for a given sample was calculated

as a linear sum of protein expression values multiplied

by the coefficients for each protein indicated in the

plot legends. Surprisingly, these results also revealed

that chemokines and/or cytokines strongly contributed

to the modeling of all the three (ER, Ki67, and

HER2) clinical variables.

The sets of significant proteins in the prediction

models overlapped partially. Notably, the chemokines
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CXCL17 and CXCL5 and the cytokine IL-6 con-

tributed significantly to the prediction of both ER and

Ki67 status, although with opposite signs of the linear

coefficients (Fig. 2A,B). Specifically, CXCL17 and

CXCL5 were increased in cancers with high prolifera-

tion as assessed by Ki67 and decreased in cancers with

high ER levels. The chemokine CCL13 and decorin

(DCN) provided strong contributions to the prediction

of Ki67 status as previously described (Franz�en et al.,

2018). IGF1R, known to correlate with ER and good

prognosis, contributed positively to the prediction of

ER status. Proinflammatory cytokines IL-6 and IL-8

showed negative correlation with ER status, while IL-

6 correlated positively with Ki67 status, which indi-

cated increased inflammation in ‘ER Low & Ki67

High’ cancers (Williams et al., 2016).

The regression model for the observed tumor grade

used a combination of only two proteins, CCL23 and

WFDC2 (Fig. 2C). The chemokine CCL23, also known

as MØ inflammatory protein 3 (MIP-3), is known as

highly chemotactic for T cells and monocytes (Zlotnik

and Yoshie, 2012). WFDC2 (WAP core domain protein

2), also known as human epididymis protein (HE4), has

been proposed as diagnostic biomarker of ovarian can-

cer (Montagnana et al., 2009, p. 4).

Since the modeling was done on standardized protein

values (i.e., expressed on the same scale), the magnitude

of coefficients of linear multiple regression was informa-

tive regarding the relative contribution of the proteins in

the regression models (i.e., the importance in the

model). Results show that the top 3 proteins (CCL13,

DCN, and IL-6) contributed > 75% of the predictive

value for proliferation, whereas three other proteins

(CXCL17, CXCL5, and IGF1R) contributed > 75% of

the information for the model predictive of ER status.

Next, we examined the expression levels for the six

most prominent protein members in the signatures for

the BC subtypes, as well as in the benign lesions repre-

senting the baseline. The analysis demonstrated that

expression of four of six proteins (CCL13, IL-6,

CXCL17, and DCN) also differed between the benign

lesions and cancer (Fig. 3). Despite the obvious need

for verification in larger cohorts, this result highlighted

the potential roles of the six proteins in BC progres-

sion and the potential value of monitoring the balance

between key proteins.

3.4. Correlations between immune-related

protein levels and BC key properties

To further explore correlations between protein levels

and key properties of BC with respect to a continuous

scale of IHC-measured levels of Ki67, HER2, and ER,

we applied a third approach to analyze univariate cor-

relations for each of the 167 PEA assessed proteins to

Ki67, HER2, and ER, and the tumor grade. Table 2,

using rank correlations, displays proteins that signifi-

cantly correlated with the aforementioned key proper-

ties, and for reference, proteins that also show

significantly different levels between cancer and benign

lesions (ANOVA). The far-right column of Table 2

identifies leukocyte subsets associated with each pro-

tein, and other relevant information (for references,

see Table 2 footnotes). We observed that the levels of

Ki67 signatureA B CER signature Grade signature

Fig. 2. Regression models predictive for IHC-based observed expression of Ki67 (A), ER (B), and tumor grade (C). Expression levels of

chemokines CCL13, CXCL17, CXCL9, CXCL5, CXCL8 (IL-8), and CCL23 contribute together with other proteins to key properties of BC.

‘Observed’ denotes the IHC values (Ki67 or ER IHC staining positivity) for each of the samples on a continuous scale (0–10, 0–100, or 0–3

for Ki67, ER, and tumor grade, respectively, X-axis). ‘Predicted’ is the quantitative score assigned by the algorithm along the same

continuous range (Y-axis). Member proteins in the signature are described in the text.
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Fig. 3. Expression levels of the six most prominent signature protein members in BC subtypes relative to baseline. Histograms show protein

levels in benign lesions and cancer subtypes. The significance of differences is indicated by p0 for subtypes and p(B/C) for benign vs cancer.

Individual samples are indicated by the FD sample numbers. Protein levels in different sample groups are also presented as boxplots. The

protein levels expressed as NPX values are shown on a log2 scale where the boxes contain data points within 25–75th percentile intervals

(i.e., between quartiles Q1 and Q3). The maximal whisker length (MWL) is defined as 1.5 times the Q1–Q3 interquartile range (i.e., the box

length). Whiskers can extend either to the MWL or to the maximal available data point when the latter is below MWL. Markers thus

correspond to data points that extend off the box by more than the MWL value. Sample numbers (FD#) are shown to indicate cases that

repeatedly deviate from the main group, for example, the very early TNB case FD11 or the MØ enriched HER2 sample FD17.
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19/20 chemokines in the dataset were altered, a pro-

nounced overrepresentation given that only 12% of all

proteins analyzed belonged to this group of proteins

(odds ratio = 13.3, P = 0.00097, Fisher’s exact test).

Interestingly, nine chemokines (CCL2, CCL3, CCL4,

CCL8, CCL19, CXCL9, CXCL10, CXCL11, and

CXCL13, marked by #) of 19 shown in Table 2 con-

tribute to the 12-chemokine signature described previ-

ously in BC and melanoma progression (Messina

et al., 2012; Prabhakaran et al., 2017). Our results sug-

gest that additional chemokines may be involved in

the progression of BC, for instance, CCL13, CCL20,

and CXCL17. Furthermore, several CD cell surface

proteins correlated significantly with many of the key

properties analyzed. For instance, the levels of CD8A

(cytotoxic T-cell marker) significantly correlated with

tumor grade, Ki67 status, and ER status (P = 0.027,

P = 0.00019, and P = 0.0022, respectively). Granzyme

B (GZMB), known to be produced by CD8 T cells,

showed significant correlation with the same variables.

Moreover, several proteins associated with the M2

subset of MØ are positively correlated with the Ki67

status (e.g., CCL8, CCL13, CD4, MMP12, and

ANG2).

Complementary to Table 2, the histograms in Fig. 4

illustrate expression levels for a selection of 12 proteins

from Table 2. The protein expression levels in BC sub-

types are compared to those of benign lesions. All pro-

teins except CD8A showed clear trends of increasing

from benign (left bar) to more aggressive subtypes

(HER2 and TNB, right bars) as indicated by the arrow

at the far bottom of the boxplots. CD8A did not cor-

relate clearly with BC subtype, although in LumA we

observed lower levels of CD8A compared to other

subtypes and benign lesions.

4. Discussion

We have previously reported that analysis using prox-

imity extension assays on minute amounts of FNA

samples in BC provides data that correlate with rou-

tine assessments of key markers such as ER, PGR,

HER2, and Ki67. That study demonstrates that one

microliter of lysates from FNA samples can be used

for extensive targeted protein profiling. We used data

from two PEA panels, ‘Oncology II’ and ‘Immuno-

Oncology I’, with a total of 167 unique proteins repre-

senting many different biological processes such as

immunological mechanisms, cell adhesion, cell differ-

entiation, cell motility, cell proliferation, apoptosis,

and metabolic activity. In total, at least 80 of the pro-

teins are directly immune-related. Results showed that

several immune-related proteins, previously reported

as important in therapy and progression of BC, can be

quantified in a single FNA sample from minute mate-

rial of primary lesions as small as 8 mm in size. In

addition, several additional immune-related proteins

were found, of which many may be candidates for

immune characterization of BC.

In the current study, we have evaluated expression

levels of proteins in relation to routine parameters, that

is, key properties and subtypes using various statistical

approaches. Initially, hierarchical clustering of all pro-

tein profiles revealed two sample clusters, ‘ER High &

Ki67 Low’ and ‘ER Low & Ki67 High’, with differ-

ences in protein levels, that is, proteins that may be

related to expected aggressiveness of the tumors (i.e.,

‘ER Low & Ki67 High’ cancers are expected to be

more aggressive). We note that the difference between

the two clusters showed an overrepresentation of

immune-related proteins, including many members from

the chemokine family. The two dendrogram branch

protein groups #1 and #2 involved 12 of a total of 20

investigated chemokines (60%), corresponding to only

12% of the total number of proteins analyzed. We

therefore compared the more contrasting groups with

respect to expected aggressiveness of the sampled

tumors, namely LumA vs ER-negative cases. The over-

representation of chemokines in the protein profiles was

confirmed, and in total, 16 chemokines showed signifi-

cantly higher levels by on average 9.5-fold in samples

from ER-negative vs LumA tumors. In this analysis, 13

of the top 21 proteins representing the highest fold

changes were chemokines, and seven of these were part

of the previously reported 12-chemokine signature in

malignant melanomas and BC (Prabhakaran et al.,

2017). Our results indicate major differences in the

involvement of different entities of the immune

response between these subtypes. Given the correlation

with clinical outcome, our results may be used to define

a signature for future therapy selection in BC.

Interestingly, the MØ score was significantly higher

in the ‘ER Low & Ki67 High’ cluster compared to the

‘ER High & Ki67 Low’ sample cluster (see Section 3.2).

This difference coincides with the difference in chemo-

kine levels between these two clusters (see Table S5).

We observed a 36-fold higher level of the protein CA9,

a well-established marker for hypoxia, and this may

well be linked to several of the altered chemokine levels

(Fig. 4). A reasonable hypothesis is that this overex-

pression is a consequence of recruitment of hypoxia-dri-

ven tumor-associated MØ (TAMs) and myeloid-derived

suppressor cells (MDSCs) to the tumor microenviron-

ment and that this illustrates the ability of these cell

types to differentiate to protumorigenic TAM subtypes.

This hypothesis is supported by the observation of a
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Table 2. Rank correlations and increased (+) or decreased (�) protein levels in given BC subsets. B, B cells; DA, dendritic cells activated;

DR, dendritic cells resting; MA, Mast cell activated; MØ, Macrophages; NKA, NK cells activated; NKR, NK cells resting; T4, CD4 naive; T4A,

CD4 memory activated; T4R, CD4 memory resting; T8, T cells CD8; Tfh, follicular helper; Tgd, gamma delta; Th, T helper; Treg, regulatory.

Chemokines

Cancer vs benign

(1-way ANOVA)

Grade

(Kendall tau)

Ki67

(Spearman rank)

HER2

(Kendall tau)

ER

(Spearman rank)

Comments and

leukocyte subsetsa

CCL2b + (P = 0.031) + (P = 0.017) + (P = 0.006) � (P = 0.048) Cluster. Th2/17/22c

CCL3b + (P = 0.0082) + (P = 0.013) + (P = 0.0099) � (P = 0.025) Cluster. Th1c

CCL4b + (P = 0.018) + (P = 0.016) + (P = 4.0e-4)* � (P = 0.0048) Cluster. NKA, MA,

Th1/2/17/22c

CCL7 + (P = 0.037)* + (P = 0.0049) + (P = 0.037) M0, Th1, Th2

CCL8b + (P = 0.037)* + (P = 0.015) + (P = 5.7e-4)* � (P = 0.021) Cluster. M1, M2,

DA, Th2

CCL13 + (P = 0.039) + (P = 9.5e-4)* + (P = 0.016) In model. M2, DR,

DA, Th2

CCL17 + (P = 0.036) DR, DA, Th2/17/22

CCL19b + (P = 0.0011) M1, DA

CCL20 + (P = 0.0069) + (P = 7.4e-5)* � (P = 0.0023) Cluster. T4A, DA,

MA, Th17/22

CCL23 + (P = 0.0048) In model. M2, Th1

CXCL1 + (P = 0.021) + (P = 0.0086) � (P = 0.042) Cluster

CXCL5 � (P = 0.002)† In model. M0

CXCL8 (IL-8) + (P = 0.0077) + (P = 0.0063) � (P = 0.017) Cluster. Model.

Inflammatory cytokine

CXCL9b + (P = 0.015)* + (P = 0.018) + (P = 5.7e-6)* + (P = 0.010) � (P = 0.0014) Cluster. In model, M1

CXCL10b + (P = 0.0068)* + (P = 0.039) + (P = 1.4e-4)* + (P = 0.018) � (P = 0.013) Cluster. M1, DA,

CXCL11b + (P = 0.0016)* + (P = 0.033) + (P = 1.3e-4)* + (P = 0.029) � (P = 0.012) Cluster. M1, DA,

CXCL13b � (P = 0.0018) + (P = 0.028) � (P = 0.026) Cluster. T4A, Tfh, M1c

CXCL17 + (P = 2.2e-5)* � (P = 2.8e-4)* In model.

CX3CL1 � (P = 0.064) + (P = 0.020) + (P = 0.031) Cluster

CD markers

CD4 + (P = 0.033) + (P = 0.027) T4R, Treg, M2

CD5 + (P = 0.017) + (P = 4.6e-5)* + (P = 0.0062) � (P = 0.006) Cluster. Treg

CD8A + (P = 0.016) + (P = 1.9e-4)* � (P = 0.0022) Cluster. T8, Tfh

CD27 + (P = 0.017) + (P = 0.0033) BC, T8, T4, T4R,

Tfh, Treg

CD40 + (P = 0.0033) + (P = 0.002) � (P = 0.013) M1

CD40L + (P = 0.016) + (P = 0.020) � (P = 0.049) T4, T4R, T4A, Tfh

CD48 + (P = 0.0039) + (P = 3.1e-4)* + (P = 0.015) � (P = 0.028)

CD137 (TNFRSF9) + (P = 0.0055) � (P = 0.013) Treg

CD160 � (P = 0.024)* Tgd, NKR

CD208 (LAMP3) + (P = 0.0025) + (P = 0.017) � (P = 0.036) M1, DCA

CD244 (CD48L) + (P = 0.041) + (P = 0.0088) � (P = 0.022) Tgd, NKR, NKA, Treg

CD229 (LY9) + (P = 0.0079) + (P = 5.0e-5)* + (P = 0.031) � (P = 0.019) T8, T4, T4R, Tgd

CD258 (TNFSF14) + (P = 0.0037) + (P = 0.0017) + (P = 0.0431) � (P = 0.025) NKA, M0, apoptosis

related

CD274 (PDL1) + (P = 0.0029) + (P = 0.016) Th1, NK, T8, MØ

CD279 (PDCD1) + (P = 0.023) Tfh

CD358 (TNFRSF21) + (P = 0.045) + (P = 0.031) + (P = 0.00044) � (P = 0.0044) Apoptosis

related (DR6)

Other proteins

IL-6 + (P = 6.4e-4) + (P = 1.9e-4)* � (P = 2.0e-4)* In model.

Inflammatory cytokine

IL-18 + (P = 0.024) � (P = 0.017) Inflammatory cytokine

GZMA + (P = 0.047) + (P = 7.3e-5)* � (P = 0.0021) Cluster. T8, T4R,

Tgd, NKR, NKA

GZMB + (P = 0.018) + (P = 0.041) + (P = 1.4e-5)* � (P = 1.7e-4)* Cluster. T8, T4A,

Tgd, NKR, NKA
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higher level of MMP12 (36-fold) and > 8-fold higher

levels of CCL2, CCL3, CCL4, and CXCL8, chemoki-

nes known to attract myeloid cells that differentiate

into TAMs under hypoxia (Van Overmeire et al.,

2014). Together with IL-6, with a fivefold increased

expression level, CCL2 may contribute to recruitment

and polarization to protumorigenic M2-like TAM phe-

notypes. Other chemokines, for example, CCL7,

CCL20, CXCL1, and CXCL17, demonstrate similar

expression patterns and may also be important contrib-

utors to MØ tumor infiltration, MØ differentiation,

and a more aggressive phenotype.

Notably, among the top 11 proteins expressed at

higher levels in the ‘ER High & Ki67 Low’ sample clus-

ter, seven proteins were also expressed at elevated levels

in HPV-positive tonsillar and base of tongue cancer vs

normal adjacent tissues (CA9, CXCL10, MMP12,

CCL20, CXCL11, CXCL9, and CXCL8; Ramqvist

et al., 2018). This indicates striking similarities in

immune activation between the diverse tumor types.

A next level of analysis is provided by multiple-regres-

sion modeling using continuous data for Ki67, ER, and

tumor grade, rather than discrete data (i.e., BC sub-

types). Three significant models were obtained that

revealed protein signatures comprising in total 13 pro-

teins. Here, the predominance of chemokines in the

signatures, representing Ki67, ER, and grade, further

highlights the apparently central role of chemokines in

BC. Signatures show that expression levels of proteins

in FNA samples from more aggressive BC were charac-

terized by relatively high levels of CCL13, CXCL17,

CXCL5, CCL23, and IL-6, along with low levels of

DCN and IGF1R. Less aggressive BC showed the

inverse quantitative relationships for the same proteins.

Taken together, the multiple-regression models may

reflect the quantitative balance between proteins in rela-

tion to a gradient from less aggressive (high ER, low

Ki67, and low grade) to more aggressive (low ER, high

Ki67, and high grade) phenotypes. Note also that for

example, ERBB2, CD8A, and CD5 are not part of the

signatures above. It is possible that the role of immune

modulatory proteins has previously been underesti-

mated in BC.

Our results clearly demonstrate that key immune-

related protein markers can be assessed in FNA mate-

rial, for instance, TIL markers such as CCL2,

CX3CL1, CXCL9, CXCL10, GZMA, GZMB, and

GZMH (Galon et al., 2013). We confirm here results

from previous studies that the expression levels of

these markers and thereby TILs tend to be elevated in

ER-negative cancers compared to LumA cancers (Aga-

hozo et al., 2018). However, the classical TIL marker

Table 2. (Continued).

Chemokines

Cancer vs benign

(1-way ANOVA)

Grade

(Kendall tau)

Ki67

(Spearman rank)

HER2

(Kendall tau)

ER

(Spearman rank)

Comments and

leukocyte subsetsa

GZMH + (P = 0.0059) + (P = 3.4e-5)* � (P = 0.003) Cluster. T8, Tgd,

NKR, NKA

CA9 + (P = 0.0061) + (P = 0.0021) � (P = 0.0016) Hypoxia related

FASL + (P = 0.0011) � (P = 0.013) Apoptosis related, NK

MMP12 + (P = 0.0051) + (P = 0.0089) � (P = 0.012) Cluster. DCR,

DCA, M2

VEGFA + (P = 0.036)* + (P = 0.035) + (P = 0.0061) Angiogenesis related,

Treg

ANG2 (ANGPT2) + (P = 0.021) + (P = 0.042) + (P = 0.009) � (P = 0.049) Angiogenesis related,

M1, M2

ESM1 + (P = 0.0046) + (P = 0.045) + (P = 0.0015) � (P = 0.026) Angiogenesis related

PDGFB + (P = 0.0066) + (P = 0.040) Platelets, Angiogenesis

related

LYN + (P = 0.028) + (P = 3.8e-4)* � (P = 2.3e-4)* Proto-oncogene, B

TCL1A + (P = 0.025) + (P = 0.024) B, T8, NK

(proteomicsdb.org)

GAL9 (LGALS9) + (P = 0.038) + (P = 0.004) � (P = 0.015) B, T4, NK

(proteomicsdb.org)

a‘Cluster’ (see Fig. 1B) or ‘Model’ (see Fig. 2A–C) refers to the analysis where the given protein was found to be altered. In addition, the fol-

lowing reports describe in which subset of leukocytes the respective proteins are expressed at elevated levels: Newman et al. (2015),

Lyons et al. (2017), Strazza and Mor (2017), and Prat et al. (2017) and www.proteomicsdb.org. b‘12-chemokine gene signature’ includes

CCL2, CCL3, CCL4, CCL5, CCL8, CCL18, CCL19, CCL21, CXCL9, CXCL10, CXCL11, and CXCL13 (Prabhakaran et al., 2017). cAttract mye-

loid cells; see Turley et al. (2015). *P-value in bold text: value after Bonferroni correction. †P-value from the analysis of ER-neg vs LumA

samples (Table S5).
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Fig. 4. Protein correlations. A selection of proteins with correlation with grade or with the Ki67, HER2, or ER status, or with differences

benign vs cancer, and/or LumA vs ER-negative cancers (compare Fig. 3, Table 2, and Tables S4 and S5). Arrows at the bottom indicate

expected decline of prognosis.
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CD8A alone did not differ between cancer and benign

lesions and only weakly significant differences were

observed between LumA and ER-negative cancers

(P = 0.018, non-Bonferroni-corrected P-value).

Results presented herein also indicate that proteins

that are components of the described signatures may

play an important role in the biology behind the phe-

notypes, which traditionally is described in terms of

ER, Ki67 expression, and tumor grade. In this context,

it is surprising to note the prominent roles that

chemokines seem to have in BC. The growth factor

inhibitor DCN (decorin), which was previously shown

to be decreased in BC compared to benign lesions

(Franz�en et al., 2018), interacts with IGF1R, EGFR,

VEGFR2, ERBB2, and MMP7 (www.proteomicsdb.

org), and studies also indicated that DCN may affect

signaling via the chemokine receptor CXCR4 and is

needed for autophagy.

The cytokine IL-6 and chemokines CCL20, CXCL8,

CXCL9, and CCL8 have previously been linked to over-

all survival in various cancers (Denkert et al., 2010; Far-

maki et al., 2016, p. 8; Kn€upfer and Preiß, 2007;

Todorovi�c-Rakovi�c and Milovanovi�c, 2013). However,

several other chemokines have only to a limited extent

been described previously in BC or benign breast lesions,

for example, CXCL5, CXCL17, CCL13, CCL23, and

CCL4. For instance, one recent report using PEA profil-

ing of the extracellular compartment showed similar

profiles in BC and mammographically dense healthy

breast tissues compared to nondense healthy breast tis-

sue; for instance, CCL4, CCL7, CCL8, CCL23, CXCL5,

CXCL8, CXCL9, and VEGF showed elevated levels

(Abrahamsson et al., 2018). Thus, the exact role of these

cyto- and chemokines as assayed by PEA of FNA

extracted tumor material for individual biological char-

acteristics of BC needs further evaluation.

The chemokines CCL4 and CCL20 have been

shown to recruit subsets of T cells in esophageal carci-

noma, where CCL4 expression was correlated with the

expression of CD8 and GZMB. This correlation was

also observed in our study, which indicates a similar

role in BC (Table S4; Liu et al., 2015). In contrast to

CCL4, CCL20 has been shown to have several impor-

tant functions in BC (Osuala and Sloane, 2014, p. 20).

Only one report so far describes a role for CXCL17 in

BC. This is the most recent member of the chemokine

family, and it is also known as VEGF coregulated che-

mokine 1. In this report, CXCL17 was found to be asso-

ciated with shorter overall survival and thus represents a

potential marker of poor prognosis (Guo et al., 2017).

Zhao et al. (2017) found that CXCL5 was overex-

pressed in tumor tissue and associated with poor prog-

nosis in colorectal cancer patients. We are not aware

of any previous reports on CXCL5 expression analysis

in BC tissue. This also applies to CCL13 and CCL23

as the expression of these chemokines appears not to

have been studied in BC tissue earlier, although

CCL23 was found to be involved in angiogenesis

(Hwang et al., 2005).

We have shown the correlation between immune

markers such as CD8A and granzymes, CCL13, CCL20,

CXCL17, CCL8, and CD4. These and others may repre-

sent immune contexture markers suggested as substitute

to the classification and characterization of colon cancer

by Galon et al. (2013). The finding illustrates the increas-

ing potential to use the FNA to analyze predictive

biomarkers in validation programs and clinical trials, as

demonstrated recently (Foukakis et al., 2018).

Taken together, our data provide increased support

for an association between chemokines and BC pro-

gression. The expression of cytokines in tumor tissues

may be a manifestation of immune oncological host

responses to the malignant cells, representing attempts

to eradicate the tumor. On the other hand, chemoki-

nes, while less potent mitogens than growth factors,

may also have a direct role in the proliferation of

epithelial cancers. Oncogenes may activate chemokine

receptor genes indirectly by regulating transcription

factors involved in upregulation of proinflammatory

chemokines. For instance, activation of chemokine

receptors initiates intracellular signals leading to prolif-

eration via ERK1/2 activation and the PI3K or b-cate-
nin pathways. Activation of chemokine receptors may

also affect proliferation indirectly through transactiva-

tion of the epidermal growth factor receptor (EGFR)

(Lacalle et al., 2017).

This is to our knowledge the first report on multiplex

analysis of key immune-related proteins in FNA samples

from patients with primary BC. Our study demonstrates

the feasibility to analyze immune-related molecular sig-

natures in minimal FNA samples as a possible avenue

for future diagnostics, therapy selection, and monitoring

of responses to therapy. This approach may also deliver

new information about proteins with a role in BC pro-

gression and potential markers related to immunother-

apy. Therefore, our results may be important for the

future development of precision cancer medicine, for

example, when considering neoadjuvant therapy or speci-

fic types of immunotherapy.

5. Conclusions

Immunological factors have proven significant predic-

tors of neoadjuvant and adjuvant therapy responses in

BC. It has previously been shown that several of these

factors may be analyzed in FNA samples at the RNA
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level and that overexpression of immune-related genes

predicts chemosensitivity in patients with luminal

advanced BC (Foukakis et al., 2018). However, the

ultimate tumor phenotype is driven by the complex

tumor microenvironment at the protein level, including

products of genes expressed remotely from the sam-

pled tissue and brought there via blood and thus unde-

tectable at the level of mRNA in the tissue sample.

Here, we show that a wide range of highly relevant

immune-related proteins can be analyzed in FNA sam-

ples, representing a snapshot of the native tumor

microenvironment, using a simple sample preparation

protocol and semi-automated PEA technology. This is

a pilot study which represents a highly translational

approach and which paves the way for a new concept

for comprehensive immune scoring and longitudinal

monitoring of therapy responses. In conclusion, the

approach demonstrated herein offers improved oppor-

tunities for individualized therapy selection and

immune therapy evaluation.
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