
fimmu-11-00338 February 27, 2020 Time: 15:42 # 1

REVIEW
published: 28 February 2020

doi: 10.3389/fimmu.2020.00338

Edited by:
Guzide Aksu,

Ege University, Turkey

Reviewed by:
Vanessa L. Bryant,

Walter and Eliza Hall Institute
of Medical Research, Australia

Siobhan Oisin Burns,
University College London,

United Kingdom

*Correspondence:
Antonio Pecoraro

anthonypek@msn.com

Specialty section:
This article was submitted to
Primary Immunodeficiencies,

a section of the journal
Frontiers in Immunology

Received: 21 October 2019
Accepted: 11 February 2020
Published: 28 February 2020

Citation:
Pecoraro A, Crescenzi L,

Varricchi G, Marone G and Spadaro G
(2020) Heterogeneity of Liver Disease

in Common Variable
Immunodeficiency Disorders.

Front. Immunol. 11:338.
doi: 10.3389/fimmu.2020.00338

Heterogeneity of Liver Disease in
Common Variable Immunodeficiency
Disorders
Antonio Pecoraro1* , Ludovica Crescenzi1, Gilda Varricchi1,2, Giancarlo Marone3,4 and
Giuseppe Spadaro1,2

1 Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy, 2 Center for Basic and Clinical
Immunology Research, WAO Center of Excellence, University of Naples Federico II, Naples, Italy, 3 Department of Public
Health, University of Naples Federico II, Naples, Italy, 4 Monaldi Hospital, Naples, Italy

Common variable immunodeficiency (CVID) is the most frequent primary
immunodeficiency (PID) in adulthood and is characterized by severe reduction of
immunoglobulin serum levels and impaired antibody production in response to vaccines
and pathogens. Beyond the susceptibility to infections, CVID encompasses a wide
spectrum of clinical manifestations related to a complex immune dysregulation that
also affects liver. Although about 50% CVID patients present persistently deranged
liver function, burden, and nature of liver involvement have not been systematically
investigated in most cohort studies published in the last decades. Therefore, the
prevalence of liver disease in CVID widely varies depending on the study design and the
sampling criteria. This review seeks to summarize the evidence about the most relevant
causes of liver involvement in CVID, including nodular regenerative hyperplasia (NRH),
infections and malignancies. We also describe the clinical features of liver disease in
some monogenic forms of PID included in the clinical spectrum of CVID as ICOS,
NFKB1, NFKB2, CTLA-4, PI3Kδ pathway, ADA2, and IL21-R genetic defects. Finally,
we discuss the clinical applications of the various diagnostic tools and the possible
therapeutic approaches for the management of liver involvement in the context of CVID.

Keywords: primary immuno deficiency, antibody deficiency, common variable immune deficiency, liver disease,
nodular regenerative hyperplasia, transient elastography, monogenic immune defects, liver transplant

INTRODUCTION

Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary
immunodeficiency (PID) in adult age and is characterized by marked hypogammaglobulinemia
(IgG and IgA, with or without IgM), and impaired antibody production in response to vaccines
and pathogens (1, 2). CVID represents an umbrella diagnosis rather than a single disease,
probably encompassing multiple genetic disorders, all leading to the failure of B-cell responses.
The International Union of Immunological Societies (IUIS) Expert Primary Immunodeficiency
Committee (now called Expert Committee on inborn errors of immunity – IEI) redefined in
2009 the acronym CVID as “common variable immunodeficiency disorders,” thus highlighting
the heterogeneity of the underlying immune defects (3). During the past 7 years, the increasing
spreading of next-generation sequencing (NGS) technologies have fostered the discovery of several
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genes associated with a CVID-phenotype, via both autosomal
recessive and dominant inheritance (4, 5). This has
progressively blurred the limits between humoral and combined
immunodeficiency. Indeed, various genetic defects initially
linked to CVID are now recognized as distinct disease entities.
However, monogenic forms only account for 2–10% CVID
clinical diagnosis (6). The proportion increases to 30% when
considering CVID cases with criteria of monogenic form
suspicion including early onset, autoimmune/inflammatory
manifestations, low B lymphocytes, and/or familial history of
hypogammaglobulinemia (7). The pathogenesis is more complex
in the remaining cases, probably involving environment, and
somatic genetic or epigenetic changes (8). Similarly, several
abnormalities in immune cells’ counts and function, in different
combinations and in association with specific clinical features,
have been described in CVID patients. Among these, the
reduction of class-switched memory B cells and/or plasmablasts
(9, 10), the expansion of transitional B cells and/or CD21low
B cells (11, 12), the reduction of naive T cell and/or Treg cell,
and the increase of peripheral blood TFH cells (13, 14), are the
most remarkable.

Mirroring this immunologic and genetic heterogeneity,
CVID patients may experience a wide spectrum of clinical
manifestations during the course of their life, including recurrent
bacterial infections (mainly of gastrointestinal and respiratory
tracts) and various disorders related to immune dysregulation,
such as autoimmunity, granulomata, lymphoid hyperplasia,
enteropathy and malignancies (15–17). The cornerstone of CVID
treatment is polyvalent human IgG replacement that succeeded,
over the past 4 decades, in reducing the burden of infections
and improving the prognostic outcome of CVID (18–20).
However, immunoglobulin replacement therapy has no proven
effectiveness on immune dysregulation-related complications
that consequently have become the major cause of death in CVID
patients, thus demanding a more in-depth understanding of the
underlying pathogenetic mechanisms (21–24).

Immune dysregulation-related complications also involve
various segments of the gastrointestinal tract leading to life-
threatening complications as protein-energy malnutrition,
malabsorption, and gut microbial translocation (25–27). While
gut or stomach involvement in CVID has been extensively
described and classified by several authors, a more limited
evidence is available about prevalence, pathogenesis and
prognostic outcome of CVID-related liver disease (28–33).
Although up to 50% of CVID patients display a persistent
increase of liver enzymes associated with mild hepatomegaly,
burden and nature of liver involvement have not been
systematically investigated in the majority of CVID cohort
studies published in the last 20 years (34, 35). Liver involvement
could be defined as a disruption of liver function or portal
hemodynamic and may be identified through biochemical,
clinical, imaging and histologic diagnostic tools. Liver
involvement in CVID is heterogeneous and may rely on
immune dysregulation [i.e., nodular regenerative hyperplasia
(NRH), lymphocytic infiltration, granulomatous disease],
infection (i.e., viral iatrogenic hepatitis, extra-intestinal
localization of Giardia lamblia) and malignancy (i.e., liver

cancer, extra-nodal localization of lymphoid malignancies and
metastatic involvement from gastrointestinal tract neoplasms).
In a large United States cohort, CVID patients with liver diseases
had reduced survival (HR = 2.48), compared with those without
this specific complication (23). In particular, liver diseases was
the fourth cause of death over a 4-decade interval, accounting for
the 8.6% overall mortality. Similarly, in a recent study striking
differences in mortality were observed between patients with
liver disease and those without, with crude death rate of 28%
and 6%, respectively (36). Prevalence information widely varies
in the various cohorts (ranging from 9% to 79%) depending on
the detection strategy and the sampling methodology (Table 1).
In particular, significant heterogeneity exists between the various
cohort studies with respect to the outcome variable evaluated to
estimate liver impairment (i.e., liver enzyme levels, echographic
features, and histopathological changes). Moreover, a large part
of prevalence information is derived from cohort studies not
primarily conceived to estimate liver involvement. This may
result in a significant bias in prevalence data, as incomplete
diagnostic assessment could have affected the detection rate of
liver alterations in these studies.

Clinical, laboratory and histological signs of liver damage
were present in 11.9% subjects of a large US cohort described
in 1999 (37). Raised alkaline phosphatase (ALP) levels were
observed in 43.5% CVID patients of a 2008 cohort study (35),
while histologically proved liver disease was demonstrated in a
smaller proportion of subjects in two other studies (9.1% and
9.3%, respectively) (38, 39). Our research group recently reported
a liver disease prevalence of 33.8% in a cohort of 77 adult
CVID patients in whom liver involvement was assessed through
the measurement of liver stiffness by ultrasound-based transient
elastography (TE) (40). Finally, 79% CVID patients referred
to a United Kingdom Hepatology Center displayed laboratory,
imaging and/or histological signs of liver disease (36).

In this review, we will summarize the evidence on
epidemiology, pathogenesis, outcome, and treatment of the
various forms of liver involvement in CVID (Figure 1). To
contribute to better understand and manage CVID-associated
liver disease, we will try to depict the features of liver involvement
in some monogenic forms of PID included in the clinical
spectrum of CVID for which specific defects in immune response
pathways have been recently clarified. Finally, we will discuss the
clinical applications of the various diagnostic tools employed in
detection and monitoring of liver disease.

NODULAR REGENERATIVE
HYPERPLASIA

Nodular regenerative hyperplasia is generally considered
the most typical form of liver involvement in CVID (1).
Although frequently described as a disease, NRH is actually a
histopathologic picture that is thought to be the result of an
intra-hepatic vasculopathy, common to various hepatic diseases,
leading to both hepatocyte injury and regeneration (41, 42). This
latter would determine the development of hepatocyte nodules
that compress surrounding sinusoids, as well as portal and
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TABLE 1 | Prevalence of liver disease in various cohorts of CVID adult patients.

Study Year Sample size Study type Prevalence (%) Outcome variable Clinical associations

Cunningham-Rundles et al. (37) 1999 248 Retrospective 11.9 Liver dysfunction (including viral
hepatitis and primary biliary
cholangitis)

NA

Ward et al. (35) 2008 108 Retrospective 43.5 Deranged liver function (i.e.,
increased liver enzyme levels)

Hepatomegaly,
Granuloma,
Cytopenias,
Lymphocytic
enteropathy

Malamut et al. (51) 2008 94 Retrospective 54.2 Increased liver enzyme levels,
hepatomegaly and/or signs of
portal hypertension

NA

Farmer et al. (38) 2018 205 Retrospective/
perspective

9.3 Histologically proved
lymphoproliferative liver disease
(i.e., NRH and hepatitis)

NA

Slade et al. (147) 2018 116 Cross-sectional 3 Autoimmune liver disease NA

Azzu et al. (36) 2019 86 retrospective 79 abnormal liver function test profile
OR abnormal liver imaging OR
abnormal liver histology

Thrombocytopenia,
splenomegaly

Crescenzi et al. (40) 2019 77 Cross-sectional 33.8 Liver fibrosis (measured as
increased liver stiffness)

Polyclonal
lymphoproliferation,
enteropathy

central veins, thus potentially determining perisinusoidal fibrosis
(Figure 2) (43, 44). The diagnosis of NRH is challenging due
to different interpretations of the histopathologic features and
the absence of either symptoms or laboratory abnormalities in
most patients. Although nodularity and heterogeneous hepatic
parenchyma suggestive of NRH may be detected by magnetic
resonance imaging or ultrasound scan, diagnosis has to be
histologically confirmed (45, 46). Recently, the revision of the
histopathological definition proposed by Wanless in 1990 led
to the description of NRH as focal or diffuse appearance of
hepatocellular nodules less than 3 mm in diameter detected
on both H&E and reticulin staining compressing peripheral
sinuses, where perisinusoidal but not septal fibrosis may occur
(47, 48).

Post-mortem examination studies reported a prevalence of
NRH-related changes in 0.5–2.6% of general population (48,
49). NRH prevalence in CVID widely varies in the various
reports, perhaps reflecting different strategies in study design
and population sampling (Table 2). Liver biopsy is an invasive
procedure that is generally performed only in the presence of
clinical and laboratory clues of severe liver damage. This led
to a significant underestimate in cohort studies not primarily
intended to investigate liver pathology. Resnick et al. reported
a NRH incidence lower than 1% over a 4-decade period, in a
large perspective cohort study assessing mortality in CVID (23).
On the contrary, NRH prevalence was 5% and 12% in 2 studies
designed to assess the nature of liver disease in CVID patients
with deranged liver function tests (35, 50). Similarly, NRH was
detected in 32% patients referred to a Hepatology Center for an
active follow-up (36). NRH prevalence is even higher (up to 87%)
if we consider only the subset of patients undergoing liver biopsy,
namely the only category where NRH diagnosis may be made or
excluded with certainty (51).

Although laboratory signs of NRH may be not detectable
for decades, the majority of subjects display raised ALP levels
with concurrent increase in gamma-glutamyl-transpeptidase
(γGT). The most common pattern of ALP derangement
in CVID patients with NRH is the gradual increase over
years. Otherwise, ALP levels may fluctuate or reach a peak
and then return toward normal values (35). When clinical
signs are present, these are the result of non-cirrhotic portal
hypertension due to sinusoidal compression (50). In the most
characterized cohorts of CVID patients with NRH, the most
frequent clinical complications were jaundice, hepatomegaly,
pruritus, ascites, and oesophageal varices, whereas decreases
in neutrophil and platelet counts frequently appeared years
after raising of liver enzymes (35, 50, 51). On the other hand,
a subset of patients (up to 32%) may present histologically
proved cirrhosis with NRH-like changes, a picture associated
with higher mortality (hazard ratio = 4.2) (36). Irrespectively
of the clinical course of liver disease, CVID patients with
NRH are more likely to present immune-dysregulation related
complications compared with those without liver involvement.
Ward et al. found that NRH was significantly associated
with autoimmune cytopenias, polyclonal lymphoproliferation
and diffuse granulomatous disease. By contrast, no association
was found with organ specific autoimmune conditions, age at
onset, age at diagnosis, delay in diagnosis, and duration of
immunoglobulin replacement therapy (35).

Intrasinusoidal inflammatory infiltrates represent the most
common histopathological finding in CVID patients with NRH
(50, 51). Immunohistochemical analysis reveals that infiltrates
are mainly composed of CD3+ CD8+ T cells and very
few B cells. Inflammatory infiltrates may co-localize with
sinusoidal dilatation and/or small lobular, non-necrotizing, non-
fibrosing granulomata (<50% cases). Conversely, albeit rarely,
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FIGURE 1 | Main causes of liver disease in CVID. The clinical spectrum of CVID includes predisposition to infections, immune-dysregulation-related manifestations
(i.e., autoimmunity or lymphocytic infiltration) and malignancies. Liver involvement in CVID may rely on each of these three pathogenetic mechanisms. NRH is the
most common histopathologic finding in CVID and is thought to be related, at least in part, to an auto-reactive T-cell intrasinusoidal infiltration, while a subset of
patients may present a more severe portal inflammatory infiltration consistent with inferface hepatitis, as observed in autoimmune hepatitis. Splenomegaly is a
common clinical feature in CVID patients and contributes to the increase of portal venous pressure, as shown in detail in Figure 2. In past decades, contaminated
immunoglobulin preparations were a significant cause of iatrogenic viral hepatitis (i.e., HBV, HCV, CMV, and EBV), while Giardia lamblia, which is a common cause of
chronic enteritis in CVID, may affect liver as extra-intestinal localization. Finally, liver may be target of both primary and metastatic malignancies. These latter may be
the result of both gastrointestinal cancers (i.e., stomach and colon) and hematological malignancies. The figure was created with Biorender.com.

CVID patients may present liver granulomatous lesions in
the context of a systemic granulomatous disease and in the
absence of NRH (35). A subset of patients exhibit a more
severe portal inflammatory infiltration associated with portal
vein endotheliitis, bridging necrosis and periportal fibrosis,
thus justifying a histological diagnosis of interface hepatitis,
as observed in viral or autoimmune hepatitis (50, 51). Rather
than the result of a proper autoimmune hepatitis, all these
findings could represent an over-representation of the milder
inflammatory infiltrate associated with perisinusoidal fibrosis,
usually observed in NRH. Consistent with this hypothesis, CVID
patients present interface hepatitis in the context of the nodular
hepatic parenchymal pattern typical of NRH that is not described
in “classical” autoimmune hepatitis (52). Besides, the diagnosis
of definite autoimmune hepatitis (AIH) is very difficult to be
made in CVID patients. According to the European Association
for the Study of the Liver (EASL), both a histologic evidence of
moderate to severe interface hepatitis and the positivity of the

typical autoantibodies are required to make an AIH diagnosis
(53). Indeed, as expected for a severe B-cell defect, CVID
patients generally do not have autoantibodies, even in case of
overt autoimmune manifestations. On the other hand, NRH
per se is likely to represent an immune-mediated manifestation.
The presence of moderate/severe inflammatory infiltrates could
suggest different pathogenetic mechanisms, as well as a possible
role for immunosuppressive treatments to arrest the progression
of liver damage. Based on this consideration, liver biopsy would
represent a pivotal tool to identify the cases of NRH associated
with a more significant inflammatory infiltrate and guide the
decision to start an immunosuppressive treatment.

Intrasinusoidal T lymphocytes may be involved in the
pathogenesis of NRH, as supported by the frequent finding of
both portal vein endotheliitis and disruption of the sinusoid
lining. Indeed, a significant proportion of NRH patients display
apoptotic damage of sinusoidal endothelial cells associated with
the presence of CD8+ cytotoxic T-cells in liver sinusoids (50, 51).
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FIGURE 2 | Nodular regenerative hyperplasia (NRH) is the result of an intra-hepatic vasculopathy, leading to the development of hepatocyte nodules that compress
surrounding sinusoids, potentially determining perisinusoidal fibrosis. In CVID patients, NRH is associated with a chronic cytotoxic T cell infiltration of liver sinusoidal
endothelium. This may cause an alteration of the blood flow through portal system causing the reduction of liver parenchymal perfusion and the increase of portal
pressure. The perturbation of portal system flow may also be the result of the hemodynamic changes related to splenomegaly, which causes an increase of splenic
venous flow contributing to the increase of portal pressure. The increase of portal pressure could be in turn responsible for a further spleen enlargement. The figure
was created with Biorender.com.

TABLE 2 | Prevalence of nodular regenerative Hyperplasia in various cohorts of CVID adult patients.

Study Year Sample size General
Prevalence

Prevalence in
biopsied patients

Other findings

Ward et al. (35) 2008 108 12% (13/108) 56.5% (13/23) Clinical association with Hepatomegaly, Granuloma, Cytopenias,
Lymphocytic enteropathy

Malamut et al. (51) 2008 94 21.2% (20/94) 86.9% (20/23) Portal hypertension in 75% of the cases Clinical association with diseases
and peripheral lymphocytic abnormalities

Resnick et al. (23) 2012 473 <1% (2/473) NA NA

Fuss et al. (50) 2013 261 5.3% (14/261) NA 64% of NRH patients had elevated hepatic venous pressure gradients
(HVPG) consistent with portal hypertension
A subset of patients either developed or presented initially with an
autoimmune hepatitis-like (AIH-like)
Presence of infiltrating T cells producing IFN-γ

Azzu et al. (36) 2019 86 32.5% (28/86) 41.1% (28/68) A subset of patients had portal hypertension histological cirrhosis,
associated with increase in mortality

Analysis of liver T cell receptor clonality revealed that intra-
sinusoidal T cells specifically targeted sinusoidal endothelial cells.
In addition to this, hepatocytes from NRH-patients exhibited
overexpression (up to 100-fold) of IFN-γ mRNA compared to
controls (50). These findings suggest that NRH may be the
result of chronic cytotoxic T cell infiltration of the sinusoidal
endothelium. This would be in turn responsible, in association
with granulomata, for an alteration of the blood flow through
portal system leading to the reduction of liver perfusion.

The perturbation of portal system flow may also be the
result of the hemodynamic changes related to splenomegaly,
a condition present in about one third of CVID patients.
Pulvirenti et al. found that spleen diameter directly correlated
with portal vein diameter, suggesting that an increased splenic
venous flow related to splenomegaly could contribute to a
condition of portal hyper-flux (54). Consistent with this,
25% patients in that cohort had ultrasound signs of portal
vein enlargement, even if only 16% of them had portal
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hypertension. Interestingly, when liver biopsy was performed, the
authors reported micronodular transformation and lymphocytic
infiltration, signs reminiscent of NRH.

Finally, some of the histopathological changes associated
with NRH in CVID patients, as T-lymphocyte infiltrates
and/or granulomata, may represent a response to microbial
translocation. Microbial translocation is the transfer of
commensal microbial products from the intestinal lumen
into systemic circulation in the absence of overt bacteremia
(55). Although the extent of potential damage to intestinal
epithelial barrier in CVID is currently unknown, CVID
patients may have increased intestinal permeability resulting
from the typical CVID-related enteropathy (28). Of note, the
inflammatory changes found in liver often resemble those
observed in individuals with chronic inflammation of the gut.
In a small group of seven CVID patients with evidence of
liver inflammation, intestinal inflammation was found in five
cases (56). Consistent with this hypothesis, different studies
demonstrated signs of microbial translocation and microbial
translocation-related immune activation in CVID patients, as
elevated plasma concentration of lipopolysaccharide (LPS),
soluble CD14 (sCD14), and soluble CD25 (sCD25) (57–61).
However, to the best of our knowledge, no study has already
addressed the possible association between impaired intestinal
permeability and liver disease in CVID patients.

INFECTIONS

In the past, several cases of iatrogenic viral hepatitis C due to
contaminated intravenous immunoglobulin preparations have
been reported (62, 63). Several studies reported an increased
mortality and morbidity in long-term follow-up of CVID patients
iatrogenically infected with HCV, compared to iatrogenic viral
hepatitis in general population (64–66). On the other hand, in a
small study none of 18 HCV-infected patients developed severe
disease nor died because of the infection (67). In more recent
CVID cohort studies, a lower prevalence of viral hepatitis was
reported, probably reflecting the efficient prevention of viral
contamination of blood products achieved in the last three
decades. Indeed, the immune defect underlying CVID would not
predispose to viral infections, as also suggested by the clinical
phenotyping proposed by Chapel et al. in 2008. This classification
excluded viral infections, including persistent infection with
enterovirus, HBV and HCV, from the clinical phenotyping, as
they were not considered part of natural disease progression (68).
In the same study, prevalence of hepatitis B and C among 334
CVID patients were about 1% and 6%, respectively.

Similarly, a previous cohort study from Mount Sinai Institute
found an overall viral hepatitis cumulative incidence of 6.5%
(37). The same research group reported a significantly lower
data (1.9% and 1% for HCV and HBV, respectively) 23 years
later, thus suggesting that the first cohort probably included a
greater proportion of subjects who had received contaminated
immunoglobulin preparations (23).

Common variable immunodeficiency patients are not
particularly prone to bacterial and/or parasitic infections

primarily involving the liver (69). Similarly, the finding of
opportunistic or unusual pathogens, such as Microsporidia or
Cryptosporidia, is rare and might suggest investigating for a
combined immunodeficiency, characterized by greater degrees
of T-cell dysfunction (70). Liver is a possible extra-intestinal
localization of Giardia lamblia, which is a common cause of
chronic enteritis in CVID (70, 71). Therefore, liver involvement
should always be ruled out in case of Giardia detection from
stool or duodenal samples.

MALIGNANCIES

Malignancies are one of the major causes of death in patients
with CVID (72–75). Compelling evidence suggests a higher
cumulative incidence of malignancy in CVID population (widely
ranging from 1.5% to 25.5%), with a peak of incidence between
the 4th and 6th decade of life (76). Non-Hodgkin lymphomas are
the most common type of malignancy in several cohort studies
(23), even though epithelial cancers are associated with a higher
mortality ratio and gastric cancer has recently emerged as the
leading cause of death in a large multicenter Italian study (22, 77).
The pathogenetic mechanisms underlying cancer development
in CVID are not completely understood. These might include
impairments in various stages of B-cell maturation, primarily
yielding lymphoid malignancies, chronic infections and/or low-
grade inflammation, which are thought to play a pivotal role in
tumor development and growth (78, 79).

In contrast with hematological and gastrointestinal mucosal
malignancies, very few data are available about prevalence,
distribution and outcome of liver cancers in CVID. Four cases
of liver cancer were found in an Italian cohort of 455 adult
patients (prevalence 0.95%), corresponding to a Standardized
Incidence Ratio (SIR) of 1.9 (95% CI 0.3–5.6) in comparison
to the Italian National Cancer Registry (Associazione Italiana
Registro Tumori – AIRTUM) data (22). Noteworthy, all four
patients died and liver cancer accounted for the 5.1% all death
in the cohort. Liver cancer was the fourth cause of death
for malignancy after gastric cancer, non-Hodgkin lymphoma
and colorectal cancer, with a standardized mortality ratio of
2.9 (95% CI 0.1–5.9) compared to AIRTUM data. Although
liver cancer is not prevalent in CVID, liver, as a secondary
lymphoid organ, is a frequent extra-nodal localization of non-
Hodgkin lymphoma, as well as a common metastatic target of
gastrointestinal adenocarcinomas (80–85). Therefore, diagnostic
protocols aiming to oncologic surveillance in CVID patients
should always encompass clinical, laboratory and imaging
assessment of liver to rule out its primary or secondary
neoplastic involvement.

MONOGENIC FORMS OF PID IN THE
CLINICAL SPECTRUM OF CVID

The striking advances in sequencing technologies have fostered
the discovery of several genes associated with a CVID-like
phenotype (6–8). Actually, mutations in most of them lead
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TABLE 3 | Genetic, immunological and clinical features in monogenic forms of PID in the clinical spectrum of CVID with liver involvement.

Genetic defect
(OMIM)

Effect on protein Inheritance Most frequent clinical
manifestations

Most frequent Immune
phenotype

Liver involvement

ICOS (86–91)
(604558)

LOF AR Respiratory tract infections
Skin infections
Opportunistic infections
Autoimmunity (i.e., cytopenias and
arthritis)

Pan-hypogammaglobulinemia
Low/absent naïve B-cells and
switched-memory B cells
Low TFH cells
Low CTLA-4
Low production of
Th1/Th2/Th17 cytokines

HHV-6 hepatitis
Non-infectious hepatitis
(drug-induced?)
Hepatomegaly

NFKB1 (92–98)
(164011)

LOF (H) AD Respiratory tract infections
Lymphadenopathy
Splenomegaly, GLILD
Autoimmune cytopenias
Hematological malignancy

Pan-hypogammaglobulinemia
Low/absent switched-memory
B cells and plasmablasts
Normal T-cell phenotype

Increase of liver enzymes
Fibrosis and cirrhosis with
Liver insufficiency

NFKB2 (99, 100)
(164012)

LOF (H) AD Respiratory tract infections, Skin
infections, Opportunistic infections
Lymphocytic organ infiltration
Autoimmunity
ACTH-deficiency + other
endocrinological abnormalities

Pan-hypogammaglobulinemia
Low marginal zone and
switched-memory B cells
Expansion of CD4+ T cell with
low naïve T cells
Low Treg, TFH and TH17 cells

Increase of liver enzymes
Lymphocytic infiltration
Steatosis
Autoimmune hepatitis

CTLA-4 (101–105)
(123890)

LOF (H) AD Lymphoproliferation, Respiratory
tract infections and bronchiectasis
Enteropathy
Autoimmune cytopenias,
Atopic dermatitis
Endocrinopathy
Neurological disroders
EBV-driven lymphomas

Pan-hypogammaglobulinemia
Low CD4+ T cells with normal
Treg cells
Low switched-memory B cells
Increase of CD21low B cells

Unspecified liver involvement
in 12% patients

LRBA (106–110)
(606453)

LOF AR Autoimmunity cytopenias
Enteropathy
GLILD
Lymphproliferation and lymphocytic
infiltration of organs
Respiratory and gastrointestinal
infections
Type 1 Diabetes

Pan-hypogammaglobulinemia
Low switched memory B cells
and plasmablasts
Normal or increased double
negative T cells
Normal or low Treg cells

Hepatomegaly
Autoimmune hepatatis
Peri-portal and perisinusoidal
fibrosis
Granulomata

PI3Kδ pathway
(111–118) (602839;
171833; 601728)

GOF of PI3Kδ

(APDS1)
LOF of PI3Kδ

(APDS2)
LOF of PTEN
(APDS3)

AD Respiratory tract infections and
bronchiectasis
Opportunistic and viral infections
Lymphoproliferation
Autoimmune cytopenia
Enteropathy
Neurodevelopmental delay

Low IgG and IgA
Low naïve and
switched-memory B cells
Increase of transitional and
CD21low B cells
Low CD4+ naïve T-cells
Impaired T-cell response to IL-2

Increase of liver enzymes
NRH
Sclerosing cholangitis
Cirrhosis
Cryptosporidium infection

ADA2 (119–122)
(607575)

LOF AR Recurrent infections
Lymphoproliferation
Polyarteritis nodosa
Livedo reticularis
Ischemic/hemorrhagic stroke
Bone marrow aplasia
Neurological impairment

Hypogammaglobulinemia
Low switched-memory B cells
Impaired B cell response to
CD40-L and IL-21

Increase of liver enzymes
NRH with portal sclerosis
Vasculitis
Hepatomegaly

IL-21R (123–127)
(605383)

LOF AR Respiratory tract infections and
bronchiectasis
Opportunistic infections
Lymphoproliferation
Inflammatory skin disease

Hypogammaglobulinemia
Impaired B cell response to
IL-21
Variable T cell response to
mitogens

Cryptosporidium infection

to more severe immune dysregulation syndromes compared
to CVID, often in association with pronounced T-cell defects.
Indeed, mutations affecting these genes are considered to cause
separate disease entities rather than a “pure” CVID (5). Here, we

discuss the monogenic forms of “CVID-like” PIDs for which liver
involvement has been described, seeking to highlight the different
features of liver pathology in each form, which could possibly
help to drive genetic testing (Table 3).
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ICOS

Inducible co-stimulatory (ICOS) deficiency was the first
monogenic defect associated with CVID (86). ICOS biallelic
mutations result in complete loss of protein expression
determining low/absent memory B cells and bone marrow plasma
cells (87). All ICOS-deficient patients present with recurrent
respiratory tract infections and autoimmune manifestations
(88, 89). The spectrum of disease extended to include liver
involvement in 2015, when two patients presenting in early
childhood with raised liver enzymes, diarrhea, colitis, and
defective clearance of human herpesvirus 6 were described (90).
Hepatomegaly and non-infectious hepatitis were found in 20%
of a 15-patient ICOS deficiency cohort (91). Histological analysis
revealed alcoholic steato-hepatitis in one case of non-infectious
hepatitis, while pathogenesis remained unclear in the remaining
cases, possibly involving drug-induced toxicity.

NFKB1

Autosomal dominant haploinsufficiency due to heterozygous
loss-of-function mutations in nuclear factor kB subunit 1
(NFKB1) causes a progressive impairment in the development
of immunoglobulin-producing B cells and is now recognized as
the most common monogenic cause of CVID (92, 93). Massive
lymphadenopathy, splenomegaly and autoimmune cytopenias
are the main clinical features of NFKB1 LOF (94). Liver
involvement was described in 37.5% (6/16) patients in a
European population study: three patients had persistently
raised liver enzymes and three developed liver failure (95).
Histologic assessment of liver disease was performed in three
patients, showing fibrosis and cirrhosis with no evidence of
autoimmune or granulomatous disease. Consistent with this
finding, mouse models have suggested a non-immune role
for NF-kappa B signaling in patients with liver failure (96).
Multiple liver hemangioma and hepatomegaly associated with
EBV-driven lymphoproliferation were described by two previous
reports (97, 98).

NFKB2

The clinical phenotype of nuclear factor kB subunit 2 (NFKB2)
haploinsufficiency is characterized by early-onset antibody
deficiency, autoimmunity, lymphocytic organ infiltration and
possibly ACTH-deficiency (99). Liver abnormalities reported in
literature are parenchymal lymphocytic infiltration (2 patients),
mild hepatopathy with elevation of liver enzymes, liver
steatosis and histologically proved autoimmune hepatitis (one
patient each) (100).

CTLA-4

Cytotoxic T-lymphocyte antigen 4 (CTLA4) is an essential
negative immune regulator acting in the suppression
of T-cell proliferation and differentiation mediated

by regulatory (Treg) cells (101, 102). Heterozygous
germline mutations in CTLA4 cause an immune
dysregulation and immunodeficiency syndrome including
hypogammaglobulinemia, lymphoproliferation, recurrent
respiratory infections and bronchiectasis, enteropathy,
autoimmune cytopenias, atopic dermatitis, endocrinopathy, and
neurological features (103, 104). The largest multicenter cohort,
including 90 affected subjects within 133 CTLA4 mutation
carriers, reports a prevalence of 12% (11/90) of unspecified
liver involvement (105). Liver cirrhosis of unknown cause was
identified in one patient, while one mutation carrier died for
acute liver failure after many years of gastrointestinal disease.

LRBA

The lipopolysaccharide-responsive and beige-like anchor
(LRBA) protein deficiency is caused by loss of protein expression,
which can be the result of either homozygous or compound
heterozygous mutations in LRBA (106). LRBA plays a pivotal
role in CTLA-4 surface expression, by rescuing endosomal
CTLA-4 from lysosomal degradation. Clinical manifestations of
LRBA deficiency include early-onset hypogammaglobulinemia,
autoimmune manifestations, IBD and recurrent infections
(107). The largest cohort study, describing clinical features
of LRBA-deficiency in 22 subjects, reports hepatomegaly in
24% patients, with three subjects diagnosed with autoimmune
hepatitis (108). Histopathological features of liver disease in
LRBA deficiency have been investigated in a small number of
case series, which described lymphocytic (T cell) infiltrates
suggestive of autoimmune hepatitis and/or portal and
periportal fibrosis associated with bridging cirrhosis and/or
granulomata (106, 109, 110).

PI3Kδ PATHWAY

Germline mutations leading to hyperactivation of the
phosphoinositide 3–kinase δ (PI3Kδ) pathway cause activated
phosphoinositide 3–kinase δ syndrome (APDS) (111). This may
be the result of heterozygous gain-of-function mutations in the
calalytic subunit of PI3Kδ – PIK3CD (APDS1), heterozygous
loss-of-function mutations in the regulatory subunit of PI3Kδ –
PIK3R1 (APDS2), or loss-of-function mutations in phosphatase
and tensin homolog – PTEN (APDS3) (112, 113). The most
frequent clinical manifestations of APDS are recurrent bacterial
and viral infections and non-malignant lymphoproliferation
(114). This latter also includes hepatomegaly, typically in
association with lymphadenopathy and splenomegaly. In
a large series of APDS patients, raised liver enzymes were
observed in 27% (9/33) subjects. NRH was the most frequent
histological diagnosis (4/5 patients undergoing liver biopsy)
and was associated with mildly increased portal pressure, even
though clinical signs of portal hypertension were only present
in one patient (115). The high prevalence of NRH has possible
therapeutic implications, since NRH is known to lead to poor
outcome after hematopoietic stem cell transplant (HSCT), which
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represents the only curative approach to APDS (116). Therefore,
the detection of NRH before HSCT may influence the choice of
myeloablative preconditioning. Finally, rare cases of cirrhosis
and primary sclerosing cholangitis have been reported in APDS
cohort studies, while Cryptosporidium species has been isolated
in only two cases (117, 118).

ADA2

Loss-of-function mutations in adenosine deaminase type 2
(ADA2) result in an autosomal recessive disease characterized
by a heterogeneous clinical picture, probably mirroring the
pleiotropic effects of this enzyme (119). Clinical manifestations of
deficiency of ADA2 (DADA2) include hypogammaglobulinemia,
recurrent infections, bone marrow aplasia, pure red cell
aplasia, neutropenia, liver disease, neurological impairments,
and vasculopathy of small- and medium-sized arteries (120,
121). Liver biopsies from DADA2 patients revealed vascular
changes characterized by compromised endothelial integrity,
endothelial cellular activation and inflammation (120). Elevated
liver enzymes and hepatosplenomegaly are the most common
liver-related clinical signs (120–122). Histopathologic assessment
frequently shows NRH and/or hepatoportal sclerosis, which
could potentially lead to portal hypertension and end-stage liver
disease (120).

IL21R

Biallelic loss-of-function mutations in IL21 receptor (IL21R)
cause a severe syndrome characterized by respiratory tract
infections, inflammatory complications and/or opportunistic
infections, with elevated mortality in childhood (123). To
the best of our knowledge, four IL21R-deficient patients with
Cryptosporidium-related liver disease have been described (124–
126). Of note, one of the first two index patients underwent
liver transplantation (LT) before both the underlying PID and
the Cryptosporidium infection had been recognized (124). He
died shortly after the procedure due to multiorgan failure.
Although no clinical association between IL21R deficiency
and liver malignancy has been described in humans, an
interesting mice model demonstrated that IL21R signaling
deficiency might promote hepatocellular carcinoma (HCC)
growth. Interestingly, Zheng et al. reported that IL21R deletion
reduced T cells infiltration, activation and functions while
increased the infiltration of myeloid-derived suppressor cells that
enhanced HCC growth (127). If confirmed in human studies,
this finding could affect long-term follow-up strategies of liver
involvement in IL21R-deficient patients.

DIAGNOSTIC WORK-UP

The laboratory panel to assess liver impairment in CVID includes
full blood count, liver function tests – LFTs (i.e., AST, ALT,
ALP, γGT, total protein, and albumin) and clotting profile (i.e.,
INR, APTT, fibrinogen). Given the heterogeneity of liver disease,

as well as the number of drugs (notably immunosuppressant)
and the wide range of non-primarily hepatic complications that
may possibly affect liver function in the context of CVID, we
believe that this profile should be repeated every 4–6 months,
also in asymptomatic patients (15–17, 128). In addition, we
perform a wide screening for hepatitis viruses based on nucleic
acids detection methods, at the time of diagnosis and at 1-
year intervals, due to the virtual risk of viral contamination
of immunoglobulin preparations (62–64). Actually, this timing
reflect our own clinical practice as no specific guidelines or
clinical consensus have been defined. ALP is the most commonly
elevated liver enzyme in CVID and its increase is up to
twofold above the upper limit on overage (34, 50). Ward et al.
identified three distinct patterns of ALP derangement in CVID
patients with abnormal LFTs, consisting in progressive elevation,
fluctuating increases and transient increase (35). In a cohort
of CVID patients with NRH, ALP raise was first observed 6–
10 years after the time of CVID diagnosis, while the increase
in ALT/AST ratio occurred over the same period but at a lesser
degree (50). Noteworthy, elevation of ALP may also be caused by
osteomalacia as a result of enteropathy or granulomatous disease,
which are common complications in CVID (34, 35).

Ultrasonography, computed tomography scan (CT), or
magnetic resonance imaging (MRI) may be employed to detect
structural changes (as signs of NRH, cirrhosis and/or portal
hypertension), estimate hepatomegaly and/or splenomegaly, and
rule out primary or secondary malignant involvement (34). Due
to low costs, wide availability, and non-invasiveness, we suggest
performing ultrasonography with Doppler-evaluation as first-
line liver imaging in all CVID patients, while CT and MRI may
be prescribed, even at the suggestion of the Radiologist or the
Hepatologist, to better characterize abnormalities detected by US.

Results of CT and MRI scans revealed portal vein dilatation
and collateral vessel formation in 50% CVID patients with NRH
described by Fuss et al. (50), while abnormal liver imaging
was present in 77% of CVID patients started to an active
hepatology follow-up reported by a more recent United Kingdom
cohort study (36). On the other hand, histopathological changes
consistent with NRH were found in a subset of patients with
normal liver imaging, who had undergone liver biopsy because
of abnormal LFTs. This suggests that liver biopsy should be
considered in all patients with persistently abnormal LFTs (36).

In the last decade, ultrasound-based TE has been increasingly
used to improve the detection of the progression of liver
damage in the context of chronic HCV-disease (129). TE allows
estimating the degree of liver fibrosis through the assessment of
liver stiffness and depends on vibration generating machine to
apply vibrations to the liver and then obtain the propagation
velocity of shear wave (130). We recently investigated liver
involvement in a cohort of CVID adult patients by means
of ultrasound based TE, finding that 33.8% patients presented
increased liver stiffness values ranging from moderate fibrosis
to cirrhosis (40). Interestingly, TE values were correlated with
ALP and γGT values, spleen longitudinal diameter and peripheral
blood counts. Moreover, liver stiffness was higher in patients with
polyclonal lymphoproliferation and/or enteropathy, and subjects
harboring both these complication showed a significantly
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increased risk (OR: 7.14) of having increased TE values.
Therefore, given its non-invasive nature, the limited costs
and the crucial information provided, we suggest repeating
ultrasound-based TE, as well as canonical ultrasound scan with
Doppler evaluation, every 12 months, also in asymptomatic
CVID patients. On the other hand, although TE assessment
allow to reliably estimating fibrotic changes of liver parenchyma,
it does not provide information about the extent and the
trend of stiffness variations related to the differet underlying
pathogenetic process (i.e., inflammation, granulomatous disease,
and lymphocytic infiltration). Further studies, evaluating the
concordance between stiffness values and liver histological
changes, are required to assess the role of elastography in the
evaluation and management of liver involvement CVID.

While the spreading of TE and the systematic use of
the various imaging techniques may determine a reduced
overall need for liver biopsy, histological analysis of the
hepatic parenchyma remains the only tool to ascertain the
etiopathogenetic nature of liver damage and confidently estimate
its outcome (131). On the other hand, liver biopsy is an invasive
procedure, associated with an estimated morbidity and mortality
rate in general population of 3% and 0.01%, respectively, with
bleeding being the most relevant cause (132). In the context
of CVID, this procedure may be theoretically burdened by an
additional infectious risk due to the underlying immune defect.
Moreover, liver biopsy provides only a very small part of the
whole organ, which could be not representative for the degree
of the pathological status of the remaining parenchyma, due to
the heterogeneity usually observed in liver injury distribution
(133). In general, indications for liver biopsy fall into two
groups: establishing a diagnosis (including the assessment of
the predominant cause of liver injury if more than one is
present) and staging/grading liver damage (134). Indeed, in
both cases the result of histological assessment may modify
the therapeutic management, offering the patient personalized
therapeutic options. We suggest that liver biopsy should be
considered for CVID patients with a significant (more than
twofold the upper limit of the range) unexplained increase
of one or more liver enzymes, lasting more than 6 months.
The association with pathological liver stiffness values and/or
imaging findings of uncertain interpretation strengthens this
recommendation. However, we believe that the decision to
perform a biopsy and its timing should rely on both the
pathological processes being suspected and the possibility of a
potential therapeutic intervention.

THERAPEUTIC PERSPECTIVES: LIVER
TRANSPLANTATION AND HSCT

Irrespectively of the ethiopathogenesis and despite the adequate
treatment of complications (i.e., portal hypertension, jaundice,
and oesophageal varices), chronic liver inflammation may cause
a progressive disruption of liver function that is not improved
by immunoglobulin replacement therapy. Moreover, there are
no available medical treatments to arrest the histopathologic
progression of NRH, which is the most common form of liver

involvement in CVID and is complicated, in a subset of patients,
by portal hypertension or overt hepatic cirrhosis with end-stage
liver disease (44–47). In these cases, LT is the only therapeutic
approach that has the potential to provide a long-term survival
advantage (135). According to the European Association for the
Study of the Liver (EASL), LT should be considered in any patient
with end-stage liver disease, in whom the LT would extend life
expectancy beyond what the natural history of underlying liver
disease would predict or in whom LT is likely to improve the
quality of life (136).

On the other hand, the theoretical increase of infectious
and neoplastic risk related to the long-term concomitant
immunosuppressive therapy has historically determined a
reluctance to perform LT in CVID patients. In the last decade,
a growing number of reports described the outcome of LT
performed in adult and pediatric CVID patients with viral
hepatitis or NRH (137–143).

A retrospective Norwegian cohort study reported five CVID
patients transplanted over a 20-year period (137). The first
patient, transplanted in 1993 for HCV-related disease, died
because of sepsis combined with a debilitating Cryptosporidium
parvum infection and cytomegalovirus pneumonitis, whereas,
the 4 patients transplanted between 2009 and 2013 for definite
or probable NRH, were alive at the time of publication, with a
median survival of 5 years. This different outcome is likely to
be related to the changes in immunosuppressive drug regimens
from the 1990s to 2009–2013, which consist in the decrease of the
glucocorticoid doses. More recently, Azzu et al. described four
CVID patients undergoing LT for end-stage liver failure, in whom
histological examination revealed NRH-like changes (138). In
three subjects out of four, post-transplant course was complicated
by multiple infectious complications (including Pneumocystis
jiroveci pneumonia, toxoplasmosis, neuro-aspergillosis, and
CMV proctitis), early recurrent disease, and in one patient, death
due to malignancy within 3 years of transplantation. Noteworthy,
histological examination showed NRH changes and cholestasis in
all three patients undergoing post-transplant biopsy, as already
previously described in non-immunodeficiency subjects (144).
After a revision of literature data, including 18 patients, the
authors found that CVID patients undergoing LT had a higher
mortality compared to LT in general population, with only 55%
subjects alive after 3-5 years of post-transplant follow-up (138).
Moreover, CVID patients undergoing LT due to CVID-related
liver disease (namely NRH) exhibited a worse 5-year survival
compared to CVID patients who received LT for any cause
(mainly chronic viral hepatitis) (138). This probably reflects
the fact that the latter subset of patients presented a lower
incidence of immune dysregulation-related complications, which
are associated with worse long-term survival and higher risk
of recurrent of disease in the graft. In this subset of patients,
there could be a theoretical benefit of combined hematopoietic
stem cell and LT.

Hematopoietic stem cell transplantation (HSCT) could
theoretically prevent the development of liver disease or arrest
progression in subjects with established liver disease, with
a significant improvement of long-term outcome. HSCT is
the standard of care of a broad group of severe combined
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primary immunodeficiencies primarily affecting T-cell functions,
as well as of other complex primary immunodeficiencies
(i.e., chronic granulomatous disease, Hyper-IgE syndrome,
Wiskott-Aldrich syndrome, etc.) (145). The growing evidence
of both T-cell defects and poor outcome in the subset of
patients with marked immune dysregulation, have progressively
fostered the interest in HSCT for the treatment of CVID.
In the largest multicenter study collecting data of CVID
patients undergoing HSCT, overall survival rate was 48%
after 2 years, with immune dysregulation (i.e., autoimmune
cytopenias, enteropathy, generalized granulomatous disease)
and hematological malignancies being the major indications to
transplantation (146). The major causes of death were treatment-
refractory graft-versus host disease (GvHD), poor immune
reconstitution and infectious complications. On the other hand,
IgRT was stopped in 50% and the condition constituting the
indication for HSCT resolved in 92% of surviving patients, thus
suggesting that this therapeutic approach could be beneficial in
selected patients. Indeed, the definition of criteria for both patient
selection and transplantation timing, as well as the refinement
of the procedure protocol, are urgently needed to improve the
outcome of CVID patients undergoing HSCT.

CONCLUSION

Although more than 50% CVID patients exhibit clinical or
biochemical signs of liver derangement, burden and nature of
liver involvement have not been systematically investigated by
the major part of CVID cohort studies published in last decades.
This lack of evidence lead to the absence of indications or
guidelines concerning diagnosis, investigation and management
of CVID-associated liver disease in clinical practice. Moreover,
the striking advances in sequencing technologies has fostered
the discovery of several genes associated with monogenic
CVID disorders for which specific liver alterations have been
described. We sought to provide a comprehensive overview of
both the different causes of liver involvement in CVID and
the various monogenic defects associated with liver disease, in
order to facilitate the Clinical Immunologist in the diagnostic

and therapeutic approaches. The clinical spectrum of CVID
includes predisposition to infections, immune-dysregulation-
related manifestations (i.e., autoimmunity or lymphocytic
infiltration) and malignancies. Liver involvement in CVID may
rely on each of these three pathogenetic mechanisms NRH is
the most common liver histopathological change observed in
CVID patients and is thought to be the result of an intra-hepatic
vasculopathy, leading to the development of hepatocyte nodules
that compress surrounding sinusoids, potentially determining
perisinusoidal fibrosis. Therefore, NRH has the potential to
determine a significant alteration of the blood flow through portal
system, thus promoting the development of portal hypertension.
Infections could either primarily (as in the case of iatrogenic viral
hepatitis due to contaminated immunoglobulin preparations
in past decades) or secondarily (extra-intestinal localization of
parasites) affect liver. Similarly, liver may be target of both
primary and metastatic malignancies. Given the heterogeneity of
liver disease and the possible impact on long term outcome, each
CVID patient should be screened for a possible liver impairment
through biochemical (i.e., AST, ALT, ALP, γGT, and total protein
and albumin) and morphological (i.e., ultrasonography, TE, and
eventually CT or MRI) assessments that should be performed
at regular intervals. These diagnostic tools may help to timely
identify liver involvement, monitor its progression and select
patients eligible to liver biopsy. Despite early detection and
adequate treatment of complications, chronic liver damage may
progress toward an end-stage disease. In these cases, LT and
hematopoietic stem cell transplantation are the only therapeutic
approaches that have the potential to provide a long-term
survival advantage, even though serious warnings still subsist
about the outcome of these procedures in CVID patients.
Indeed, compelling evidence concerning the applications of these
therapeutic options are urgently needed.
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123. Kotlarz D, Ziętara N, Milner JD, Klein C. Human IL-21 and IL-21R
deficiencies: two novel entities of primary immunodeficiency. Curr
Opin Pediatr. (2014) 26:704–12. doi: 10.1097/MOP.000000000000
0160
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