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Abstract

We introduce a Unified Disentanglement Network (UFDN) trained on The Cancer Genome Atlas 

(TCGA), which we refer to as UFDN-TCGA. We demonstrate that UFDN-TCGA learns a 

biologically relevant, low-dimensional latent space of high-dimensional gene expression data by 

applying our network to two classification tasks of cancer status and cancer type. UFDN-TCGA 

performs comparably to random forest methods. The UFDN allows for continuous, partial 

interpolation between distinct cancer types. Furthermore, we perform an analysis of differentially 

expressed genes between skin cutaneous melanoma (SKCM) samples and the same samples 

interpolated into glioblastoma (GBM). We demonstrate that our interpolations consist of relevant 

metagenes that recapitulate known glioblastoma mechanisms.
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1. Introduction

Deep learning is being applied to many difficult problems in genomics and medicine such as 

understanding cancer prognosis. Chaudhary et al. were able to robustly predict survival in 

liver cancer.1 Cruz-Roa et al. leveraged deep learning to quantify the extent of breast cancer 

tumors in imaging data.2 Other groups have trained networks to identify metastatic breast 

cancer and lymph node metastasis.3

There are significant questions remaining in oncology about the relationships between 

different cancer types. For instance, while there is an association between melanoma, a type 

of skin cancer, and glioblastoma, a type of brain cancer, little is known about the molecular 

underpinnings of this relationship.4,5 Nevertheless, there is little work in machine learning 

being done on what changes are occurring at a gene expression level during metastasis.

Recently, deep generative models such as variational auto encoders (VAEs) and generative 

adversarial networks (GANs) have made large advances in image, audio, and text 
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generation.6–8 VAEs and GANs learn generative distributions on lower-dimensional 

encodings of input data.9 VAEs have found genomic applications. Rampasek et al. applied 

VAEs to learn drug responses based on gene expression data.10 Way et al. trained a VAE 

called Tybalt to encode The Cancer Genome Atlas (TCGA).9 Huang et al. have developed a 

theory of cancer development as a progression along a low dimensional space, justifying 

exploration of cancer metastasis using machine learning algorithms that learn low 

dimensional representations.11

A new VAE-GAN hybrid architecture known as the Unified Feature Disentanglement 

Network (UFDN) learns fundamental features that distinguish input domains.12 For multiple 

input data types, such as photographs, sketches, and watercolor paintings, the UFDN learns 

an VAE encoding of the data domains and trains a discriminator in the latent space to 

discriminate between domain types. Then, the UFDN can subsequently encode data from 

one domain and decode the data into a different domain.12 An additional GAN distinguishes 

between real/fake images in the pixel space to promote high quality decodings.12

The primary goal of this work is to utilize the UFDN architecture to learn a disentangled 

latent space of cancer gene expression data, which allows for interpolation between cancer 

types.

2. Overview of UFDN-TCGA

In this work, we apply this new UFDN architecture to TCGA RNA-Seq data and learn a 

latent space embedding that allows us to convert between different cancer types given gene 

expression data. Given a sample’s gene expression levels in one type of cancer, we can 

predict gene expression levels as if that cancer sample were of another type. This represents 

a generative, personalized model of metastasis. We can sample points in our latent space 

encoding and decode them into any new cancer domain.

Additionally, we can partially interpolate between cancer domains. UFDN decoding is not 

strictly binary—input data can be decoded into a mix of output domains. We investigate 

partial interpolations of one cancer type into another, mimicking the progressive nature of 

metastasis.

We analyze the performance of our TCGA-trained UFDN on two tasks: predicting whether a 

sample is from cancerous or normal tissue and predicting which cancer sub-type a sample 

consists of. Additionally, we investigate partial interpolations from skin cutaneous 

melanoma (SKCM) TCGA samples to glioblastoma (GBM) by looking at differential 

expression of genes. We compute metagenes that summarize gene expression changes using 

integrative non-negative matrix factorization. Finally, we analyze Gene Ontology (GO) term 

enrichment in highly activated metagenes for each interpolated dataset.

2.1. UFDN Architecture

Liu et al. develop a UFDN as a combination of an encoder E, a generator G, and two 

discriminators: Dv in the latent space and Dx in the pixel space.12 In our application, pixel 

space is replaced by “gene expression space.” E takes input data and encodes it in a latent 
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space. In our UFDN, we encode gene expression using fully connected networks. Dv learns 

to discriminate between domains, or cancer types. Then, generator G uses a latent space 

encoding z and a domain vector dv to produce gene expression data in domain v.12 Our 

UFDN uses dv ∈ ℝ33 since there are 33 cancer types in TCGA.

We define a partial interpolation with parameter p ∈ [0,1] of an input of domain c to domain 

ĉ to be the decoding of the input into into a composition of domains c and ĉ, with weight p 
given to domain ĉ. That is, the domain vector of the partial interpolation has components 

dvc
= p, dvc

= 1 − p, and remaining components zero. For instance, a 0.25-GBM 

interpolation means an input has been decoded with dvGBM = 0.25 and original domain entry 

is 0.75.

In the input space, Dx learns to distinguish between samples that have been decoded to their 

original domain c or a new domain ĉ.12 The network is trained by iterative stochastic 

gradient updates to E, Dv, and Dx. For a more detailed exposition of the architecture of and 

gradient updates for training the UFDN, please see Section 3 of Liu et al. 2018.12

The encoder E and generator G are single layer networks, each with 500 hidden units, that 

learn a 100 dimensional latent space. The feature space discriminator Dv is a single layer 

network with 64 hidden units and the pixel space discriminator Dx is a two layer network 

with 500 and 100 hidden units. All networks are fully connected with leaky ReLU activation 

functions. We use 50,000 iterations of Adam updates with a learning rate of 10−4.

3. Methods

3.1. Data Preprocessing

The data consisted of 10,433 samples of RNA-Seq gene expression levels across 33 cancer 

types for 20,501 genes from TCGA obtained via the R Package curatedTCGA.13,14 For the 

purpose of this work, we only considered the RSEM15 normalized expression levels. We 

divided the data 70%, 20%, and 10% to train, test, and holdout datasets, respectively.

Way et al. demonstrated that preprocessing gene expression levels by scaling gene-wise 

expression levels (across all samples) to between 0 and 1 yields a trainable latent space.9 We 

adapted this procedure by first clipping expression levels to fall within 3 standard deviations 

from the mean of gene-wise expression levels followed by the same min-max normalization 

of Way et al..9

3.2. Classification Tasks

We assessed two classification tasks using the UFDN. The first Cancer Status task was 

classifying a sample as tumor or normal. The second Domain task was predicting cancer 

domain, one of 33 types of cancer in the TCGA.

We compared three different ways of using UFDN-TCGA on these tasks:
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• UFDN-MSE: Classify a sample’s type by encoding the sample and decoding it 

into all 33 domains, predicting the type of the domain with lowest reconstruction 

error as defined by mean square error (MSE).

• Unsupervised UFDN: Inspired by the unsupervised domain adaptation 

experiments from Liu et al.,12 this algorithm predicts cancer status by encoding a 

sample into the latent space, then decoding it into the mesothelioma domain, 

regardless of input domain. We trained a random forest classifier to predict 

cancer status on mesothelioma training data, then use the prediction of this 

classifier to predict cancer status in the original input domain. The motivation for 

this approach is that the classifier trained on mesothelioma data is strong but the 

test data of interest is of a different cancer type.

• Semi-supervised UFDN: A hybrid of the two above algorithms used to predict 

cancer status and type. First, predict cancer type using UFDN-MSE. Then, 

predict cancer status using a random forest classifier trained on that specific 

type’s status data.

3.3. Interpolation Analysis

We encoded 95 samples of SKCM (skin cutaneous melanoma) from our test set partition of 

the TCGA into our latent space using our trained UFDN. Then, we interpolated the samples 

into glioblastoma (GBM) at four different fractions of interpolation: 25%, 50%, and 75%, 

and 100%. The 100% interpolation represents a prediction of gene expression levels of the 

SKCM samples as GBM samples.

In order to analyze how gene expression changed between SKCM samples and these 

samples as GBM, we performed a differential expression analysis using edgeR.16,17 This is 

an R package that uses a negative binomial distribution model to analyze significant gene 

expression changes between two groups.16,17 Although normally edgeR works with raw 

read counts, more recently the package creator has stated that RSEM normalized reads are 

also suitable for use with edgeR.18

We applied the inverse transformation of our min-max normalization to our four interpolated 

datasets since our UFDN decodes gene expression levels to within the range of [0,1]. Then 

we used edgeR to find differentially expressed genes between SKCM samples and 100% 

GBM interpolated samples. A p-value threshold for differential expression was set at p =.

05/20501 = 2.438 ∗ 10−6 to control for false discovery.

Analyzing every single gene that significantly changed between SKCM and GBM would be 

a computational challenge, so we used integrative non-negative matrix factorization 

(IntNMF) to learn metagenes that summarized gene expression changes.19 IntNMF learns a 

reduced dimensionality representation across multiple datasets.19 IntNMF learns a shared 

basis matrix W ∈ ℝp × k and where p is the number of features (here, the differentially 

expressed genes) and k is the number of metagenes, k << p. Each dataset Dj is described by 

a learned matrix H j ∈ ℝk × n where n is the number of samples in the dataset.19 Each row of 

Hj represents the linear combination of metagenes of W that combine to reconstruct the 
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original sample in Dj.19 We chose k = 60 based on an analysis of the reconstruction error 

∑ j D j − WH j F
, where F is the Frobenius norm. We learned W and Hj for each dataset 

using the R package IntNMF.19

Every element g of column W(i) is non-negative and represents the contribution of gene g to 

the i-th metagene.19 Each element s of the n-th row of Hj represents the contribution of 

metagene s to the n-th sample of the j-th dataset. We can analyze how these metagenes 

change over the different interpolation datasets in order to understand how gene expression 

is changing.19

Finally, to understand the broad composition of the metagenes discovered by IntNMF, we 

used Gene Ontology (GO) enrichment analysis. GO terms are an ontology of three 

categories: biological processes, molecular function, and cellular component. They link 

together information about the functions and relationships of genes and proteins. topGO is 

an R package that analyzes if GO terms, which have been mapped to genes, show up more 

often than expected in a set of genes and associated scores for each gene.20

We used test similar to the Kolmogorov-Smirnov test known as Gene Score Enrichment 

Analysis that calculates p-values of enrichment based on a score for each gene.20 We tested 

each metagene derived from IntNMF with the score for gene g as Wg
(i) . 20 By looking at the 

top scoring GO terms for each metagene, we understand what sort of genes are changing as 

we interpolate between cancer types.20

4. Results

4.1. UFDN Training and Performance

First, we validated that our UFDN learned a disentangled latent space representation of 

TCGA RNA-Seq data. Liu et al. define a latent space as disentangled if domain information 

is uncoupled from representation in the latent space.12 Figure 3 shows the TCGA data and 

latent space encodings projected into UMAP space.21 UMAP learns a Riemann manifold 

representation of the data.21 We observed distinct clusters by cancer types for both the 

original data, but less distinct clusters for the encodings. This represents a disentangling of 

domain information and latent space representation and allows for interpolation between 

domains.

Next, we estimated the ability of our UFDN to take data from a source domain (original 

cancer type) and interpolate these data into a target domain (new cancer type). We 

considered the fraction of the k nearest neighbors, in the training data, of the interpolated 

samples that were in the target domain as a measure of success. These decoding rates are 

shown in Figure 4. There were certain cancers that the UFDN was able to more robustly 

interpolate into. These included glioblastoma, acute myloid leukemia, mesothelioma, and 

prostate adenocarcinoma, among others. Difficult cancers to interpolate into were sarcomas, 

which are a heterogeneous subcategory of soft tissue cancers, and cervical squamous cell 

carcinoma.
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Finally, we analyzed our UFDN’s performance on two classification tasks: Cancer Status 
and Domain prediction. Table 1 reports the performances of our three UFDN classification 

algorithms as compared to a random forest baseline. The random forests had a maximum 

depth of 15 and were composed of 100 trees. The Semi-supervised UFDN algorithm was 

able to match the performance of random forests on the cancer status task and was 

comparable on the cancer type task. Other UFDN algorithms were less successful compared 

to the baseline.

4.2. Gene Expression Changes

After interpolating 95 samples of SKCM from the test set into GBM, we analyzed which 

genes had significant changes in expression between the SKCM and 1.0-GBM samples. 

Using edgeR, we looked for genes that had differential expression that exceeded a 

significance threshold of p = 2.43 ∗ 10−6, which accounts for the Bonferroni correction. 

There were 10,557 genes that exceeded this threshold.

For the 10,557 differential expressed genes, we learned a shared basis W using IntNMF. By 

varying the rank of that basis, we were able to decrease the reconstruction error across 

datasets SKCM, 0.25-GBM, 0.5-GBM, 0.75-GBM, and 1.0-GBM. We chose k = 60 for 

subsequent analysis based on the inflection point of this reconstruction curve (see 

Supplementary Materials). Hutchins et al. suggest that this is an optimal way to select k for 

NMF.22

Finally, we visualized the rows of Hj for each dataset in {SKCM, 0.25-GBM, 0.50-GBM, 

0.75-GBM, 1.00-GBM}. The columns of each heatmap in Figure 5 represent the relative 

activation of the respective metagene. As interpolation towards GBM increases, distinct 

metagenes increase their responsibility for reconstructing Hj. In SKCM, metagene 36 has the 

most representation in the data. For 0.25-GBM, 0.50-GBM, and 0.75-GBM, metagenes 15, 

32, and 1 had the most representation in the data, respectively.

In the 1.00-GBM heatmap (Figure 5 E), we saw the increased activation of metagene 23. 

When we took 33 samples of TCGA GBM data from the test set and learned the matrix 

HGBM that minimized reconstruction error DGBM − W |HGBM F
 for the same, fixed, W 

learned previously by IntNMF, we observed the same metagene 23 dominating (Figure 5 F).

We proceeded to analyze the dominant metagene for every dataset Hj for GO term 

enrichment. In the interest of space, we only report the top 15 most enriched GO terms for 

metagene 23 based on p-value. Table 2 reports the GO term as well as p-value for each term.

Additional analysis was performed after controlling for false positive in edgeR results using 

the Wilcoxon signed-rank test. See the Supplementary Materials for this analysis.

5. Discussion

Our UFDN was able to learn a biologically relevant latent space encoding of TCGA data. 

Classification task results in Table 1 indicate that our UFDN was able to compete with 

random forests that were trained on all 20,501 gene expression features. This indicates our 
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algorithm was able to learn an efficient, useful embedding of gene expression data. Some 

UFDN classification methods likely performed worse than random forest methods due to a 

reduction in dimensionality. UFDN-MSE, semi-supervised, and unsupervised classification 

methods all encode gene expression from the 20,501 TCGA space into a 100 dimensional 

latent space. This encoding decreases the amount of information available to downstream 

classifiers (even after decoding), resulting in a decrease in performance. The goal of this 

analysis was not to learn a state-of-the-art classifier for cancer status/domain, but rather 

validate that our UFDN retains information about cancer status/domain.

Figure 3 demonstrates that we learned an encoding that disentangled domain information 

from latent space representation. Additionally, our UFDN could robustly interpolate into 

many cancer domains. Figure 4 demonstrates that interpolated gene expression levels are 

comparable to real gene expression levels. Since interpolated gene expression levels are 

consistently near real training samples of the target domain according to mean square error, 

we are accurately recapitulating gene expression levels.

We observed 10,557 differentially expressed genes between SKCM and 1.0-GBM 

interpolated samples. edgeR was mainly employed to reduce the number of genes analyzed 

with IntNMF. This reduction in dimensionality allowed us to make IntNMF computationally 

tractable. A further reduction in dimensionality was done by filtering with the Wilcoxon 

ranked-sign test for differentially express genes. 8,878 genes remained after Wilcoxon 

filtering. Alternative gene filtering methods could be considered in future works. The lower 

number of genes considered in IntNMF, the faster the learning of the shared basis W and 

dataset specific Hj. Analysis of the reconstruction error from IntNMF informed our choice of 

60 metagenes (see Supplementary Materials). In Figure 5, we investigated how the relative 

weighting of each metagene change for each partial interpolation. We observed unique 

metagenes increasing in importance for each partial interpolation. This is an approximation 

of how gene expression profiles change during metastasis.

When we learned HGBM, the representation of TCGA GBM samples with respect to the 

basis W, something remarkable happened. Note that W was not informed by the TCGA 

dataset GBM at all. W was simply the shared basis trained by IntNMF on interpolation 

datasets SKCM (equivalently, 0.00-GBM), 0.25-GBM, 0.5-GBM, 0.75-GBM, and 1.0-

GBM. Yet when H1.0−GBM and HGBM were compared side by side in Figure 5 E&F, their 

metagene activation profiles were dominated by the same metagene 23. Therefore, our 

interpolation from SKCM to GBM successfully recapitulated observed gene expression 

activity.

One advantage of the UFDN interpolations as compared to standard differential expression 

techniques is that we can look at which metagenes are activated for these partial 

interpolations. Metagene 23 would likely be recovered if you learn a new basis on just 

differentially expressed genes between TCGA-SKCM and TCGA-GBM. However, the 

UFDN interpolations allow us to examine what metagenes are activating as cells are 

transformed from one cell type to another in silico. Clearly, having gene expression data 

from cells undergoing metastasis would be ideal to understand the transition from SKCM to 
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GBM. The UFDN interpolations allow us to make hypotheses about which groups of genes 

are activating during metastasis.

Furthermore, when we explored several of the GO terms identified by a GO term enrichment 

analysis, metagene 23 was enriched for terms related to glioblastoma. GO:0008376 

represents a glycoprotein with a known association to glioblastoma.23,24 GO:0004126 refers 

to cytidine deaminase activity. Cytidine deaminase gene therapy has been identified as a 

potential treatment for glioblastoma.25,26 GO:0048020 and GO:0008009 are associated with 

chemokines, which are implicated in glioblastoma development.27,28 Our metagenes learned 

glioblastoma-specific genes and our UFDN interpolated skin cancer samples to 

glioblastoma. Further analysis of the metagenes activated during interpolations 0.25-GBM, 

0.50-GBM, and 0.75-GBM could provide starting points for the investigation of the 

metastasis pathway from SKCM to GBM. This could help explain the association between 

melanoma and glioblastoma that is currently not understood.4,5

One factor that remains unexplored in this work is tumor purity. It would be interesting to 

see how different levels of tumor purity cluster in the UFDN latent space. Would all samples 

from one domain cluster together regardless of purity? How would they stratify within said 

cluster? These questions could be answered by using copy number information available in 

the TCGA and running FACETS to quantify purity.29 We could also consider making 

synthetic datasets and training a new UFDN.

Ultimately, a significant limitation of this method is analyzing out of domain samples. This 

UFDN has been trained on specific cancer types and gene sets. When adding additional data 

sources, it is necessary to retrain the network. Additionally, the UFDN model currently 

requires a uniform number of input features across all samples. If some samples have 

incomplete feature sets, they likely cannot be used for training or evaluation.

6. Conclusion

Our UFDN learned a biologically relevant latent space that facilitated meaningful 

interpolations between cancer domains. Our latent space can be used to generate more 

examples of transitions between cancers types. Our interpolations from SKCM to GBM have 

feasible biological interpretations and suggest possible gene expression changes during the 

transition from melanoma to glioblastoma.

6.1. Code and Supplementary Materials

All of our code and Supplementary Materials is available at https://github.com/bkompa/

UFDN-TCGA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
We encoded RNA-Seq samples from skin cutaneous melanoma and decoded them into 

glioblastoma using UFDN-TCGA, then analyzed which sets of genes were changing 

between cancer types.
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Fig. 2: 
The neural network architecture of UFDN-TCGA.
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Fig. 3: 
UMAP projections of the RNA-Seq TCGA data (Figure 3A) and UFDN latent space 

encodings of said data (Figure 3B). The full 20,501 dimensional representation of gene 

expression levels have more cancer specific clusters, while the 100 dimensional latent space 

encodings have uncoupled from domain information, to some extent.
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Fig. 4: 
The fraction of k nearest neighbors that were in the target domain (the rows of the figures) 

after decoding from a source domain (the columns of the figures). Some domains were 

noticeably more difficult to interpolate into. Glioblastoma had strong interpolation results 

across k ∈ [1,5,10,20].
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Fig. 5: 
Heatmap visualization of the Hj matrices for each interpolation of the SKCM test data set. 

No row or column reordering was done to keep consistent metagene order across datasets. A 

full interpolation of SKCM data into GBM data results in a consistent activation of 

metagene 23 (Figure 5E). This is replicated in HGBM (Figure 5F), which was optimized 

against the fixed W basis learned for the other 5 datasets.
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Table 1:

Results on two classification tasks compared to a random forest baseline.

Algorithm Cancer Status Acc (Train/Test) Domain Acc (Train/Test)

Random Forests 99.60%/98.41% 99.65%/95.20%

UFDN-MSE — 96.51%/94.10%

Unsupervised UFDN 95.60%/86.14% —

Semi-supervised UFDN 99.60%/98.41% 96.51%/94.10%
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Table 2:

The top 15 Gene Ontology Terms enriched in metagene 23

GO ID Term p-value

GO:0003676 Nucleic acid binding 5.20E-19

GO:0003735 Structural constituent of ribosome 2.70E-15

GO:0003723 RNA binding 3.90E-14

GO:0003677 DNA binding 1.60E-12

GO:0005198 Structural molecule activity 3.80E-12

GO:0000981 DNA-binding transcription factor activit... 4.70E-12

GO:0003700 DNA-binding transcription factor activit... 3.50E-11

GO:0140110 Transcription regulator activity 2.80E-09

GO:0008376 Acetylgalactosaminyltransferase activity 4.10E-08

GO:0043492 ATPase activity, coupled to movement of... 1.00E-07

GO:0060089 Molecular transducer activity 1.30E-07

GO:0004126 Cytidine deaminase activity 2.10E-07

GO:0019239 Deaminase activity 4.50E-07

GO:0048020 CCR chemokine receptor binding 7.30E-07

GO:0008009 Chemokine activity 8.10E-07
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