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Abstract: In this paper, characterisation of exciton generation is carried out in three bulk-heterojunction
organic solar cells (BHJ OSCs)—OSC1: an inverted non-fullerene (NF) BHJ OSC; OSC2: a conventional
NF BHJ OSC; and OSC3: a conventional fullerene BHJ OSC. It is found that the overlap of the regions
of strong constructive interference of incident and reflected electric fields of electromagnetic waves
and those of high photon absorption within the active layer depends on the active layer thickness.
An optimal thickness of the active layer can thus be obtained at which this overlap is maximum. We
have simulated the rates of total exciton generation and position dependent exciton generation within
the active layer as a function of the thicknesses of all the layers in all three OSCs and optimised their
structures. Based on our simulated results, the inverted NF BHJ OSC1 is found to have better short
circuit current density which may lead to better photovoltaic performance than the other two. It is
expected that the results of this paper may provide guidance in fabricating highly efficient and cost
effective BHJ OSCs.
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1. Introduction

High efficiency, stability, low cost and short energy pay back times are the key issues to
be considered in the development and commercialization of any type of solar cell to convert
solar energy into electricity, which is currently dominated by the silicon solar cells [1–3]. The
silicon solar cells are highly efficient and stable [4,5] but their fabrication technology is very
expensive because it is high temperature based. As a result, much research efforts have
currently been devoted to the development of organic solar cells (OSCs) which can be fabricated
through the low temperature based chemical process. Among the organic solar cells, the bulk
heterojunction (BHJ) OSCs reaching the power conversion efficiency up to 18% [6] have the
potential to replace silicon solar cells [7]. The fabrication methods for OSCs are compatible
with printing techniques and roll-to-roll processes which are suitable for mass production [8,9].
Currently, research efforts are focused on fabricating highly efficient and stable BHJ OSCs to
make them commercially viable and competitive to inorganic crystalline silicon solar cells [10].
As organic solids degrade due to long exposure to sunshine, BHJ OSCs are not only poor in
efficiency but also in stability [11]. This opens enormous research opportunities for enhancing
the poor efficiency and stability of OSCs which at present are the stumbling blocks towards
commercializing this environmentally friendly technology.

The basic structure of a BHJ OSC consists of an active layer composed of two types of
blended organic semiconductor materials, a donor and an acceptor [12]. The photogenera-
tion of excitons can occur in both the materials, but when excitons reach a donor-acceptor
interface (D-A), the charge transfer (CT) excitons are formed such that the donor donates
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electrons and accepts holes whereas the acceptor donates holes and accepts electrons [13].
Therefore, donor materials should be efficient hole acceptors and acceptor materials should
be efficient electron acceptors [14]. Such an active layer is sandwiched between two elec-
trodes of different work functions that provide an internal electric field in BHJ OSCs to
transport the free electrons and holes, generated from the dissociation of CT excitons within
the active layer, to their respective electrodes [15].

As organic semiconductors have a low dielectric constant, about 3–4 [16–19], the
electron and hole pairs excited by the absorption of photons by the donor and acceptor in
the active layer form Frenkel excitons instantly, which need to be dissociated efficiently into
free electrons and holes for the operation of OSCs. Therefore, the research in improving
the power conversion efficiency (PCE) focuses on high absorption and fast dissociation of
excitons. The dissociation of Frenkel excitons occurs at a D-A interface, which is usually
not far away in a blended donor-acceptor active layer. When a Frenkel exciton excited in
the donor reaches a D-A interface, the electron gets transferred from the donor’s lowest
unoccupied molecular orbital (LUMO) to the acceptor’s LUMO, being at a lower energy,
and thus forms a CT exciton [20,21] by releasing the excess energy in the form of molecular
vibrations. Likewise, when a Frenkel exciton excited in the acceptor reaches a D-A interface,
the hole gets transferred from acceptor highest occupied molecular orbital (HOMO) to
donor HOMO, being at a lower energy, and forms a CT exciton in the form of molecular
vibrations [13]. If this excess energy is equal or larger than the exciton binding energy and
impacts back on the CT exciton, the latter gets dissociated into a free electron and hole
which are transported to their respective electrodes by the built-in electric field due to
work function difference between the electrodes. After the dissociation, some of the free
electrons and holes may recombine before reaching their electrodes and do not contribute
to current generation. The recombination losses in OSCs can occur through three major
carrier loss pathways, which are the bimolecular, bulk trap assisted, and surface trap
assisted pathways [22]. The remaining charge carriers reach their respective electrodes and
contribute to the external current. In view of the above, it is clear that the exciton generation
plays a crucial role in PCE of BHJ OSCs. It is therefore very desirable to study the profile of
exciton generation in OSCs with a view to enhance their photovoltaic performance.

BHJ OSCs with an active layer based on fullerene acceptor have currently dominated
the research activities in organic photovoltaic [23] because of their excellent charge transport
properties [24]. Recently, Mehdizadeh Rad et al. [25] applied the optical transfer matrix
method (OTMM) to profile the exciton generation rate as a function of the thickness of
the active layer for the fullerene acceptor (PCBM) based BHJ OSC in conventional as well
inverted configurations. The normalized modulus squared of the electric field and its
constructive interference points (CIPs) are analysed using the contour plots. Assuming
equal mobility for electrons and holes, and analysing the positions of CIPs within the active
layer, they found that for the efficient extraction of charge carriers, excitons should be
generated halfway within the active layer; about equal distance from the two electrodes.
This is important in the design of organic solar cells to minimize the creation of space
charge in the device. These results also conclude that for the same active layer thickness,
an inverted fullerene BHJ OSC structure can generate larger short circuit current density
than a conventional fullerene BHJ OSC structure [25].

However, fullerene acceptor materials have some disadvantages which include limited
chemical and energetic tunability, narrow range of absorption spectra, and unstable mor-
phology, thereby limiting the overall PCE and stability of the device thus fabricated [26,27].
Therefore, the research focus has moved to the use of non-fullerene (NF) acceptors [28–31]
in BHJ OSCs. Recently, Liu et al. [6] fabricated a NF acceptor based BHJ OSC with a PCE
of 18.22%, which is the highest to date for a single junction BHJ OSC device. Unlike the
fullerene OSCs, the NF devices are much easier to process using solution-based chem-
istry [32]. It is also possible to increase the device Voc while maintaining a high Jsc which
is not possible with the fullerene based OSC [33]. This is achieved because of the easy
tunability of bandgap energy of the NF acceptor materials and the low binding energy of
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the CT excitons which reduces the energy loss at the CT state to dissociate the excitons into
free charge carriers [33]. To the best of the authors’ knowledge, little theoretical work has
been done in understanding the characteristics of exciton generation in conventional and
inverted NF acceptor based BHJ OSCs.

Many research activities have been carried out to study the influence of electron
transport layer (ETL) and hole transport layer (HTL) in BHJ OSCs [34–36]. The work of
Rasool et al. [37] aimed at improving the stability of BHJ OSCs by studying the effect of
direct contact of the ETL materials on the active layer. Research by Yang et al. [38] focused
on improving the built-in potential and reducing the series resistance of BHJ OSCs by
optimising the work function of ETL and forming ohmic contacts with the active layer
acceptor materials. A report by Lee et al. [39] focused on optimising the thickness of
ETL [39]. Most of the researches on HTL are focused on the fabrication of organic and
inorganic HTL materials with high transparency and low resistance, as exemplified by the
work of Sivakumar et al. [40]. The focus of Chien et al. [41] on HTL was in understanding
the inhomogeneity and its effect on the device performance. However, there has not been
much focus in understanding the interference effects which the incident light undergoes
when passing through ETL and HTL and the effect it will have on the photon absorption
and exciton generation in the active layer.

In view of the above, in this paper, we studied the interference of the incident and
reflected electric fields of the electromagnetic radiation and exciton generation rate in the
active layer of a conventional fullerene acceptor based BHJ OSC, and two NF acceptor
based BHJ OSCs, of inverted and conventional structures, as a function of the thickness of
the active layer. In addition, the exciton generation rate was also studied as a function of
the thickness of other layers in all three OSCs.

The paper is organized as follows. In Section 1, a detailed introduction is presented,
followed by Section 2 which describes the theories that are used to study the interference of
incident and reflected electric fields and exciton generation rate in BHJ OSCs, including the
study of recombination losses which affect the short circuit current density. In Section 3, the
results and discussions are presented, and finally, in Section 4 the conclusions are drawn.

2. Theory

To apply the optical transfer matrix method (OTMM) to study the optical properties, a
BHJ OSC can be considered as a multilayer stack as shown in Figure 1. As the thickness of
each layer is comparable with the wavelength of incident light, the light absorption and exciton
generation are affected by the interference effects [25]. For this work, we coded the OTMM
program and used it for simulation on MATLAB version 2020a Update 1 (9.8.0.1359463), USA.

The total exciton generation rate in the active layer of the BHJ OSC shown in Figure 1
can be written as [25,42,43]:

.
Gj =

∫ Lj

x = 0

.
Gj(x)dx (1)

where
.

Gj(x) is the exciton generation rate at distance x from the top interface of the active
layer of thickness Lj, and it can be given by [25,42,43]:

.
Gj(x) =

∫ λ2

λ = λ1

.
Gj(x, λ)dλ (2)

where λ1 and λ2 are the lower and upper wavelength integration limits of solar irradiance, λ

is the wavelength of incident solar irradiance and
.

Gj(x, λ) is wavelength and position
dependent exciton generation rate given by [25,42,43]:

.
Gj(x, λ) =

λ

hc
Qj(x, λ) (3)
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where h is Planck’s constant, c is the speed of light, and Qj(x, λ) is the time average of the
energy absorbed per second in the active layer j at a position x at normal incidence and it is
given by [25,42,43]:

Qj(x, λ) = αj I0Tint

∣∣∣t+j ∣∣∣2 nj

n0

{
e−αjx + ρ

′′2
j e−αj(2Lj−x) + 2ρ

′′
j e−αj Lj cos

[
4πnj

(
Lj − x

)
λ

− δ
′′
j

]}
(4)

where αj = 4πk j/λ is the absorption coefficient, k j is the extinction coefficient of the active
layer blend, I0 is the intensity of incident solar irradiance at the cell surface, Tint is the
internal transmittance of the substrate, t+j is the internal transfer coefficient which relates
the incident plane wave to the internal electric field propagating from the front end to
rear end of the cell, nj and n0 are the refractive indices of the active layer and substrate,
respectively, and ρ

′′
j and δ

′′
j are the magnitude and angle of complex reflection coefficient,

respectively. The wavelength dependent electric field of the electromagnetic (EM) waves in
the active layer j at a distance x from the top interface is given by [25]:

Ej(x, λ) =

√
2Qj(x, λ)

cε0αjnj
(5)

where, ε0 is the permittivity of free space.
Next step is to calculate the short circuit current density, Jsc, from the total exciton

generation rate
.

Gj after considering the recombination losses. The excitons generated in
the blend have to reach the D-A interface to undergo dissociation into free electrons and
holes [21]. Usually in BHJ OSCs, the exciton diffusion length is less than 10 nm, hence
the probability that the excitons diffuse to an interface before recombination is nearly
unity [25,44–46]. As stated above, the three main recombination loss rates that affect the Jsc

in a BHJ OSC are the rates of bimolecular recombination loss,
.

G
bm−rec
j , bulk trap assisted

recombination loss,
.

G
bulk−rec
j , and surface trap assisted recombination loss,

.
G

sur f−rec
j , which

are respectively given by [22]:

.
G

bm−rec
j =

eLj

ε0εr
ξ
(
µn + µp

)
n2 (6)

.
G

bulk−rec
j =

eLj

ε0εr
µcNt.bulkn (7)

and
.

G
sur f−rec
j =

e
ε0εr

µsNt.sur f n

exp
{

e(Vb−Vcor)
kT

} (8)

where n is the charge carrier density, εr is the dielectric constant, ξ is the reduction factor,
µn and µp are the mobility of electrons and holes, respectively, Vcor = V − ItransRa, is

the corrected voltage, V is the applied voltage, Itrans = e
{

.
Gj −

(
.

G
bm−rec
j +

.
G

bulk−rec
j

)}
is the transport current density, Ra = ρLj is the series resistance of the active layer, ρ
is the resistivity of the active layer blend, Nt.bulk and Nt.sur f are the densities of traps in
the bulk and surfaces, respectively, of the active layer, Vb is the built-in voltage, µc is the
mobility of slower moving charge carrier in the bulk, and µs is the mobility of the minority
charge carrier on the surfaces of the active layer. The net rate of the collected charge carriers

reaching their respective electrodes,
.

G
col
j , can be given by:

.
G

col
j =

.
Gj −

(
.

G
bm−rec
j +

.
G

bulk−rec
j +

.
G

sur f−rec
j

)
(9)
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where the rates of recombination losses in Equations (6)–(8) have been subtracted from the
rate in Equation (1). Using Equation (9), Jsc can be obtained as:

Jsc = e
.

G
col
j (10)
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Figure 1. Schematic diagram of a bulk-heterojunction organic solar cell (BHJ OSC) as a multilayer
stack suitable for the optical transfer matrix method (OTMM). The electric field components of
the incident and reflected electromagnetic waves in the lth layer are represented by E+

l and E−l ,
respectively, where l = 0, 1, . . . j . . . , m + 1 and j denotes the active layer.

3. Results and Discussions

Simulations of the position dependent exciton generation rate
.

Gj(x) within the active layer
j of the following three BHJ OSC1, OSC2, and OSC3 have been carried out. The schematic
structures of OSC1, OSC2, and OSC3 are shown in Figure 2a–c, respectively, and the details of
their structures are as follows: OSC1: an inverted BHJ OSC with a non-fullerene acceptor of
the structure: Glass/indium tin oxide (ITO) (150 nm)/zinc oxide (ZnO) (30 nm)/Poly[(2,6-(4,8-
bis(5-(2-ethylhexylthio)-4-fluorothiophen-2-yl)-benzo [1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-
2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1’,2′-c:4′,5′-c’]dithiophene-4,8-dione)]: C94H78F4N4O2S4
(PBDBTSF:IT4F)/molybdenum trioxide (MoO3) (10 nm)/Aluminium (Al) (100 nm) [47,48]
(Figure 2a); OSC2: a conventional non-fullerene BHJ OSC of the structure: Glass/ITO(150 nm)
/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) (30 nm)/PBDB-T-SF:IT-
4F/Poly(9,9-bis(3′-(N,N-dimethyl)-N-ethylammoinium-propyl-2,7-fluorene)-alt-2,7-(9,9-dioctyl
fluorene))dibromide (PFN-Br) (5 nm)/Al (100 nm) [49] (Figure 2b); and OSC3: a conven-
tional fullerene BHJ OSC of the structure: Glass/ITO (180 nm)/PEDOT:PSS (45 nm)/poly(3-
hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM)/Lithium Fluoride
(LiF) (1 nm)/Al (100 nm) [50,51] (Figure 2c). It may be noted that the chosen thicknesses of the
layers, other than the active layer, in the above three OSCs are the optimal thicknesses obtained
from experiments cited above.
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3.1. Test of Simulation

Before presenting the details of our simulation, it is desirable to check the accuracy
of our simulation by comparing the simulated Jsc with some experimental results. For
this purpose, we calculated Jsc of OSC1, OSC2, and OSC3 using Equations (1)–(10), which
require the input parameters given in Table 1 and experimental values of the refractive
index nl and extinction coefficient kl (where l = 1, 2, j, 4, and 5) for PBDBTSF:IT4F and PFN-
Br from [49,52], for the Glass, ITO, P3HT:PCBM, PEDOT:PSS, LiF and Al from [50,51,53–55],
and for ZnO and MoO3 from [56]. For completeness, the experimental values of nj and kj
of the two active layer materials PBDBTSF:IT4F and P3HT:PCBM are plotted in Figure 3 as
a function of the wavelength of the incident light.

Table 1. Input parameters required in the simulation.

P3HT:PCBM PBDB-T-SF:IT-4F

Lj (nm) 40–180 40–180
εr 3.0 [57] 3.40 [58]

µn (m2V−1s−1) 3 × 10−7 [59] 6.27 × 10−9 [58]
µp(m2V−1s−1) 3 × 10−8 [59] 2.26 × 10−8 [58]

ξ 1.3 × 10−3 [60] 1.6 × 10−3 [58]
RC (Ωcm2) 3.0 [60] 1.0 [60]

ρ (Ωcm) 4000 [60] 1000 [60]
RsheetITO(Ω/sq) 18.0 [61] 13.7 [41,60]

LITO (cm) 0.5 [50] 1 [47]
n 3.2 × 1022 [62]

λ1 (nm) 300
λ2 (nm) 900

Nt.bulk(m−3) 2.1 × 1019 [22]
Nt.sur f (m−2) 6.3 × 1018 [22]

T (K) 300 [25]
e (C) 1.6 × 10−19 [63]

h (m2kgs−1) 6.63 × 10−34 [64]
ε0 (Fm−1) 8.85 × 10−12 [65]

k (m2kgs−2K−1) 1.38 × 10−23 [66]
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Figure 3. The experimental values of the refractive index (nj) and extinction coefficient (kj) of the
active layer materials P3HT:PCBM [51,55] and PBDBTSF:IT4F [49,52] plotted as a function of the
wavelength of the incident light.

The simulated Jsc for OSC1, OSC2, and OSC3, thus obtained, are plotted as a function
of the active layer thickness Lj in Figure 4 along with the experimental results from [47] for
OSC1, from [49] for OSC2, and from [50,51] for OSC3. According to Figure 4, the simulated
results of Jsc agree reasonably well with the experimental ones and hence prove that our
simulation can be regarded to be reasonably accurate. However, it may be pointed out here
that for OSC2, we have the experimental result only for one thickness (see Figure 4).
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Figure 4. Simulated Jsc of OSC1 of the structure Glass/ITO/ZnO/PBDB-T-SF:IT4F/MoO3/Al, OSC2
of the structure Glass/ITO/PEDOT:PSS/PBDB-T-SF:IT4F/PFN-Br/Al and OSC3 of the structure
Glass/ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al are plotted as a function of the thickness of the active
layer along with their experimental results from [47,49–51], respectively.

3.2. Electric Field and Exciton Generation Rate Distributions in OSC1

In this section, we present the simulated distributions of the normalised modulus of
electric field component

∣∣Ej(x, λ)
∣∣ (Equation (5)) of the electromagnetic (EM) radiation

and the subsequent exciton generation rate
.

Gj(x, λ) (Equation (3)) within the active layer
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of OSC1 using the OTMM method described in Section 2. All input parameters given in
Table 1 and nl and kl values for PBDBTSF:IT4F from [49,52], for the Glass, ITO and Al
from [50,51,53–55], and for ZnO and MoO3 from [56] are used in this simulation. Both∣∣Ej(x, λ)

∣∣ from Equation (5) and
.

Gj(x, λ) from Equation (3) are calculated for three active
layer thicknesses—35 nm, 95 nm, and 180 nm—of OSC1 and their contour plots as a
function of position in the active layer and wavelength of the solar radiation are shown in
Figure 5 in six parts; three on the left-hand side present the electric field distribution in the
active layer of three thicknesses—35, 95, and 180 nm—and the corresponding right hand
side figures present the distribution of the exciton generation rate.

As a BHJ OSC is a multilayer stack, these brighter and darker regions of
∣∣Ej(x, λ)

∣∣
in the contour plots shown in Figure 5a,c,e are due to constructive interference (CI) and
destructive interference (DI), respectively, of the forward travelling electric field, E+

j , and

reflected electric field, E−j of EM waves inside the active layer, as shown in Figure 1.
Likewise, in the contour plots of Figure 5b,d,f, the brighter spots represent regions of
higher

.
Gj(x, λ) which are also the higher photon absorption regions (HPARs) and lower

.
Gj(x, λ), or lower photon absorption regions (LPARs) are represented by darker spots.
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Figure 5. Left column presents the contour plots of |Ej(x, λ)| from Equation (5) in the active layer of OSC1 for three different

thicknesses Lj, (a) 35 nm, (c) 95 nm, and (e) 180 nm. The right column presents the corresponding
.

Gj(x, λ) contour plots
from Equation (3) for the three thicknesses: (b) 35 nm, (d) 95 nm, and (f) 180 nm. The brighter spots on the left figures
represent regions of the constructive interference of electric field of electromagnetic (EM) waves within the active layer and
the darker spots represent regions of destructive interference. Likewise, the brighter spots on the right figures represent the
positions of higher

.
Gj(x, λ) and darker spots that of lower

.
Gj(x, λ).

In the active layer, higher generation rate
.

Gj(x, λ), is expected to give higher Jsc and

hence an active layer thickness that gives the widest brighter spot for
.

Gj(x, λ) may be
regarded to exhibit the optimum performance. However, although all the figures shown
in Figure 5 are of the same width, they correspond to different thicknesses of the active
layer. That means, widths of the brighter spots in Figure 5a,b are much smaller than those
in Figure 5c,d and largest in Figure 5e,f. The wider brighter spot in

.
Gj(x, λ) may occur if

the electric field distribution is also wider in the active layer. However, the locations of
brighter spots in

.
Gj(x, λ) occur where the wavelength dependent extinction coefficient (k j)

is non-zero but such spots may not always coincide with the locations of CI of
∣∣Ej(x, λ)

∣∣
for all active layer thicknesses. In view of this, it becomes more important to monitor
the brighter spots in

.
Gj(x, λ) whether these spots correlate or not with those in

∣∣Ej(x, λ)
∣∣.

However, an optimal thickness of the active layer can still be expected to be in which both
.

Gj(x, λ) and
∣∣Ej(x, λ)

∣∣ have maximum overlap of bright spots. With this view, it may be

concluded that the active layer thickness of 95 nm with
∣∣Ej(x, λ)

∣∣ and
.

Gj(x, λ) shown in
Figure 5c,d, respectively, is expected to give the optimal photovoltaic performance. This
conclusion that the optimal thickness is 95 nm agrees very well with the experimental
results of Zhao et al. [47], who found optimal PCE at the same thickness. However, if one
compares Jsc shown in Figure 4, the active layer thicknesses of 180 nm has only slightly
less Jsc (≈0.03 mA cm−2 less) than at the optimal active layer thickness of 95 nm. This is
because, as explained above, the amount of exciton generation depends on the thickness;
with larger thickness more exciton generation rate and hence an active layer of thickness
180 nm is expected to have the widest brighter exciton generation spots leading to Jsc
comparable with that of thickness 95 nm. However, at Lj = 180 nm the fill factor (FF) is less
than that at Lj = 95 nm and hence the PCE reduces. In addition to lower PCE, an increased
thickness of Lj = 180 nm is expected to require nearly twice the amount of active layer
material and therefore is uneconomical.

3.3. Influence of Other Layers on Exciton Generation Rate

Here we study the effect of varying the thickness of electrodes and charge transport
layers on

.
Gj and

.
Gj(x) in all three OSCs, which have layer 1 as the front electrode (FE) of
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thickness L1, layer 2 as the front charge transport layer (FCTL) of thickness L2, layer 4 as the
rear charge transport layer (RCTL) of thickness L4, and layer 5 as the rear electrode (RE) of
thickness L5. To the best of the authors’ knowledge, a theoretical study about the influence
of thickness of layers other than the active layer on

.
Gj and

.
Gj(x) in NF BHJ OSCs has not

been done yet. For OSC1, using nl and kl values for each layer as described above and other
required parameters from Table 1,

.
Gj (Equation (1)) is calculated for two active layer thickness

Lj = 95 nm and 180 nm by varying the thicknesses of other layers.
.

Gj(x) (Equation (2)) as a
function of x is calculated only for the optimal active layer thicknesses Lj = 95 nm by varying

other layer thicknesses. Thus, calculated
.

Gj is plotted as a function of the thickness of each

of the four layers on the left column of Figure 6 and the corresponding contour plot
.

Gj(x)
within the active layer of optimal thickness on the right column of Figure 6.
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Figure 6. (Left column)
.

Gj is plotted for two active layer thicknesses Lj = 95 nm and 180 nm, as function of the thickness of
(a) L1 of layer 1 (ITO), (c) L2 of layer 2 (ZnO), (e) L4 of layer 4 (MoO3), and (g) L5 of layer 5 (Al). (Right column) Contour
plots of

.
Gj(x) as a function x within the active layer of optimal thickness Lj = 95 nm, for other layers of thickness (b) L1 of

layer 1 (ITO), (d) L2 of layer 2 (ZnO), (f) L4 of layer 4 (MoO3), and (h) L5 of layer 5 (Al).

According to Figure 6a,c,e,
.

Gj exhibits an oscillatory behaviour when the thickness
of the ITO, ZnO, and MoO3 layers are varied. These oscillations may be attributed to the
interference effect of the forward and reflected electric fields of the electromagnetic waves.
However, such oscillations do not occur when the thickness of Al layer (layer 5) is varied
as shown in Figure 6g, which will be discussed later.

In Figure 6a, the maxima of
.

Gj are observed for the ITO thickness L1 = 148 nm and
19 nm corresponding to the active layer thickness Lj = 95 nm and 180 nm, respectively.
From this, it is evident that for thicker active layer Lj, thinner ITO layer L1 is required

to get maximum
.

Gj. Although
.

Gj is the highest for L1 = 19 nm at Lj = 180 nm, such an
OSC may have very large resistive power loss due to the large series resistance offered
by the thin ITO layer L1 [67]. Thus, the simulated optimal thickness of ITO is chosen to
be L1 = 148 nm when the active layer thickness Lj = 95 nm, which is in good agreement

with the experimental result [47]. Figure 6b shows the effect of varying L1 on
.

Gj(x) at
different positions inside the active layer of the optimal thickness, Lj = 95 nm. According

to Figure 6b, the most exciton generation rate
.

Gj(x) occurs within the first 60 nm of the
optimal active layer thickness Lj = 95 nm with two maxima (brightest) spots at L1 = 50 nm

and 148 nm, which are consistent with the maxima in
.

Gj shown in Figure 6a.
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The effect of varying the thickness L2 (ZnO) on
.

Gj and
.

Gj(x) are shown in Figure 6c,d,

respectively. It is found from Figure 6c that
.

Gj is high for 0 < L2 < 30 nm at the optimum

active layer thickness Lj = 95 nm, but for the active layer thickness of Lj = 180 nm,
.

Gj is
high for 120 < L2 < 140 nm. The FCTL (ZnO) helps in reducing the charge recombination
and contact resistance between the active layer and FE (ITO). Therefore, on one hand, L2
should be non-zero to serve the above two purposes. On the other hand, all the layers
above the active layer should be as thin as possible to maximise the transmission of light
to the active layer. For the optimal active layer thickness of Lj = 95 nm, the L2 may be
optimised to maximise photon absorption and least charge recombination loss. Hence, the
optimum value of L2 may be considered to be 30 nm which is in good agreement with the
experimental result [47]. According to Figure 6d, the high

.
Gj(x) occurs within the active

layer for 0 < x < 40 nm and for 0 < L2 < 30, which is consistent with the corresponding
.

Gj
in Figure 6c.

Figure 6e,f shows
.

Gj and
.

Gj(x), respectively, as a function of the thickness L4 of layer 4

(MoO3). Here again, the oscillatory nature of
.

Gj occurs due to interference but the amplitude
of oscillations is relatively larger in comparison with all other layers. This may be attributed
to the fact that the unabsorbed light from the active layer and reflected from the Al cathode
passes through this layer again before getting absorbed in the active layer, leading to a larger
interference effect. The amplitudes of oscillations for the active layer thickness Lj = 95 nm
are much larger than those for Lj = 180 nm. According to Figure 6e, the simulated optimal
thickness of L4 (MoO3) is 10 nm at the optimal active layer thickness Lj = 95 nm, which is in

good agreement with experimental L4 [47]. This is also in agreement with
.

Gj(x), shown in
Figure 6f, where the widest bright spot is found to occur at L4 = 10 nm.

In Figure 6g,h,
.

Gj and
.

Gj(x) are plotted, respectively, as a function of the thickness L5

of the cathode (Al) and as stated above no oscillations are found in
.

Gj (Figure 6g) for L5 >
55 nm. This is because all the unabsorbed light from the active layer gets reflected from the
interface between MoO3 and Al layer back into the active layer without any interference
effect occurring within the Al layer. Therefore,

.
Gj remains unaffected by any variation in

the thickness of Al layer when L5 > 55 nm. For 0 < L5 < 55 nm, the reflection from Al starts
to increase from zero, which increases the absorption in the active layer and hence

.
Gj starts

increasing linearly from its non-zero value at L5 = 0 nm. Such a dependence of
.

Gj on L5 is
observed for both the active layer thicknesses 95 and 180 nm (see Figure 6g). For L5 > 16
nm, the

.
Gj in the active layer of thickness Lj = 95 nm shown in Figure 6g is larger than that

in Lj = 180 nm. As Jsc is proportional to the net
.

G
col
j (see Equation (10)), this is consistent

with the larger Jsc in Lj = 95 nm than in Lj = 180 nm as illustrated in Figure 4. However, for
L5 < 16 nm, this trend reverses because the photon absorption and exciton generation in
the active layer increase with the thickness and the absorption of reflected photons from
Al becomes negligible at such a low thickness. In view of the discussion presented above,
it may be concluded that L5 may be equal to 55 nm or larger for obtaining maximum

.
Gj

in the active layer, which agrees very well with the L5 = 100 nm used experimentally [47].
The thickness L5 > 55 nm used in the fabrication [47] may serve the purpose of enhancing
conductivity and thereby reducing the resistive power loss in Al layer.

We will now discuss the simulated results of OSC2 of the structure: Glass/ITO/PEDOT:
PSS/PBDB-T-SF:IT4F/PFN-Br/Al. The simulated Jsc of OSC2 is shown in Figure 4 along
with that of OSC1 for comparison. It is found that Jsc in OSC2 is maximum at the active
layer thickness Lj = 100 nm, which agrees very well with the experimental value [49]. It is
also evident from Figure 4 that Jsc of the conventional structure OSC2 is slightly lower than
that of the inverted structure OSC1 which agrees with our previous simulation work [25],
where it has been found that for a fullerene based BHJ OSC with P3HT:PCBM as the active
layer, the inverted structure has a higher Jsc than the conventional structure. In this view, it
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may be concluded that the inverted structure has higher Jsc than conventional structure in
both fullerene and non-fullerene acceptor based BHJ OSCs.

Further analysis of the performance of OSC2 has been carried out by simulating
.

Gj

and
.

Gj(x) using the nl and kl values for all layers decribed above and other required

parameters from Table 1. The variation of
.

Gj with L1, L4, and L5 for OSC2 is given in

Figure S1 in the Supplementary Information. The variation of
.

Gj in OSC2, shown in
Figure S1, with the thicknesses L1, L4, and L5 is similar to that in OSC1 shown in Figure 6,
with the only difference being the magnitude of

.
Gj; in OSC2

.
Gj is slightly lower than that

in OSC1. According to Figure S1, the optimal thickness L1 of layer 1, L4 of layer 4, and L5 of
layer 5 are 148 nm, 5 nm, and 100 nm, respectively, for OSC2. However, as discussed below,
the dependence of

.
Gj and

.
Gj(x) on the thickness L2 of PEDOT:PSS in OSC2 shown in

Figure 7a,b is slightly different than that of L2 which is ZnO in OSC1 shown in Figure 6c,d.
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Gj is plotted as function of the thickness L2 of layer 2 (PEDOT:PSS) in OSC2 for two active layer thicknesses

Lj = 100 nm and 180 nm. (b) Contour plots of
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Gj(x) as a function of thickness L2 of layer 2 and position x within the active
layer of OSC2 at the optimal thickness Lj = 100 nm of the active layer.

.
Gj plotted as a function of L2 for two active layer thicknesses Lj = 100 nm and 180 nm

in OSC2 is shown in Figure 7a and it decreases as L2 increases with relatively small
interference effect compared to that in OSC1. According to Figure 7a,

.
Gj at the active

layer thickness Lj = 100 nm decreases from about 1.42 × 1021 m−2s−1 at L2 = 0 nm to
about 1.18 × 1021 m−2s−1 at L2 = 300 nm and for Lj = 180 nm, it first decreases from about
1.36 × 1021 m−2s−1 at L2 = 0 nm to 1.26 × 1021 m−2s−1 at L2 = 80 nm and then increases
to a maximum of 1.28 × 1021 m−2s−1 at L2 = 148 nm and then finally decreases again to
1.15 × 1021 m−2s−1 at L2 = 300 nm. This means that the

.
Gj for Lj = 180 nm in OSC2 is high

for 0 nm < L2 < 30 nm unlike the case of OSC1. Although
.

Gj is maximum at L2 = 0 nm,
which is not suitable, the optimal thickness L2 of layer 2 is chosen to be 30 nm, to be
consistent with the fabricated thickness [49] and with that used above for OSC1. It may
be emphasized that

.
Gj in Figure 7a at L2 = 148 nm is higher for the active layer thickness

180 nm than that for 100 nm but it is still lower than that at L2 = 30 nm for the active layer
thickness of 100 nm and hence the optimal thicknesses of both layer 2 and active layer for
OSC2 are chosen to be 30 nm and 100 nm, respectively.

For comparing
.

Gj in OSC1 and OSC2, we find that at the optimal active layer thick-

ness Lj = 95 nm in OSC1,
.

Gj at L2 = 30 nm is 1.385 × 1021 m−2s−1 and in OSC2 it is

1.355 × 1021 m−2s−1 at the optimal active layer thickness Lj = 100 nm. The lower
.

Gj
in OSC2 contributes to a lower Jsc which is evident from Figure 4. The contour plots of
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∣∣Ej(x, λ)
∣∣ and

.
Gj(x, λ) for OSC2 with the thicknesses of all layers optimised are plotted

in Figure S2a,b, which are apparently similar to those of OSC1 shown in Figure 5c,d. For
a comparative analysis we plotted

.
Gj(x) as a function of the position x within the active

layer for the optimal structures of both OSC1 and OSC2 in Figure 8. The
.

Gj(x) of OSC1
(see Figure 8) is found to be slightly higher than that of OSC2 at the position x = 0 nm and
the difference reduces gradually towards the end of the active layer thickness Lj and hence
the inverted OSC1 can be expected to show better performance compared to conventional
OSC2. As the optimised thickness Lj of the active layer of OSC1 is 95 nm and that of OSC2
is 100 nm, the amount of active layer material needed for the inverted OSC1 is less than that
of the conventional OSC2 which may lead to lower fabrication cost in the mass production
of inverted structure compared to the conventional structure.
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Figure 8.
.

Gj(x) plotted as a function of the position x within the active layer of optimal thickness
Lj = 95 nm and 100 nm for OSC1 and OSC2, respectively.

Finally, we discuss the simulation results of OSC3, which is a fullerene acceptor based
BHJ OSC of the conventional structure. Jsc of OSC3 plotted in Figure 4, reveals the optimal
active layer thickness of 80 nm, which is in reasonable agreement with the experimental
thickness of 70 nm [50,51]. It is also very conclusive from Figure 4 that OSC3 produces
relatively the lowest Jsc in comparison with OSC1 and OSC2, which may be attributed to
the use of fullerene acceptor [60]. Following the procedures for OSC1 and OSC2,

.
Gj and

.
Gj(x) as a function of the thickness of layer 1, layer 2, layer 4, and layer 5 for OSC3 are also
simulated using the nl and kl values for P3HT:PCBM from [50,51,53–55], for the Glass, ITO,
PEDOT:PSS, LiF and Al from [50,51,53–55] and other required parameters from Table 1
in Equations (1) and (2), respectively.

.
Gj (Equation (1)) is calculated for two active layer

thickness Lj = 80 nm and 180 nm as a function of the thicknesses of other layers whereas

the corresponding contour plots of
.

Gj(x) (Equation (2)) is calculated as a function of x

within the active layer only of the optimal thicknesses Lj = 80 nm. The variations in
.

Gj

and
.

Gj(x) of OSC3 with respect to the thickness of layer 4 and layer 5 (see Figure S3) show
similar trends as those in OSC1 (see Figure 6) and OSC2 (see Figure S1) and their simulated
optimal thickness are obtained as 1 nm and 100 nm, respectively. The variations in

.
Gj and

.
Gj(x) with the thickness of layers 1 and 2 are shown in Figure 9a–d.
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Figure 9. (a)
.

Gj is plotted as function of the thickness L1 of layer 1 (ITO) for two active layer thicknesses Lj = 80 nm and

180 nm, (b) contour plot of
.

Gj(x) as function of the thickness L1 of ITO and position x within the active layer of optimal

thickness Lj = 80 nm, (c)
.

Gj is plotted as function of the thickness L2 of layer 2 (PEDOT:PSS) for two active layer thicknesses

Lj = 80 nm and 180 nm, and (d) contour plot of
.

Gj(x) as function of the thickness L2 of PEDOT:PSS and position x within
the active layer of optimal thickness Lj = 80 nm.

The variation of
.

Gj with L1 for the active layer thicknesses of Lj = 80 nm and 180 nm
in OSC3, as shown in Figure 9a, exhibits larger oscillatory nature compared to OSC1
(Figure 6a) and OSC2 (Figure S1a). This may be attributed to the larger interference effect
caused by the combination of fullerene-based accepter in the active layer and layer 1. In
view of this, a small variation from the optimal thickness of the layer 1 may lead to a
larger loss in

.
Gj, and hence in Jsc in the fullerene based OSC3 in comparison with that in

non-fullerene based OSC1 and OSC2. From Figure 9a, the optimal thickness L1 of layer 1 is
found to be 46 nm at the optimal active layer thickness Lj = 80 nm. However, the thickness
of ITO used in the fabrication of fullerene based OSC3 is usually 150–180 nm [50,51,68],
which corresponds to the second maximum in Figure 9a and it is lower than the first one
at 46 nm. Although the optimal thickness of 46 nm determined here from the simulation
agrees with 40 nm used in our earlier simulation work [25], a thicker ITO layer used in the
fabrication might help reducing the resistive power loss in the series resistance of layer 1
because ITO sheet resistance decreases significantly with the increase in its thickness [61].
It may be noted that, the first and second maxima shown in Figure 9a at the active layer
thickness of 80 nm, are also clearly visible as widest bright spots at L1 = 46 nm and 180 nm,
respectively, in Figure 9b.
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In Figure 9c, we plotted
.

Gj as a function of the thickness L2 of PEDOT:PSS in OSC3

for the two active layer thicknesses Lj = 80 nm and 180 nm and the contour plot of
.

Gj(x) as
a function of the thickness L2 and position x within the active layer of optimal thickness
Lj = 80 nm is shown in Figure 9d. According to Figure 9c, the

.
Gj is maximum at L2 = 0 nm

for both the active layer thicknesses and hence the maximum exciton generation rate may
occur in the absence of layer 2. This is also evident from Figure 9d, where the widest
bright spot appears at L2 = 0 nm. This trend of maximum

.
Gj at L2 = 0, shown in Figure 9c

is similar to that found in OSC2 (see Figure 7a) and also in OSC1 for Lj = 95 nm but for

Lj = 180 nm the maximum
.

Gj occurs at non-zero thickness L2 (see Figure 6c). As mentioned
above, the layer 2 is used to improve the charge carrier extraction efficiency and hence
it cannot be of zero thickness. In the experimentally fabricated OSC3 [50,51], a thickness
of L2 = 45 nm was used, and according to Figure 9c, the simulated

.
Gj was found to be

6.73 × 1020 m−2s−1. Although a similar
.

Gj may be found for L2 = 100 nm (see Figure 9c),
the thinner layer may be preferred for reducing the amount of material used. Figure 9c
also reveals that

.
Gj for the active layer thickness of 180 nm is higher than that for 80 nm in

the whole range of thickness L2 but the optimal thickness of 80 nm is preferred. This may
be due to the fact that the fill factor of OSCs decreases almost linearly as the thickness of
active layer increases [42,59,69], which is caused by the enhanced recombination [59,69].
The contour plots of

∣∣Ej(x, λ)
∣∣ and

.
Gj(x, λ) for OSC3 with the thicknesses of all layers

optimised are plotted in Figure S4a,b.
The simulation presented in this paper is expected to help in optimising the layered

structure of both non-fullerene and fullerene based BHJ OSCs and has revealed that the
inverted NF BHJ OSC1 has relatively better Jsc than the conventional NF BHJ OSC2 and
fullerene based OSC3. The optimised structures thus simulated for all three OSCs are given
in Table 2.

Table 2. Optimised layer thickness for all three OSCs.

OSC1 OSC2 OSC3

L1 (nm) 148 (ITO) 148 (ITO) 180 (ITO)

L2 (nm) 30 (ZnO) 30 (PEDOT:PSS) 45 (PEDOT:PSS)

Lj (nm) 95 (PBDBTSF:IT4F) 100 (PBDBTSF:IT4F) 80 (P3HT:PCBM)

L4 (nm) 10 (MoO3) 5 (PFN-Br) 1 (LiF)

L5 (nm) 100 (Al) 100 (Al) 100 (Al)

4. Conclusions

Characterisation of the exciton generation rates has been carried out in three different
BHJ OSCs: (i) an inverted non-fullerene acceptor based OSC1; (ii) a conventional non-
fullerene acceptor based OSC2; and (iii) a conventional fullerene acceptor based OSC3. It
was found that the regions of overlap of the constructive interference of forward travelling
and reflected light waves and those of the high photon absorption regions depend on the
thickness of active layer which is used to optimise the thickness of the active layer with the
maximum overlap. The rates of total exciton generation

.
Gj and position dependent exciton

generation
.

Gj(x) in the active layer have been optimised with respect to the thicknesses
of each layer in the device structure. The optimal simulated designs thus obtained for the
three OSCs are given in Table 2. It is expected that the results of this paper may help in
fabricating highly efficient and cost-effective BHJ OSCs.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-4
991/11/1/209/s1. Figure S1: For OSC2,

.
Gj is plotted for two active layer thicknesses Lj = 100 nm

and 180 nm as function of the thickness of (a) L1 of layer 1 (ITO), (b) L4 of layer 4 (PFN-Br), (c) L5

https://www.mdpi.com/2079-4991/11/1/209/s1
https://www.mdpi.com/2079-4991/11/1/209/s1
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of layer 5 (Al), Figure S2: (a) The contour plot of
∣∣Ej(x, λ)

∣∣ from Equation (5) in the active layer of
OSC2 for Lj = 100 nm. The brighter spots represent regions of the constructive interference of
electric field of EM waves within the active layer and the darker spots represent regions of destructive
interference. (b) The corresponding

.
Gj(x, λ) contour plots from Equation (3), showing the brighter

spots as positions of higher
.

Gj(x, λ) and darker spots that of lower
.

Gj(x, λ), Figure S3: For OSC3,
.

Gj is plotted for two active layer thicknesses Lj = 80 nm and 180 nm, as function of the thickness

of (a) L4 of layer 4 (PFNBr) and (b) L5 of layer 5 (Al), Figure S4: (a) The contour plot of
∣∣∣Ej(x, λ)

∣∣∣
from Equation (5) in the active layer of OSC3 for Lj = 80 nm. The brighter spots represent regions
of the constructive interference of electric field of EM waves within the active layer and the darker
spots represent regions of destructive interference. (b) The corresponding

.
Gj(x, λ) contour plots

from Equation (3), showing the brighter spots as positions of higher
.

Gj(x, λ) and darker spots that of

lower
.

Gj(x, λ).
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