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Abstract

With an adaptive partition procedure, we can partition a ‘‘time course’’ into consecutive non-overlapped intervals such that
the population means/proportions of the observations in two adjacent intervals are significantly different at a given level
aC . However, the widely used recursive combination or partition procedures do not guarantee a global optimization. We
propose a modified dynamic programming algorithm to achieve a global optimization. Our method can provide consistent
estimation results. In a comprehensive simulation study, our method shows an improved performance when it is compared
to the recursive combination/partition procedures. In practice, aC can be determined based on a cross-validation procedure.
As an application, we consider the well-known Pima Indian Diabetes data. We explore the relationship among the diabetes
risk and several important variables including the plasma glucose concentration, body mass index and age.
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Introduction

Time-course data analysis can be common in biomedical

studies. A ‘‘time course’’ is not necessarily only a certain period of

time in the study. More generally, it can be patients’ age records or

biomarkers’ chromosomal locations. A general ‘‘time’’ variable

can be a predictor with continuous or ordinal values. When we

analyze a response variable (binary, continuous, etc.), it is usually

necessary to incorporate the information from this predictor.

Many well-developed regression models can be used for the

analysis of this type of data. In this study, we focus on a

nonparametric type of analysis of time-course data: the whole time

course is partitioned into consecutive non-overlapped intervals

such that the response observations are similar in the same block

but different in adjacent blocks. Then, the partition of time course

is actually the detection of change-points. The detection of a single

change-point has been well studied in statistical literature [1].

However, for the detection of multiple change-points, since there

are many unknown parameters like the number of change-points,

the locations of change-points and the population means/

proportions in each block, it still remains a difficult problem [2].

A motivating example for this study is described as follows. The

body mass index (BMI) is calculated by dividing the mass (in

kilograms) by the square of the height (in meters). The recent WHO

classification of BMI gives six categories: underweight (v18.5),

normal weight (18.5-24.9), overweight (25.0–29.9), class I obesity

(30.0–34.9), class II obesity (35.0–39.9) and class III obesity (w40.0).

For the continuous variable BMI, its values are classified into six

categories based on five cut-off points. Normal weight is considered as

low risk, while the risk of underweight category is elevated, and the

risks of overweight, class I, II and III obesity are gradually increased.

Therefore, as BMI increases, the risk trend is not simply increasing

nor decreasing, but is a ‘‘U’’ shape. A question motivated from this

classification is that, given the data of BMI and health status, can we

partition the variable BMI into consecutive non-overlapped intervals

(categories) such that the risks are similar within an interval but

significantly different between two adjacent intervals?

In this study, our purpose is to partition a ‘‘time course’’ into

consecutive non-overlapped intervals such that the population

means/proportions of the observations in two adjacent intervals

are significantly different at a given level aC . This type of analysis

can provide informative results in practice. For example, medical

experts may provide an appropriate consultation based on a

patient’s blood pressure level.

The isotonic/monotonic regression (or the order restricted

hypothesis testing) is a traditional nonparametric trend analysis of

time-course data [3]. Since the maximum likelihood estimation

results are increasing/decreasing piecewise constants over the time

course, this analysis can also be considered as a special case of

change-point problem. Based on the traditional isotonic/mono-

tonic regression, the reduced isotonic/monotonic regression has

been proposed so that the estimation results can be further

simplified [4]. Its additional requirement is that the estimated

population means in two adjacent blocks must be significantly

different at a given level. However, the existing method is based on

a backward elimination procedure and does not guarantee the

maximum likelihood estimation results.

Without the constraint of trend shape, the detection of multiple

change-points for our study purpose can be achieved through a

recursive algorithm based method like recursive combination or

recursive partition. The circular binary segmentation algorithm is

a typical example of recursive partition [5]. In the middle of a

large block, the method recursively tries to detect a sub-block with

a significantly different population mean. The analysis results are
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piecewise constants. This method has been frequently used for

analyzing array-CGH data [6]. The reduced isotonic regression

(see above) is an example of recursive combination. These

recursive algorithms provide approximated solutions as alterna-

tives to the globally optimized solutions since an exhaustive search

is usually not feasible. Therefore, global optimizations are not

always guaranteed.

The dynamic programming algorithm is a frequently used

method for optimizing an objective function with ordered

observations [7]. Therefore, it is intuitive to consider this algorithm

in the analysis of time-course data. This algorithm has actually been

frequently used to implement many statistical and computational

methods [8][9][10][11][12][13]. For a feasible implementation of

this algorithm, an optimal sub-structure is necessary for the

objective function. This is usually the case for the likelihood based

estimation in an unrestricted parameter space. However, when

there are restrictions for the parameters, certain modifications are

necessary for the implementation of the dynamic programming

algorithm.

In the following sections, we first present a modified dynamic

programming algorithm so that a global optimization can be

achieved for our analysis. The algorithm has been originally

developed for the normal response variables. But the extension of

our method to the binary response variable is straightforward and is

also discussed later. We prove that this method can provide

consistent estimation results. Then, we suggest a permutation

procedure for the p-value calculation and a bootstrap procedure for

the construction of time-point-wise confidence intervals. We use

simulated data to compare our method to the recursive combina-

tion/partition procedures. The well-known Pima Indian Diabetes

data set is considered as an application of our method. We explore

the relationship among the diabetes risk and several important

variables including the plasma glucose concentration (in an oral

glucose tolerance test, or OGTT), body mass index (BMI) and age.

Methods

A modified dynamic programming
At the beginning, we introduce some necessary mathematical

notations. Consider a simple data set with two variables:

X~fx1vx2v . . . vxmg represents m distinct ordered indices

(referred to as ‘‘time points’’ thereafter), and Y~fykl :
k~1,2, . . . ,m; l~1,2, . . . ,nkg represents the observations with

ykl being the l-th observation at the k-th time point. Let fmkg be

the corresponding population mean of Y at the k-th time point.

We assume that ykl~mkzekl , where feklg are independently and

identically distributed (i.i.d.) with the normal distribution N(0,s2).
Furthermore, we assume that the set fmkg has a structure

fm1~. . .~mm1
=mm1z1~. . . ~mm1zm2

= . . .=mm1zm2z...zmg{1z1

~mm1zm2z...zmg{1zmg
g with m1zm2z . . . zmg~m. fmkg, s2

and the set fm1,m2, . . . ,mgg are all unknown (including g) and to

be estimated.

The traditional change-point problem assumes that g~2. When

gw2, it is a multiple change-point problem. If there is no strong

evidence of change points, we may consider the null hypothesis of

no change-point (g~1) H0: fmkg are the same. For the traditional

analysis of variance (ANOVA), we consider an alternative

hypothesis Ha: fmkg can be different. Then, even when the null

hypothesis H0 can be significantly rejected, there may be many

adjacent fmkg estimated with similar values. Therefore, we intend

to group similar and adjacent fmkg into a block. If this is

achievable, then we can have a detection of multiple change-

points. Therefore, we specify the following restricted parameter

space for the alternative hypothesis:

V1: fmkg can be different; if we claim any mk=mkz1, then they

are significantly different at level aC by a two-tailed (or upper-

tailed/lower-tailed) test with the two-sample data partitioned to

include mk and mkz1 in each sample.

Remark 1. The comparison based on adjacent time points

has no effect and V1 is reduced to Ha when aC~1. Clearly, V1 is

reduced to H0 when aC~0. Furthermore, when an upper-tailed/

lower-tailed test is specified, the analysis is the reduced isotonic/

monotonic regression [4]. Particularly, the analysis is the

traditional isotonic/monotonic regression [3] when aC~0:5
(when a one-sided t-test is used for comparing two sample groups).

The goal of this study is to partition X into consecutive non-

overlapped intervals such that the population means of the

observations in two adjacent intervals are significantly different at

a given level aC . This type of analysis cannot be achieved by the

computational methods for the order restricted hypothesis testing

(or the isotonic regression) due to the existence of significance

parameter. One may consider the well-known dynamic program-

ming (DP) algorithm [7] since the observations are collected at

consecutive time points. This is again not feasible: an optimized

partition for a subset of time points may be excluded for a larger

set of time points due to the significance requirement in V1.

However, we realize that the traditional DP algorithm can be

Figure 1. An illustrative flow chat for the modified dynamic programming algorithm.
doi:10.1371/journal.pone.0019754.g001
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modified to achieve our goal by adding an additional screening

step at each time point.

Algorithm. Due to its satisfactory statistical properties, the

likelihood ratio based test (LRT) has been widely used. To conduct

a LRT, we need to estimate the parameters under different

hypotheses. When normal population distributions (with a

common variance) are assumed for Y , the maximum likelihood

estimation is equivalent to the estimation by minimizing the sum

of squared errors (SSE). When a block of time points

fxj ,xjz1, . . . ,xig are given, the associated SSE is simply

s(j,jz1, . . . ,i)~
Pi

k~j

Pnk

l~1 (ykl{�yyj,...,i)
2, where �yyj,...,i is the

sample mean of the observations in the time block

fxj ,xjz1, . . . ,xig. Notice that the SSE of several blocks is simply

the sum of SSEs of individual blocks. Then, under the alternative

hypothesis, we propose the following algorithm that is modified based

on the well-known DP algorithm. For simplicity, we refer to the term

‘‘triplet’’ as a vector containing (link, index, score) that are described

in the algorithm. (For each triplet, ‘‘link’’ is defined as the time point

right before the block under current consideration; ‘‘index’’ is defined

as the index in the triplet set linked from the time point under current

Figure 2. Simulation based comparison of the overall mean squared errors. All y-axes represent the overall mean squared error. DP
represents our dynamic programming algorithm; RC and RP represent the recursive combination and recursive partition algorithms, respectively. The
boxplots in each row (1–4) are generated from the analysis results based on the corresponding simulation scenario (1–4). The boxplots in each
column (1–3) are generated from the analysis results based on different nk (1, 10 and 100).
doi:10.1371/journal.pone.0019754.g002
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consideration; ‘‘score’’ is defined as the objective function value under

current consideration.)

link /0; index /0; score /s(1)

Create V1 as a vector set with only one element with the above

triplet

for i~2 to m do f
link /0; index /0; score /s(1,2, . . . ,i)

Create Vi as a vector set with only one element with the

above triplet

for j~2 to i do f
Go through Vj{1 as ordered until a feasible index can

be found f
link /j{1

index / current position in Vj{1

score / (current score in Vj{1) + s(j,jz1, . . . ,i)

Include the above triplet as a new element in Vi

g
g

Figure 3. Simulation based comparison of the overall mean squared errors. All y-axes represent the quantile of relative ratio of overall MSEs
given by each of the two approximation methods vs. our proposed method. All x-axes represent the values used to calculate the empirical quantiles.
The black curves represent RC vs. DP and the gray curves represent RP vs. DP. (DP represents our dynamic programming algorithm; RC and RP
represent the recursive combination and recursive partition algorithms, respectively.) The plots in each row (1–4) are generated from the analysis
results based on the corresponding simulation scenario (1–4). The plots in each column (1–3) are generated from the analysis results based on
different nk (1, 10 and 100).
doi:10.1371/journal.pone.0019754.g003
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Sort Vi according to the increasing order of SSE scores
g
Remark 2. It is important that the maximum likelihood

estimation is equivalent to the estimation by minimizing the sum of

squared errors (SSE) when normal population distributions (with a

common variance) are assumed for Y . Notice that a normal

distribution is assumed for each time point. The population means

can be different at different time points but the population

variances are common for all the time points. Due to the optimal

substructure requirement for the dynamic programming

algorithm, we can only estimate the parameters specific to the

existing partitioned blocks. As shown in the above algorithm, the

estimation of variance can be achieved after the estimation of

population means. (The algorithm will not work if the common

population variance has to be estimated within the algorithm.)

Remark 3. The definition for a feasible index in Vj{1 is a

time point h such that two population means in the blocks

fh,hz1, . . . ,j{1g and fj,jz1, . . . ,ig are significantly different at

level aC (as specified in the restricted parameter space V1). A flow

chat is given in Figure 1 to illustrate this algorithm. The set Vi

Figure 4. Simulation based comparison of the selected aC . All y-axes represent the selected aC . DP represents our dynamic programming
algorithm; RC and RP represent the recursive combination and recursive partition algorithms, respectively. The boxplots in each row (1–4) are
generated from the analysis results based on the corresponding simulation scenario (1–4). The boxplots in each column (1–3) are generated from the
analysis results based on different nk (1, 10 and 100).
doi:10.1371/journal.pone.0019754.g004
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contains an optimized link index among the feasible ones for each

of its previous time point j{1, j~1,2, . . . ,i (if there is no feasible

link index for a previous time point j{1, then j{1 will be

excluded from Vi). Since the required condition for the restricted

population means are imposed on adjacent blocks, the set Vi also

contains all the necessary link point for the future time points when

the time point i is screened as a link point. (Then, it is not

necessary to check other time points jvi not included in Vi.) This

can be confirmed as follows: if any future time point uses the time

point i as a link point, then any sub-partitions stopped at the time

point i must meet the required conditions for the restricted

population means; furthermore, an optimized one will be chosen

from the feasible ones for each time point before the time point i;

therefore, these sub-partitions belong to Vi.

Theorem 1. With the mathematical assumptions described at

the beginning, the proposed modified dynamic programming

algorithm solves the maximum likelihood estimation of restricted

population means.

Figure 5. Simulation based comparison of the selected aC . All y-axes represent the quantile of relative ratio of aC ’s from each of the two
approximation methods vs. our proposed method. All x-axes represent the values used to calculate the empirical quantiles. The black curves
represent RC vs. DP and the gray curves represent RP vs. DP. (DP represents our dynamic programming algorithm; RC and RP represent the recursive
combination and recursive partition algorithms, respectively.) The plots in each row (1–4) are generated from the analysis results based on the
corresponding simulation scenario (1–4). The plots in each column (1–3) are generated from the analysis results based on different nk (1, 10 and 100).
doi:10.1371/journal.pone.0019754.g005
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Proof: With the above discussion, it is not difficult to give a

proof. It is obvious to prove this claim at the time points 1 and 2

since the algorithm just enumerates all possible partitions and

selects the optimized one. Assume that the claim holds at the time

point k. For the time point kz1, the algorithm screens all the

previous time points and selects the optimized and feasible solution

(when it exists) for each of them. Finally, all these locally optimized

solutions are sorted so that a global optimized solution can be

found. Therefore, the claim also holds at the time point kz1. This

concludes the proof that the claim holds for all the time points.

Remark 4. To test whether mk=mkz1 (or mkvmkz1 or

mkwmkz1) is significant at level aC , we consider the well-known

two-sample Student’s t-test. The statistical significance (p-value) of

a test value can be evaluated based on the theoretical t-distribution

or through the permutation procedure [14]. Considering the likely

small sample size on each time point and the computing burden

involved in this analysis, the theoretical p-value may be a more

preferred choice when the observations are approximately

normally distributed. (The required sample size for calculating a

p-value is no less than two for each sample; otherwise, one will be

considered as the reported p-value.)

Estimators. When we finish screening the last time points,

the overall optimized partition can be obtained in a backward

manner:

i/m; h/1
Create the set C with an element m

while hw0 do f
j/i; i/Vj :zlink½h�; h/Vj :index½h�
Include i as a new element in the set C

g
The estimated means fm̂mkg in the restricted parameter space V1

are simply the sample means for the partitioned blocks. With fm̂mkg
calculated, we can estimate the variance by ŝs2~

Pm
k~1Pnk

l~1 ykl{m̂mkð Þ2
. Pm

k~1 nk{1
� �

:
Compared to the traditional dynamic programming algorithm,

which requires O(m2) computing time, our modified algorithm

requires at least O(m2) but at most O(m3) computing time. The

additional computing time is necessary so that the optimization

can be achieved in the restricted parameter space V1.

Consistency of Estimation
The following theorem shows that our proposed algorithm can

provide consistent estimates for fmk : k~1,2, . . . ,mg and s2. The

mathematical proof is given in File S1.

Theorem 2. Let n~
Pm

k~1 nk. Assume that 0va
vnk=nvbv1 and aCw0. Then, for any time point xk, we

have limnk?? m̂mk?mk in probability: Furthermore, we also have

limn?? ŝs2?s2 in probability:
Here, we briefly provide an outline of proof for the readers

who wish to skip the mathematical derivation. When the sample

size at each time point becomes larger and larger, eventually

the true structure f½x1, . . . ,xm1
�, ½xm1z1, . . . ,xm1zm2

�, . . . ,
½xm1zm2z...zmg{1z1, . . . ,xm1zm2z...zmg

�g will be a feasible

partition of time points (since the power of the two-sample tests

for these adjacent partitions will go to 100%). Its corresponding

estimates are actually the sample means and they are consistent

estimators. Furthermore, the estimated variance, which is

closely related to the SSE, will be eventually optimal when the

sample size becomes larger and larger. However, our algorithm

guarantees a minimized SSE. Then, the estimated population

means provided by our algorithm will be closer and closer to the

underlying sample means. Therefore, our algorithm can provide

consistent estimates for the underlying population means. Then,

it is straightforward to prove the convergence of the variance

estimator.

Remark 5. The estimation bias and variance for isotonic

regression are difficult problems [15][16][17]. These two issues are

even more difficult for our adaptive partition approach since a

two-sample test is involved in the detection of multiple change-

points. (However, the building-in two-sample test can be an

appealing feature for practitioners.) Therefore, we use the well-

known permutation and bootstrap procedures to obtain the

p-value of test and the confidence limits of estimates. They are

briefly described as below.

F-type test and its p-value
We use SSE1 to denote the score in the first element of Vm.

This is the optimized SSE associated with the restricted parameter

space V1. The SSE associated with the null hypothesis is simply

SSE0~
Pm

k~1

Pnk

l~1 (ykl{�yy1,...,m)2. Then, we can define a F -type

test:

F~
SSE0{SSE1

SSE1

Pm
k~1 nk{m

m{1
:

It is straightforward to show that F is actually a likelihood ratio

test. However, it is difficult to derive the null distribution of F due

to the complexity of our algorithm. Therefore, we propose the

following permutation procedure for generating an empirical null

distribution.

1. Generate Y �~fy�kl : k~1,2, . . . ,m; l~1,2, . . . ,nkg as a ran-

dom sample (without replacement) from Y~fyklg;
2. Run the modified DP algorithm with X and Y � as input and

calculate the associated F -type test F�;

3. Repeat steps 1&2 B times to obtain a collection of permuted F -

scores fF�g, which can be considered as an empirical null

distribution.

The procedure essentially breaks the association between Y and

X . It is also equivalent to permute the expanded time point set ~XX
(see below). In this way, the null hypothesis can be simulated with

the observed data and the null distribution of F can be

approximated after many permutations [18]. Then, the p-value

of an observed F -score can be computed as: (number of F�§F )/

B. For a conservative strategy, we can include the observed F into

the set of permuted F -scores (since the original order is also a

permutation). We can use this strategy to avoid zero p-values.

Time-point-wise confidence intervals
Our algorithm provides an estimate of population mean at each

time point. It is difficult to derive the theoretical formula for

constructing a confidence interval. Instead, we can consider a

bootstrap procedure. At the beginning, we need to expand the

variable X~fx1vx2v . . . vxmg to ~XX~f~xxkl : k~1,2, . . . ,m;
l~1,2, . . . ,nkg, where ~xxkl~xk for l~1,2, . . . ,nk. Then, we

denote ( ~XX ,Y )~f(~xxkl ,ykl) : k~1,2, . . . ,m; l~1,2, . . . ,nkg.

Figure 6. Simulation based comparison of time-point-wise MSE, bias and variance. The y-axes represent the time-point-wise MSE (upper
row), bias (middle row) or variance (lower row). The x-axes represent the time point. The plots are generated from the analysis results based on the
simulation scenario 1. The plots in each column (1–3) are generated from the analysis results based on different nk (1, 10 and 100).
doi:10.1371/journal.pone.0019754.g006
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1. Generate ( ~XX �,Y �)~f(~xx�kl ,y
�
kl) : k~1,2, . . . ,m; l~1,2, . . . ,nkg,

where (~xx�::,y�::) is re-sampled based on ( ~XX ,Y ) with replacement;

2. Run the modified DP algorithm with ~XX � and Y � and estimate

the time-point-wise population means; if any time points in X
is not re-sampled in ~XX �, then assign missing values as the

estimates for those time points;

3. Repeat steps 1&2 B times to obtain a collection of resample

estimates of time-point-wise population means fm̂m�kg.

The procedure applies the ‘‘plug-in principle’’ so that a

resample distribution can be generated for each time point [19].

A pair of empirical percentiles (e.g. 2.5% and 97.5%) can be used

to constructed a confidence interval for each time point after

excluding the missing values.

Extension to binary response variables
It is straightforward to extend our method for the binary

response variables. This can be simply achieved by changing the

objective function (SSE in our current algorithm) to the

corresponding (negative) log-likelihood function for the binary

response variable, and also changing the two-sample t-test in our

current algorithm to the corresponding two-sample comparison

test for the binary response variable. Due to the computing

burden, we would suggest to use the two-sample z-test for

proportions when there is a satisfactory sample size or the Fisher’s

exact test when the sample size is small (e.g. less than six in each

cell of the 262 contingency table).

Choice of aC

An appropriate choice of aC is important. A small number of

partitioned blocks will be obtained if a small value is set for aC , and

vice versa. For examples, no partition will be obtained if aC~0
and each time point will be a partition if aC~1. Therefore, like the

smoother span parameter for the local regression [20], aC can also

be considered as a smoothing parameter. In practice, we suggest to

use the cross-validation procedure [21] to select aC . Among a

given finite set of values like f0:5,0:1, . . . ,0:000005,0:000001g, we

can choose the one that minimizes the prediction error.

Approximation algorithms: recursive combination and
recursive partition

To illustrate the advantage of global optimization in the

likelihood estimation of restricted population means, we also

consider and implement two widely used approximation algo-

rithms: recursive combination and recursive partition. These

algorithms provide approximated (sometimes exact) solutions to

the optimal solution in the restricted parameter space defined

based on the given aC . Based on the following description of these

two algorithm, it is clear their required computing time is at most

O(m2).

For the recursive combination algorithm, it begins with no

partition and each time point is a block. In each loop, it

conducts a two-sample test for each pair of adjacent blocks and

find these pairs with p-value higher than aC ; among the

combinations based on these selected pairs of adjacent blocks,

the one that results the largest overall likelihood (based on all

the data) is chosen and the next loop is started when it is still

possible to combine the existing blocks; otherwise, the algorithm

stops and returns the partitioned blocks. [Notice that this

algorithm is slightly different from the one proposed by [4], in

which the pair of blocks is chosen completely based on the two-

sample test. In our simulation studies, we have observed that the

likelihood based criterion can result in a better performance

(results not shown).]

For the recursive partition algorithm, it begins with one

block with all the time points. In each loop, within each

existing partitioned block, it conducts a two-sample test for

each possible partition (that generates two smaller blocks) and

find these triplets (when the partitions are from the blocks in

the middle of time course) or pairs (when the partitions are

from the blocks on the boundaries of time course) with test

p-values lower than aC ; among the partitions based on these

selected triplets/pairs, the one that results the largest overall

likelihood (based on all the data) is chosen and the next loop is

started when it is still possible to create new partitions;

otherwise, the algorithm stops and returns the partitioned

blocks.

Performance evaluation
In a cross-validation (CV) procedure (e.g. leave-one-out or 10-

fold CV), the estimated population mean m̂m
({kl)
k for each

observation ykl can be obtained based on the training data

without ykl . (If the time point xk is not included in the training set,

then m̂m({kl)
k can still be obtained based on the linear interpolation

between two nearest time points to xk.) Then, the CV (prediction)

error is calculated as
X

k

X
l
(ykl{m̂m({kl)

k )2:
Remark 6. In a simulation study, instead of a CV error, we can

use the overall mean squared error since we know the parameter

values. This is a strategy to save a significant amount of computing

time. For each round of simulation, the overall mean squared error

is calculated as
P

k

P
l (ykl{m̂mk)2

� �� Pm
k~1

Pnk

l~1

� �
. After B

rounds of simulations and estimations (including the selection of

aC ), it is also statistically interesting to understand the estimation

mean squared error (MSE), bias and variance at each time point.

The time-point-wise mean squared error, bias and variance (for the

k-th time point, k~1,2, . . . ,m) are calculated as: MSEk~PB
i~1 m̂m

(i)
k {mk

� �2
	

B; Biask~
PB

i~1 m̂m
(i)
k {mk

� �.
B; Variancek~PB

i~1 m̂m(i)
k {

PB
j~1 m̂m(j)

k

.
B

� �2
	

B. Notice that the denominator for

Variancek is B instead of B{1 such that MSEk~
Bias2

kzVariancek.

Results

Simulation studies
We consider four simple scenarios to simulate time-course data:

(1) m1~m2~ . . . ~m10~0, m11~m12~ . . . ~m20~0:5, m21~m22

~ . . . ~m30~1, ykl*Normal(mk,1); (2) m1~m2~ . . . ~m10~0:5,

m11~m12~ . . . ~m20~0, m21~m22~ . . . ~m30~0:5, ykl*
Normal(mk,1); (3) m1~m2~ . . . ~m10~0:15, m11~m12~ . . .
~m20~0:3, m21~m22~ . . . ~m30~0:45, ykl*Bernoulli(mk); (4)

m1~m2~ . . . ~m10~0:3, m11~m12~ . . . ~m20~0:15, m21~m22

~ . . . ~m30~0:3, ykl*Bernoulli(mk). For each scenario, the

number of observations is nk~1, 10, or 100 at every time point.

For each simulated data set, we consider twelve different values of

aC [ f0:5,0:1,0:005, . . . ,0:000001g. Two-tailed tests are used so

Figure 7. Simulation based comparison of time-point-wise MSE, bias and variance. The y-axes represent the time-point-wise MSE (upper
row), bias (middle row) or variance (lower row). The x-axes represent the time point. The plots are generated from the analysis results based on the
simulation scenario 2. The plots in each column (1–3) are generated from the analysis results based on different nk (1, 10 and 100).
doi:10.1371/journal.pone.0019754.g007
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Figure 8. Simulation based comparison of time-point-wise MSE, bias and variance. The y-axes represent the time-point-wise MSE (upper
row), bias (middle row) or variance (lower row). The x-axes represent the time point. The plots are generated from the analysis results based on the
simulation scenario 3. The plots in each column (1–3) are generated from the analysis results based on different nk (1, 10 and 100).
doi:10.1371/journal.pone.0019754.g008
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that no monotonic changes are assumed. Since we know the true

parameters for simulations, we choose the aC value that minimizes

the overall mean squared error (MSE). This makes our simulation

study computationally feasible since it is difficult to run the cross-

validation procedure for many simulation repetitions. Then, for

each round of simulation, we obtain the ‘‘optimized’’ overall MSE

and the corresponding aC for each of the three algorithms: the

global optimization algorithm (our dynamic programming algo-

rithm) and two approximation algorithms (the recursive combi-

nation algorithm and the recursive partition algorithm). After 1000

repetitions, we compare the boxplots of these two results. A lower

overall MSE is obviously preferred. But a lower aC value can also

be preferred since the detected changes will be statistically more

significant. (aC can be considered as a smoothing parameter if we

do not have a pre-specified value for it. However, it also defines

the significant level for the test between any two adjacent blocks.

Then, a smaller aC indicates a more significant testing results and

it is more preferred.) Therefore, a lower boxplot means a better

performance for both results.

For all the above four scenarios, Figures 2 and 4 shows similar

patterns. When nk is as small as one for each time point, the

approximation algorithms give a better performance in term of

overall MSE, but the global optimization algorithm still gives a

quite comparable performance (Figure 2); on the choice of aC , the

global optimization algorithm gives a better performance and the

approximation algorithms can give a comparable performance

(Figure 4). When nk becomes larger to 10 and then to 100, we

observe a clear performance improvement from the global

optimization algorithm: we can achieve a clearly smaller overall

MSE and also much more significant aC (Figures 2 and 4).

To further compare the performance of three different methods,

we calculate the relative ratio between two overall MSEs (or the

selected aC ’s) given by each of the two approximation methods

(RC or RP) vs. our proposed method (DP). Based on B~1000
simulation repetitions, we can understand the empirical distribu-

tions of these ratios. If any ratio distribution is always no less than

one, then DP is absolutely a better choice. Furthermore, for a ratio

distribution, If the proportion of (ratio w1) is clearly larger than

the proportion of (ratio v1), then DP is still a preferred choice in

practice. Corresponding to Figure 2, Figure 3 further demonstrates

the advantage of DP when the sample size is not relatively small.

Even when the sample size is as small as one at each time point,

DP still shows a quite comparable performance. For the selected

aC , Figure 5 corresponds to Figure 4 and it also further confirms

the advantage of DP. [In each plot, the proportion of (ratio w1) is

cumulated from the right end although the proportion of (ratio

v1) is cumulated from the left end.]

In addition to the overall performance based on the overall

MSE and the selected aC , it is also statistically interesting to

understand the estimation mean squared error, bias and variance

at each time point. The time-point-wise mean squared error

(MSE), bias and variance (for the k-th time point, k~1,2, . . . ,m)

are shown in Figures 6, 7, 8, 9 for three different methods. For the

time-point-wise MSE, even when the sample size is relatively small

(one observation at each time point), our proposed method (DP)

still shows an overall comparable performance when it is

compared to the two approximation methods (RC or RP). As

the sample size is increased, its time-point-wise MSEs become

overall comparably lower and lower. For the time-point-wise bias,

when sample size is relatively small (one at each time point), DP

shows an overall worse performance in the simulation scenarios 1

and 3 but it still shows an overall comparable performance in the

simulation scenarios 2 and 4. As the sample size is increased, its

biases become overall comparably lower and lower (i.e. closer to

the zero y-axis value). For the time-point-wise variance, DP always

shows an overall comparable performance. (When the sample size

is as small as one at each time point, the estimated time-point-wise

means are almost all constants from all three different methods in

the simulation scenarios 2; then the corresponding time-point-wise

variance patterns are relatively flat. For the same sample size, the

estimated time-point-wise means are actually all constants from all

three different methods in the simulation scenarios 4; then the

corresponding time-point-wise variances are actually constant

across the whole time period. This also explains the relatively

regular patterns of the corresponding time-point-wise MSE and

bias.)

Applications
For applications, we consider different univariate analysis

scenarios for the well-known Pima Indian diabetes data [22]. The

data set contains a binary variable for the indication of diabetes and

three continuous variables for the plasma glucose concentration at 2

hours in an oral glucose tolerance test (OGTT), BMI and age (other

variables in this data set are not considered in our study). Our

proposed method allows us to detect the multiple change-points for

diabetes indication vs. OGTT, BMI or age (analysis for a binary

response), and also OGTT vs. BMI or age (analysis for a continuous

response). To reduce the computation burden, the observed OGTT

Figure 9. Simulation based comparison of time-point-wise MSE, bias and variance. The y-axes represent the time-point-wise MSE (upper
row), bias (middle row) or variance (lower row). The x-axes represent the time point. The plots are generated from the analysis results based on the
simulation scenario 4. The plots in each column (1–3) are generated from the analysis results based on different nk (1, 10 and 100).
doi:10.1371/journal.pone.0019754.g009

Table 1. Comparison of the leave-one-out cross-validation errors and the selected aC ’s.

DP RC RP

Analysis scenario error aC error aC error aC

Diabetes vs. OGTT 129.85 0.00001 133.68 0.0001 129.85 0.00001

Diabetes vs. BMI 151.34 0.00001 155.92 0.1 156.96 0.05

Diabetes vs. Age 155.91 0.0001 156.88 0.001 156.53 0.1

OGTT vs. BMI 44.88 0.001 44.79 0.005 44.79 0.01

OGTT vs. Age 44.22 0.00005 44.51 0.005 44.85 0.01

DP represents our dynamic programming algorithm, RC and RP represent the recursive combination and recursive partition algorithms, respectively.
doi:10.1371/journal.pone.0019754.t001
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values are rounded to the nearest 5 units and the observed BMI

values are rounded to the nearest 1 unit when any of these two

variables is considered as a ‘‘time’’ variable. aC is chosen from the

finite set of values aC [f0:5,0:1,0:05, . . . ,0:000001g to minimize

the leave-one-out cross-validation (LOO-CV) prediction error.

Two-tailed tests are used so that no monotonic changes are

assumed. Again, we compare three algorithms: the global

optimization algorithm (our dynamic programming algorithm)

and two approximation algorithms (the recursive combination

algorithm and the recursive partition algorithm).

For each analysis scenario and each algorithm, Table 1 gives

the ‘‘optimized’’ LOO-CV error and the corresponding aC . The

global optimization algorithm always chooses a highly significant

aC while the approximation algorithms sometimes choose a

relatively large value of aC . In term of prediction error, the global

optimization algorithm achieves the best performance in four out

of five scenarios. Although the approximation algorithms give the

best prediction error for the analysis of OGTT vs. BMI, the

global optimization algorithm only gives a slightly worse

prediction error.

Figure 10. Comparison of detected change-points. The plots in each row (1–5) are generated from the results based on different analysis
scenarios (as shown in the axis labels). The plots in each column (1–3) are generated from the results based on different algorithms (DP, RC and RP). In
each plot, the black solid curve represents the estimated proportions/means and the black dotted curves represent the estimated 95% confidence
intervals. The gray solid curve represents the estimates only based the observations at each time point. The gray dots represent the observed data.
doi:10.1371/journal.pone.0019754.g010
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Figure 10 shows the identified change-points for all five analysis

scenarios and also all three algorithms. The global optimization

algorithm always gives stable change patterns while the approx-

imation algorithms sometimes give abrupt drops or jumps. The

change patterns fitted by the global optimization algorithm are all

increasing and this is practically meaningful. For example, the

analysis result for diabetes indication vs. OGTT suggests

significant increasing risks of diabetes when OGTT values are

increased to w100, w130 and w160; the analysis result for

diabetes indication vs. BMI suggest significant increasing risks of

diabetes when BMI values are increased to w23 and w32; and

the analysis results for diabetes indication vs. age suggest

significant increasing risks of diabetes when age values are w25

and w32. Since OGTT is an important predictor for diabetes, it is

also interesting to understand its changes over different BMI or

age intervals. Figure 10 shows increasing patterns for OGTT vs.

BMI and OGTT vs. age. The change-points identified by the

global optimization algorithm are w25 and w40 for OGTT vs.

BMI, and w27 and w48 for OGTT vs. age.

Discussion

The advantage of our proposed method is that the maximum

likelihood estimation can be achieved during the partition of a

time course. Furthermore, the method is simple and the

interpretation of estimation results is clear. Based on our

knowledge, the modified dynamic programming algorithm

proposed in this study is novel. Although the algorithm requires

more computing time than does the traditional dynamic

programming algorithm, it is still practically feasible with the

current computing power for general scientists. We have

demonstrated the use of our algorithm for normal and binary

response variables. It is also feasible to modify the algorithm for

other types of response variables. Furthermore, it is interesting to

explore whether there are better approaches to the choice of aC .

These research topics will be pursued in the near future.

One disadvantage of our method, which is actually a common

disadvantage for general nonparametric methods, is that a

relatively large sample size is required in order to achieve a

satisfactory detection power. (This is consistent with the results in

Figure 2.) For our method, we would require a relatively long time

course, or a relatively large number of observations at each time

point. In our simulation and application studies, we choose to

analyze the data sets with relatively long time courses since this

well illustrates the advantage of our method.

Our method may also be useful for the current wealthy

collection of genomics data. For example, we can apply the

method to array-based comparative genomics hybridization

(aCGH) data and identify chromosomal aberration/alteration

regions [6]; we can also apply the method to certain time-course

microarray gene expression data and cluster different genes based

on their changing pattern across the time course. However, a

powerful computer workstation/cluster may be necessary due to

the relatively high computing burden from our method.
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