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Maternal glucocorticoids critically rise during pregnancy reaching up to a 20-fold increase

of mid-pregnancy concentrations. Concurrently, another steroid hormone, progesterone,

increases. Progesterone, which shows structural similarities to glucocorticoids, can

bind the intracellular glucocorticoid receptor, although with lower affinity. Progesterone

is essential for the establishment and continuation of pregnancy and it is generally

acknowledged to promote maternal immune tolerance to fetal alloantigens through

a wealth of immunomodulatory mechanisms. Despite the potent immunomodulatory

capacity of glucocorticoids, little is known about their role during pregnancy. Here we

aim to compare general aspects of glucocorticoids and progesterone during pregnancy,

including shared common steroidogenic pathways, plasma transporters, regulatory

pathways, expression of receptors, and mechanisms of action in immune cells. It was

recently acknowledged that progesterone receptors are not ubiquitously expressed

on immune cells and that pivotal features of progesterone induced- maternal immune

adaptations to pregnancy are mediated via the glucocorticoid receptor, including e.g., T

regulatory cells expansion. We hypothesize that a tight equilibrium between progesterone

and glucocorticoids is critically required and recapitulate evidence supporting that

their disequilibrium underlie pregnancy complications. Such a disequilibrium can occur,

e.g., after maternal stress perception, which triggers the release of glucocorticoids

and impair progesterone secretion, resulting in intrauterine inflammation. These

endocrine misbalance might be interconnected, as increase in glucocorticoid synthesis,

e.g., upon stress, may occur in detriment of progesterone steroidogenesis, by depleting

the common precursor pregnenolone. Abundant literature supports that progesterone

deficiency underlies pregnancy complications in which immune tolerance is challenged.

In these settings, it is largely yet undefined if and how glucocorticoids are affected.

However, although progesterone immunomodulation during pregnancy appear to be

chiefly mediated glucocorticoid receptors, excess glucocorticoids cannot compensate

by progesterone deficiency, indicating that additional und still undercover mechanisms

are at play.
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INTRODUCTION

In order to support mammalian pregnancies, a myriad of
adjustments in maternal physiology takes place. For example,
maternal immune responses are tightly regulated to prevent
inflammatory responses and rejection of alloantigens expressed
on fetal tissues (1, 2). The maternal immune adaptations to
pregnancy are pivotally modulated by endocrine signals. These
signals include the pronounced rise of sex hormones such as
progesterone and estradiol. Progesterone is essential for the
establishment and continuation of pregnancy (3). Progesterone
not only plays multiple immunomodulatory functions (4),
but also it supports uterine receptivity and quiescence (3,
5). Additionally to sex steroids, maternal glucocorticoids
dramatically increase over the course of pregnancy in order to
meet the increasing energy demands (6). Glucocorticoids are
potent activators of GR, and this activation has pleiotropic effects
on immune cells (7, 8). However, the molecular mechanisms
underlying how glucocorticoids contribute to the maternal
immune adaptation to pregnancy and the interplay between
glucocorticoids and sex hormones such as progesterone remain
largely unclear.

Intriguingly, although progesterone is generally
acknowledged to promote maternal immune tolerance to
alloantigens derived from the conceptus, progesterone receptors
are not ubiquitously expressed on immune cells (9). Light was
shed into this enigma only very recently, when it was identified
that pivotal features of progesterone induced- maternal immune
adaptations to pregnancy are mediated via the glucocorticoid
receptor (9, 10). Hence, in the present reviewmanuscript, we aim
to revisit the current evidence about the synthesis and interplay
between glucocorticoids and progesterone during pregnancy,
their impact on the immune system and consequences for
pregnancy maintenance and fetal development.

PROGESTERONE AND GLUCOCORTICOID
SYNTHESIS, REGULATION AND
RECEPTORS DURING PREGNANCY

Progesterone and Glucocorticoid
Receptors in Immune Cells
Both, progesterone and glucocorticoids, are significantly
involved in the regulation of immune responses (4, 7, 11).
The structural similarities between glucocorticoids and
progesterone raise the intriguing concept of mutual, interrelated
as well as individual pathways elicited by these hormones.
This concept gains relevance in the context of pregnancy,
where disequilibrium between these steroids is related
to altered maternal immune responses and pathological
pregnancy outcomes (2, 7).

The genomic effects of progesterone and glucocorticoids are
mediated by the intracellular progesterone and glucocorticoid
receptors (PR and GR), which belong to a subfamily of the
nuclear receptor superfamily (4, 7, 12). Upon binding to ligands,
PR and GR translocate to the cell nuclei, where they interact with
specific regions of the DNA to act as transcription factors that

modulate gene expression (7, 11, 12). Despite the high amino-
acid identity between PR and GR (12), their steroid binding
affinities, expression patterns, and target genes differ remarkably,
as summarized in Table 1.

The Nr3c1 gene encoding for GR is expressed in most tissues
of the organism, and virtually in all cells of the immune system
(31, 32). Glucocorticoids can bind the GR with high affinity to
elicit genomic but also non-genomic pathways in immune cells
(7, 33). Importantly, promiscuous binding of progesterone to
GR has also been observed in a number of settings, particularly
in in vitro models (9, 14). Due to alternative splicing and
alternative translation initiation sites, many isoforms of the GR
have been described (7, 13). These isoforms are also present in
immune cells and associated with diverse translational activities
or binding to glucocorticoids (7, 34). However, it remains
unknown whether GR isoforms are affected during pregnancy
or if they have differential affinity for progesterone. Indeed, as
detailed in Table 1 most progestogens have only very limited
affinity to glucocorticoid receptor compared to glucocorticoids
(14–16, 34).

The Nr3c3 gene encodes for two PR isoforms, PRA and PRB
(35). Both PR isoforms have differential transcriptional activity
and are predominantly found in mammary gland and in the
female reproductive tissues, such as the ovary and uterus (23, 35).
Overall, the presence of PR in immune cells is a matter of
controversy. Although a direct effect of progesterone on e.g., T
cells during pregnancy has long been proposed (36–39), recent
findings based on RT-qPCR approaches aiming to detect PR on
distinct immune cell subsets failed to confirm the expression of
PR in e.g., T and NK cells (9, 20, 40, 41). Promiscuous binding
of PR by glucocorticoids has been reported, although there is no
consensus on the reported relative binding affinities compared to
progesterone (14, 15).

Besides the PR, progesterone can elicit non-genomic
actions by binding to G-protein coupled membrane progestin
receptors (membrane progesterone receptors: mPR) and
the so-called progesterone receptor membrane components
(PGRMC) [reviewed in (4)]. Among them, mPRalpha/PAQR7
and mPRbeta/PAQR8 as well as PGRCM1 and 2 are present
in T cells (20, 29) and mPRalpha is expressed in particular
fractions of circulating Tregs (42). Hence, these pathways
may explain some of the effects of progesterone on immune
cells. Of note, information on glucocorticoid binding to
mPRs is ambiguous [(18), Table 1), whilst glucocorticoid
binding to PGRMCs has been described, albeit with low
affinity (19).

Taken together the close structural similarities and the
cell-restricted expression of receptors, progesterone and
glucocorticoids may act on immune cells via non-genomic
pathways as well as by likely binding to GR rather than to PR.
Due to their high levels during pregnancy, it seems plausible
that both progesterone and glucocorticoids act on GR to
trigger immunoregulatory signals. This will depend on the
bioavailability of the steroids, which varies across pregnancy
according to their synthesis, the amount of carrier proteins
limiting the free steroids reaching the tissues as well as from the
metabolism or exclusion of these steroids from the target cells.
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TABLE 1 | Comparison between general features of the progesterone and glucocorticoid receptors.

Progesterone receptor Glucocorticoid receptor Membrane progestin

receptors (mPR)

Progesterone receptor

membrane components

(PGRMC)

Genes NR3C3 NR3C1 PAQR 5-9 (progestin and

adipoQ receptor)

PGRMC1 and PGRMC2

Isoforms/subtypes PRA and PRB isoforms Multiple isoforms, including

variants of GRα, GRβ, GRγ,

GRA, GRB and GRP (13)

mPRα (PAQR7), mPRβ

(PAQR8), mPRγ (PAQR5),

mPRδ (PAQR6) and mPRε

(PAQR9)

PGRMC1 and PGRMC2

Relative binding affinity* Progesterone: 100%

(14–16) other progestogens:

1–46% (16)

Progesterone and other

progestogens: 1–6% (14) or

40% (15)

progesterone: 100% (17) progesterone: 100%

Corticosterone: 2.6% (16)

Dexamethasone: 0.2% (15)

Corticosterone: 85% (16)

Dexamethasone: 100% (16)

glucocorticoids: 0–26%

(17, 18)

glucocorticoids: low affinity

(19)

Expression in immune cells Limited to specific cell

lineages (9, 20, 21)

+++ (9, 20) ++ (20, 22) or

undetermined

++ (22) or undetermined

Uterus +++ (23) ++ (23, 24) ++ (22, 25) +++ (26)

Genomic pathways Dimers act as transcriptions

factors by binding

progesterone response

elements

Gene transactivation or

transrepression through

DNA and/or transcription

factor binding (27)

– –

Non-genomic pathways Monomers activate MAPK

pathways through

Src-kinase (28)

Binding to membrane

receptors (27) and signaling

through cytoplasmic

ligand-bound GR and

chaperone proteins (8)

Still controversial. Pathways

may involve G-proteins and

modulation of adenylyl

cyclase activity (4, 18, 29)

Multiple intracellular

signaling pathways, e.g.,

interacts with EGFR, ERK1,

casein kinase 2, and PDK

(30)

* Compared to the respective ligand with higher affinity.

Bioavailability of Progesterone and
Glucocorticoids During Pregnancy
Steroid synthesis such as in the case of progesterone and
glucocorticoids consists of the conversion of cholesterol as
a substrate through a series of enzymatic reactions, to
produce structurally interrelated products. This process is
tightly regulated by the tissue- and cell-specific expression of
steroidogenic enzymes (43).

For example after ovulation the ovarian follicular cells
that support the maturation of the oocyte undergo the so-
called luteinization process to form the corpus luteum. During
luteinization, the expression of genes and proteins that mediate
progesterone synthesis is prominently upregulated (44). In mice
and other mammals, the corpus luteum largely accounts for the
significant de novo synthesis of progesterone during the entire
duration of pregnancy. Here, progesterone concentration in the
blood increases until mid-late pregnancy, when it gradually starts
decreasing (45). This progesterone deficiency is considered as an
upstream event triggering parturition in mice (46). In humans,
the placenta expresses the enzymes involved in progesterone
production and commences steroidogenic synthesis at gestation
weeks 7–9, following the initial ovarian progesterone synthesis
(47). Progesterone levels continuously rise until reaching a
plateau in the last weeks of pregnancy (48). A progesterone
decline at late gestation does not occur in humans and it has been
suggested that parturition results from a functional progesterone
deficiency occurring at myometrial and other uterine tissues
(4, 49). Here, differential expression of progesterone receptor

isoforms may allow for progesterone-induced cervical relaxation
during parturition (49), hereby promoting the delivery of the
human fetus (50, 51).

It is well-known that glucocorticoids are largely produced in
the adrenal cortex, where they exhibit circadian and ultradian
rhythms (4). Maternal glucocorticoids rise dramatically
during pregnancy, e.g., during late murine pregnancy,
glucocorticoids reach an ∼20-fold increase compared to
mid-pregnancy concentrations (6). In humans, cortisol, the main
glucocorticoid, also increases dramatically during pregnancy,
reaching ∼350 ng/ml serum on week of gestation 26 (52).
Thereafter, cortisol remains relatively stable until parturition,
when it is strongly upregulated (52). In women, corticotrophin
releasing hormone (CRH) is produced by the placenta to further
stimulate adrenal glucocorticoid production (53) pinpointing the
critical relevance of glucocorticoid synthesis during pregnancy.

The actions of these high levels of progesterone and
glucocorticoids are limited by their binding to plasmatic carrier
proteins (54). Only the “free” fractions of progesterone and
glucocorticoids are considered to be able to bind receptors to
exert biological functions, e.g., after diffusing inside the target
cells (54). Corticosteroid-binding globulin (CBG) transports
around 75–80% of plasma glucocorticoids, thereby critically
limiting the abundance of free glucocorticoids available to cells
(55). Despite a pronounced increase of CBG levels and binding
capacity throughout pregnancy (6), 5–6% of the total cortisol
remains free (56). Hence, the absolute concentration of free
glucocorticoids increases during pregnancy (56). In contrast,
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both the fraction of free progesterone and its total concentration
increase throughout pregnancy (57). Progesterone only partially
binds CBG with four times lower affinity as glucocorticoids.
Instead, approximately the 80% of plasma progesterone primarily
binds albumin (54).

The availability of steroid hormones can be additionally
reduced by their intracellular metabolism. However,
physiological expression of 11β-hydroxysteroid dehydrogenase
type 2 capable of metabolizing glucocorticoids into inactive
forms (6) is largely negligible in human or mouse immune cells
(58) and potential modulation during pregnancy remains to date
unexplored. Moreover, the progesterone-metabolizing enzyme
20α-hydroxysteroid dehydrogenase (Akr1c18) was shown to
be highly expressed in thymocytes and initially considered as a
marker for mature T cells (59, 60). However, data available to
date seem ambiguous, as Akr1c18 is not listed when searching
gene-expression database for immune cells (32). Hence, the
significance or role of the expression of 20α-HSD or 11β-HSD in
lymphocytes and possibly also myeloid cells is still unknown.

Moreover, Abcb1a and Abcc1 efflux transporters, members
of the ATP binding cassette (ABC) transmembrane transporters
family can actively exclude intracellular glucocorticoids hereby
limiting their activity e.g., in mouse placenta (6). Abcb1a
and Abcc1 (also known as Mdr1 and Mrp1) are differentially
expressed in immune cells such as T lymphocytes (61) and
Abcb1a deficiency was associated to decreased generation of
Tregs in vivo and in vitro mouse models (62). Remarkably,
progesterone and other progestogens are potent inhibitors of
Abcb1a function (63), mechanism that may act synergistically
with the high levels of glucocorticoids to further promote
glucocorticoids actions during pregnancy.

Taken together existing published data on progesterone
and glucocorticoids levels as well as their binding to plasma
proteins during human pregnancy, it becomes evident that early
pregnancy consists in a period of high progesterone and low
glucocorticoid availability. In contrast, both free progesterone
and glucocorticoids increase throughout pregnancy and are
found at comparable concentration ranges in late pregnancy
(48, 57). Hence, while a large body of evidence supports that
steroid driven immunemodulation reliesmainly on progesterone
at the beginning of pregnancy it is tempting to hypothesize
that in later stages, glucocorticoids with high affinity for GR
gain relevance in sustaining maternal immune tolerance. In
this context, the regulation of progesterone and glucocorticoids
bioavailability by expression of specific metabolizing enzymes
and exclusion transporters in immune cells during pregnancy
remains still unknown.

Modulation of Steroids by External Factors
The availability of steroid hormones during pregnancy, but also
unrelated to reproduction, can be dramatically modulated by
external factors. One key example is the exposure to stress,
commonly described as a high perception of stress. It is well-
established that stressful stimuli trigger the activation of the
hypothalamic–pituitary–adrenal (HPA) axis, which results in
secretion of glucocorticoids by the adrenal glands (Figure 1).
Although this neuroendocrine response is gradually attenuated

FIGURE 1 | “Pregnenolone steal” or how high stress perception may drive the

depletion of progesterone. High stress perception activates the

hypothalamic–pituitary–adrenal axis, resulting in the respective secretion of

corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH)

and cortisol, the main glucocorticoid in humans. Moreover, stress can affect

steroidogenesis in peripheral tissues. Steroidogenesis refers to the

transformation of cholesterol into steroid hormones through a serious of steps.

Here, the intermediate pregnenolone is a precursor of most steroid hormones,

including progesterone and cortisol. Upon stress, the elevated synthesis of

cortisol may reduce (“steal”) the pregnenolone available for the synthesis of

down-stream hormones other than cortisol. This hypothetical scenario

provides an explanation for the impaired progesterone production in response

to stress.

across pregnancy (53), stressful stimuli can still elicit the
secretion of glucocorticoids in mouse and humans (6, 64).
Concomitantly, stress challenges reduce progesterone levels
during pregnancy in mammals (65–68). This could result
from impaired steroidogenesis in the ovary, e.g., due to
poor stimulation by placental lactogens (68). Stress-induced
glucocorticoids may directly influence progesterone synthesis,
as GR is also expressed in the ovary, where depending on the
experimental conditions they have been shown to stimulate or
inhibit steroidogenesis (69, 70).

Moreover, progesterone and glucocorticoids share common
steroidogenic pathways and precursors, such as cholesterol-
derived pregnenolone (Figure 1). Hence, a hypothesis for the
depletion of progesterone as a result of glucocorticoid production
in response to high stress perception has been proposed (71).
This hypothesis is referred to as “pregnenolone steal” (71)
and supports that the elevated synthesis of cortisol caused by
stress depletes (“steals”) the availability of pregnenolone for the
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synthesis of down-stream hormones other than cortisol, which
subsequently may also impede the synthesis of progesterone.
This hypothesis requires confirmation also in the context of
pregnancy. The conversion of cholesterol to cortisol occurs in
the mitochondria of steroidogenic tissues, best described for
the adrenal cortex, but also for various other tissues, including
primary lymphoid organs, intestine, skin and brain (72, 73).
If cortisol synthesis could also be induced e.g., by stress in
tissues such as the ovaries and placenta, it could theoretically
result in a reduction of the precursors available to produce
progesterone during pregnancy. Interestingly, in ovary, the main
site of progesterone synthesis in early human pregnancy, the
specific enzymatic machinery for glucocorticoid production has
already been described (74), and it remains to be confirmed
whether the pregnenolone steal may indeed impede ovarian
progesterone synthesis in response to stress.

IMMUNE PATHWAYS MEDIATED BY
PROGESTERONE AND
GLUCOCORTICOIDS

Antigenic disparity between the mother and the fetus is not only
tolerated by the maternal immune system, but also promotes
placental and fetal growth in mice (75). Understanding the
mechanisms through which maternal immune tolerance toward
fetal antigens is maintained is not only critical to decipher how
survival of species is ensured. Such insights also allow shedding
light on the pathogenesis of pregnancy complications. The
collapse of maternal immune tolerance can become evident as
cytotoxic responses at the feto-maternal interface and subsequent
fetal loss (21, 76, 77) or impaired placental and fetal development
(68, 78).

To date, a wealth of data highlights that high levels of
progesterone are critically required to switch the maternal
immune responses toward tolerance [e.g., discussed at length
in (4)]. Progesterone promotes a tolerogenic profile on innate
immune cell subsets, such as macrophages and dendritic cells,
which is essential for successful uterine tissue remodeling and
pregnancy maintenance (1–3). For example, in vitro stimulation
with progestogens induces maturation of macrophages with
M2 profile (79), and prevents the differentiation of dendritic
cells toward a mature phenotype (80). A progesterone-
mediated modulation of the adaptive immune responses has
also been investigated in in vivo and in vitro models.
Here, progesterone supports the expansion and suppressive
function of Tregs during pregnancy, the skew toward an anti-
inflammatory cytokine profile and suppression of CD8+ T cell
cytotoxicity (20, 68, 81–83).

Despite the availability of PR and GR specific pharmacological
agonists and antagonists (Table 1), experimental interventions
during pregnancy employed most often progesterone as agonist
or the antagonist RU486, both of which can bind PR and GR.
Hence, these approaches do not allow differentiation between
the individual effects of progesterone or glucocorticoids on
distinct immune cell subsets, which greatly limits to understand
the individual role of hormones or cell subsets in maintaining

pregnancy. Such limitation can now be easily overcome by the
use of mice with targeted deletion of certain hormone receptors
on distinct immune cell subsets. In fact, recent evidence revealed
that the targeted deletion of PR on dendritic cells in mice
promotes a non-tolerogenic, mature phenotype of dendritic cells,
along with the failure to generate CD4+ Treg and CD8+CD122+

Treg cells and impaired placental and fetal development (78).
Also targeted gene deletion of the GR on T cells in mice
pinpoints that GR and not PR is an upstream promotor of Treg
expansion during pregnancy. In vitro approaches further support
that GR mediates the expansion of T regulatory cells by selective
induction of apoptosis in conventional T cells (9, 10). These
mechanisms are at play during pregnancy, as in a mouse model
of experimental autoimmune encephalomyelitis, GR deletion in
T cells prevented pregnancy-induced expansion of T regulatory
cells, as well the corresponding mitigation of autoimmunity (9).

In this context, functional analyses of the contribution of
progesterone signaling through mPRs and PGRMC to immune
regulation during pregnancy remain still largely elusive. To date,
accumulating in vitro evidence highlights the importance of these
non-genomic pathways e.g., on T cell responses (20, 29, 84).

Besides the direct hormone-steroid receptor interaction,
progesterone can indirectly affect immune responses. Uterine
and placental expression of the PR promotes the local expression
of immunomodulatory molecules, such as progesterone-induced
blocking factor (PIBF), galectin-1 (Gal-1) (41, 83), and heme
oxygenase 1 (Hmox1) (68). These potent immunomodulators are
critical for the establishment and continuation of pregnancy, as
shown in mouse models and human pregnancies (41, 68, 83,
85, 86). For example, PIBF can enhance the synthesis of Th2
cytokines and dampens NK cell cytotoxicity (41) whereas Gal-1
induces a tolerogenic phenotype in dendritic cells, which results
in Treg expansion (81). In turn, the enzyme Hmox1 supports
the generation of CD8+CD122+ regulatory T cells that during
pregnancy promote placental vascularization and fetal growth
(68). Pathways involved in progesterone-mediated promotion
of pregnancy maintenance may also include the epigenetic
silencing of key T cell-attracting inflammatory chemokine genes
in decidual stromal cells, as observed in mice upon progesterone
stimulation (87). This epigenetic silencing of chemokine genes
can subsequently suppress the accumulation of anti-fetal effector
T cells in the decidua, hereby reducing the risk for fetal loss.

Some of progesterone-induced pathways in the uterus could
also be mediated by GR. In fact, although glucocorticoids seem
to be dispensable during early pregnancy (88) uterine GR
expression is critical to ensure successful pregnancy. Evidence
arising from transgenic mice shows that a targeted deletion of GR
in the uterus results in subfertility, excessive inflammation and
altered immune cell recruitment during decidualization (23).

In the light of these recent observations, an upstream role
of GR in pregnancy induced immune tolerance is underscored,
while new questions on the roles of progesterone and
glucocorticoid non-genomic pathways appear. These concepts
challenge previous notions on processes taking place during
pregnancy and invite not only to revisit former data but also to
advance in the research of these endocrine-immune mechanisms
from this novel perspective. Of note, a number of technical
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TABLE 2 | Salient technical tools available to discriminate steroid receptor-specific pathways.

Progesterone receptor Glucocorticoid receptor Membrane progestin

receptors (mPR)

Progesterone receptor membrane

components (PGRMC)

Selective agonists 20α-dihydrodydrogesterone

(DHD) (89)

Dexamethasone,

betamethasone (15),

ZK209614 (90)

progesterone conjugated to BSA (50)

Antagonist non-selective: RU-486 – –

selective: ZK98299 (91),

Ulipristal acetate (92),

Org31710 (93)

selective: RU-43044 (94)

Mouse models for cell

specific depletion

Prfl/fl (21) Grfl/fl (9, 10) – Pgrmc1fl/fl and Pgrmc2fl/fl (30)

tools to discriminate the receptor-specific pathways are to date
available (Table 2) and promise exciting progress in the research
in the field.

IMPACT OF PROGESTERONE AND
GLUCOCORTICOIDS ON PREGNANCY
OUTCOME AND MATERNAL IMMUNE
RESPONSE

Given the shared steroidogenic pathways and transport of
progesterone and glucocorticoids as well as their widespread
crosstalk in immune cells and reproductive tissues, it is
tempting to speculate that a tight equilibrium between these
steroids underlies healthy pregnancy and fetal development
(Figure 2). As discussed below, this equilibrium can be disrupted
with consequences for the establishment or continuation of
pregnancy or affecting the developing offspring (Figure 2).
Hence, progesterone and glucocorticoids appear as attractive
pharmacological treatments, e.g., that could restore maternal
immunotolerance, and they are often supplemented to women
at risk for pregnancy complications.

Progesterone, Infertility, and Early
Pregnancy Loss
Worldwide, around 10% of couples experience fertility problems,
whereby male and female factors almost equally account for these
incidences. Interestingly, the overall burden of female infertility
has remained similar over the last 2 decades, despite the progress
in assisted reproductive techniques (95). Besides infertility, early
pregnancy loss clinically defined as spontaneous miscarriage
before the week 20 of gestation occurs in 10–15% of healthy
women (96). A large fraction of spontaneous miscarriages is due
to unknown etiologies, in which immune maladaptations, e.g., in
response to environmental factors (97), are suspected to play a
critical role.

Progesterone insufficiencies and related inability to mount
an appropriate immune response favoring embryo implantation
has been frequently put forward to explain these incidences.
However, to date, the high variability in progesterone secretion
and the limitation to measure glucocorticoids in clinical routine
hinder the diagnosis of progesterone deficiency or glucocorticoid

imbalances during normally progressing pregnancies as well
as pathologies such as infertility and spontaneous miscarriage
(98, 99). Given the soaring levels of steroid hormones
occurring during pregnancy, endocrine interventions have
been frequently used in couples suffering from infertility or
pregnancy losses. Infertile women orally treated with the
progestogen Dydrogesterone, which shows a high affinity
for the PR, had higher birth rates compared to treatment
with vaginal micronized progesterone (100). However, the
potential modulation of the maternal immune response by these
treatments has not been tested.

Similar to the infertility trial described above, treatment with
oral Dydrogesterone also reduced the risk in women with a
history of recurrent pregnancy loss, whereas treatment with
vaginal micronized progesterone failed to reduce the abortion
risk (101). In this study, cytokine levels were tested and
significantly differed between women with recurrent pregnancy
loss who were assigned to the different treatment arms, which
limits the analyses of treatment effects on immune responses.
Comparably, progesterone withdrawal or blockage results in fetal
loss in mammals (83, 102, 103) and the PR and GR antagonist
RU486 is effectively employed to terminate human pregnancies
(104, 105).

Insights into the mechanisms underlying the pregnancy
protective effects induced by oral progestogens are highly
desirable. Considering that vaginal administration of micronized
progesterone did not improve implantation success in infertile
patients and failed to reduce the abortion rate, it can be
speculated that the oral route of application increase systemic
progestogen levels to the degree required in order to initiate the
pregnancy-protective effects on the maternal immune system.

Additional evidence for an upstream role of progesterone in
ameliorating the risk for pregnancy pathologies arise from more
recent studies on progestogens supplementation during early
pregnancy (3, 106, 107). Reduced progesterone, e.g., due to luteal
insufficiency or stress may influence maternal tolerance toward
fetal antigens and result in fetal loss (108, 109). Despite the
wealth of information on the interaction between progesterone
and the immune response, very little insights into the causal
relationship between altered hormones levels, collapse of the
maternal immune tolerance and subsequent pregnancy loss are
available to date, which should be addressed in future trials.
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FIGURE 2 | During pregnancy a tight balance between glucocorticoids and progesterone may take place. An equilibrium between these hormones ensures adequate

levels to sustain uterine receptivity and quiescence, as well as a tolerogenic immune profile, which pivotally promotes placental vascularization and a healthy fetal

growth. In contrast, a disequilibrium in progesterone and/or glucocorticoids may fail to sustain pregnancy, and underlie an altered intrauterine immune profile, prone to

inflammation, which leads to placental insufficiency and poor fetal growth. Such a disequilibrium may play an upstream role in women suffering from infertility or from

pregnancy complications, such as early pregnancy loss, preterm birth, and IUGR. Impaired fetal growth and altered prenatal exposure to glucocorticoids influences

the fetal immune ontogeny, which may result on fetal programming of immune disease in the offspring. DC, dendritic cells; Mφ, macrophages; APC, antigen

presenting cells; IUGR, intrauterine growth restriction.

Due to their potent immune regulatory capacity,
glucocorticoids appear as a potential therapeutic option in
women suffering from with repeated idiopathic embryo
implantation failure. Corticoid therapy is becoming an
important medication for patients with history of repeated
implantation failures (RIF) after IVF/ICSI and at least a
proportion of the patients respond to such intervention (110).
Indeed, emerging data accumulated in small group of patients
with increased numbers of NK cells in the endometrium
suggests potential beneficial effects of corticosteroid therapy
(111) as intrauterine perfusion of dexamethasone reduced NK
cell frequencies and resulted in successful pregnancy (112).
Of note, the safety of glucocorticoid administration during
pregnancy has not yet been completely clarified (111, 113)
and concerted efforts need to be devoted to identifying
patients that can specifically benefit from corticosteroid
therapies (114).

Preterm Labor
Rates of prematurity are currently on the rise, not only in
developing countries or countries in transition to development,
but also globally (115). Consecutively, preterm birth is the main
reason for newborn death worldwide and a major contributing
factor to poor offspring’s health. Progress has been made to
predict the risk for preterm birth, but its etiology is still enigmatic.
In the context of preterm birth, the importance of the maternal
immune system is increasingly recognized. Term labor is initiated
by complex pathways, which include the up-regulation of
inflammatory signals (116). Pilot data suggest that the collapse
of maternal immune adaption and a premature activation of
inflammatory pathways trigger labor prematurely (117). Here,
it remains to be demonstrated whether the up-regulation
of inflammatory signals follows a functional progesterone
withdrawal. In fact, vaginal progesterone application has been
demonstrated to decrease the risk of preterm birth and to
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improve perinatal outcomes in singleton gestations with a short
cervix in humans, suggesting that progesterone ensures uterine
quiescence in cervical tissue (115). Very recently, it has been
demonstrated that treatment with progesterone may be a strategy
to prevent preterm labor/birth and adverse neonatal outcomes by
attenuating the proinflammatory responses at the maternal-fetal
interface and cervix induced by T cell activation (24).

Similar to PR, the myometrium expresses GR, although at
lower levels (118), and some of anti-inflammatory progesterone
actions in this tissue, e.g., COX-2 or IL-1β repression may be
also mediated by GR (23, 93). At term labor glucocorticoids
are potently triggered (52). However, there are no reports on
beneficial effects of glucocorticoids on the maternal outcomes,
e.g., on women that received antenatal steroid therapy for fetal
lung maturation. Altogether, potential implications of maternal
glucocorticoids on the modulation in preterm labor are not yet
clearly established.

Intrauterine Growth Restriction
Intrauterine growth restriction (IUGR) refers to suboptimal
fetal growth, a condition that affects 3–10% of pregnancies
(119). IUGR may result from placental insufficiency, e.g., due
to impaired uterine or placental vascularization. Progesterone
can promote uterine and placental vascularization by diverse
pathways. For example, progesterone upregulates the VEGF
homolog placental growth factor (PlGF) (120), which is expressed
by trophoblast and uterine NK cells (121, 122). PlGF promotes
NK cytokinesis and consequently decidual spiral arteries
remodeling during early pregnancy and labyrinth vascular
branching in mid to late murine pregnancy (122). Indeed, it is
well-accepted that uterine NK cells (122) promote pregnancy
related uterine vascular changes through pathways including the
secretion of cytokines such as IFN-γ and IL-17. IFN-γ affects
uterine vasculature and stromal gene expression, which leads to
vessel instability and facilitates remodeling of decidual arteries
(123). Recently, it was also proposed that progesterone and
estradiol trigger apoptosis in neutrophils, which transfer proteins
to T cells. These “neutrophil-induced T” (niT) cells upregulate
regulatory markers and promote vessel growth in vitro through
IL-17 and VEGF expression (124).

Moreover, in a mouse model of mid-gestational stress
we observed that reduced progesterone was associated to
epigenetic changes in the placenta that resulted in decreased
heme oxygenase-1 (Hmox-1) expression and IUGR. These
changes were caused by an increase of cytotoxic CD8+ T
cells producing inflammatory cytokines. This inflammatory
surge was unopposed by CD8+CD122+ T regulatory cells.
Notably, supplementation of progestogens mitigated the IUGR
by restoring Hmox-1 expression as well as suppressing
inflammation (68).

Intriguingly, stress-induced intrauterine inflammation takes
place in an environment rich in glucocorticoids (6, 68).
Glucocorticoids can affect placental gene expression and growth
(6, 125), with consequences in the nutrition and gas exchange
with the fetus. These effects together with potential fetal
excessive glucocorticoid exposure are hypothesized to underlie

intrauterine growth restriction i.e., in the case of maternal dietary
protein restriction, or stress [reviewed in (8)].

Together these observations provide evidence that the
functions of progesterone and glucocorticoids are not
exchangeable and that a regulated balance is required in
the uterus to promote fetal growth.

Prenatal Exposure to Excess
Glucocorticoids: Fetal Programming of
Postnatal Immunity
During late gestation, glucocorticoids are required to ensure
structural and functional organ maturation in the fetus (126,
127). However, prenatal exposure to glucocorticoid surges
is detrimental for fetal growth and may hold significant
consequences for postnatal physiology (8). Fetal glucocorticoid
excess can be induced e.g., by antenatal steroid treatments in
the case of risk for preterm birth (128). Additionally, antenatal
glucocorticoid exposure is proposed to underlie a number of
conditions, such as maternal malnutrition (129), stress (6), and
infection (130). In mice, prenatal stress and the consequent fetal
glucocorticoid excess resulted in intrauterine growth restriction
(IUGR) particularly in female offspring (6). These observations
could be explained by sex specific stress responses at the
placenta, which limits the transfer of maternal glucocorticoids
to the fetus. Indeed, placentas from female offspring failed to
upregulate placental protective mechanisms, such as 11β-HSD2
and ABC transporters in response to antenatal stress, whereas
these protective mechanisms prevented glucocorticoid excess in
male fetuses (6).

Growing evidence underscores a role of prenatal
glucocorticoid exposure in offspring’s immune ontogeny
and impaired postnatal immunity (131, 132). These effects
could be multifactorial, including indirect and direct effects
in the immune system (8). For instance, prenatal stress or
glucocorticoid excess can result in disarrangements in the HPA
[reviewed e.g., in (133)]. Generally, it is widely accepted that
postnatal HPA hypoactivity follows prenatal stress exposure
(134). Metabolic disarranges in offspring exposed to prenatal
stress or glucocorticoids have also been observed and include
the programming of a thrifty metabolic phenotype (135). Both
postnatal HPA and metabolism may affect postnatal immune
responses. Remarkably, premature exposure to glucocorticoids
may also affect the developing fetal immune system [reviewed
in (8)]. For example, antenatal steroid treatment resulted in
newborns with impaired immunity (136) e.g., due to poor
neutrophil (137) and T cell (138) responses.

FINAL REMARKS

Recent data emerging from mice carrying cell specific gene
deletions underscore that pathways downstream the GR in
immune cells are critically involved in promoting immune
tolerance during pregnancy (9, 10). As until recently this
tolerance was considered to be primary modulated by signaling
through the intracellular PR, these novel observations invite
to reexamine aspects of endocrine immune regulation during
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pregnancy. In early pregnancy such GR-mediated pathways
are likely elicited by high levels of progesterone. However,
glucocorticoids with high affinity for GR outpace progesterone
levels in mid-late stages of gestation. Simultaneously the
maternal inflammatory load intensifies due to the cumulative
exposure to antigens derived from the conceptus (139).
Whether this glucocorticoid predominance translates into a
chief immunomodulatory role remains unknown and requires
empirical validation. Taken together the here summarized data,
it is tempting to anticipate the proximity of a paradigm shift with
regards to immune-endocrine responses during pregnancy e.g.,
related to signaling pathways or potential therapies to promote
immune tolerance during pregnancy.

Of note, glucocorticoids and progesterone appear to
be present in a tight equilibrium during pregnancy. Even
subtle disruptions of this equilibrium may have significant
consequences for pregnancy progression and fetal development
(8, 68) (Figure 2). However, detailed information on their
modulation and potential associations to inflammatory
mechanisms taking place in the context of pathological
pregnancies remain largely elusive. This is at least partly due to
the fact that progesterone and glucocorticoids are not routinely
assessed during pregnancy. Such assessments could refine
the identification of women that can benefit from endocrine
therapies to achieve or support pregnancy and fetal growth.

Finally, the tight crosstalk between pathways downstream
progesterone and glucocorticoids could have therapeutic
implications. In clinical praxis, glucocorticoids are broadly

employed to reduce inflammation in pathological settings.
Still, due to the side effects of their long-term use, a great
body of research has attempted to find active compounds that
could replace corticosteroids particularly as a chronic therapy.
It could be hypothesized that progesterone could be such
an alternative. For example, the mitigation of the course of
multiple sclerosis in pregnant women, with an intensification
of the disease activity in the postpartum period (140), suggests
an upstream immunomodulatory role of pregnancy-induced
hormones (9, 141). However, a recent clinical trial failed to
demonstrate an effect of progestogens in preventing post-partum
relapses in women suffering from multiple sclerosis (141)
implying a limited efficacy of the treatment applied in this
trial. Hence, despite its high clinical relevance, the empirical
evidence to support the use of progestogens as a replacement
for glucocorticoids remains to date sparse and requires still
thorough investigation.
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