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Centrin is an evolutionarily conserved EF-hand-containing protein, which

is present in eukaryotic organisms as diverse as algae, yeast, and humans.

Centrins are associated with the microtubule-organizing center and with

centrosome-related structures, such as basal bodies in flagellar and ciliated

cells, and the spindle pole body in yeast. Five centrin genes have been iden-

tified in Trypanosoma brucei (T. brucei), a protozoan parasite that causes

sleeping sickness in humans and nagana in cattle in sub-Saharan Africa. In

the present study, we identified that centrin5 of T. brucei (TbCentrin5) is

localized throughout the cytosol and nucleus and enriched in the flagellum.

We further identified that TbCentrin5 binds Ca2+ ions with a high affinity

and constructed a model of TbCentrin5 bound by Ca2+ ions. Meanwhile,

we observed that TbCentrin5 interacts with TbCentrin1, TbCentrin3, and

TbCentrin4 and that the interactions are Ca2+-dependent, suggesting that

TbCentrin5 is able to form different complexes with other TbCentrins to

participate in relevant cellular processes. Our study provides a foundation

for better understanding of the biological roles of TbCentrin5.

Centrins are a member of the EF-hand calmodulin

(CaM) superfamily, which are highly conserved in

eukaryotic cells. Centrins were initially identified in

unicellular green algae [1], as the essential components

of basal bodies-associated and Ca2+-sensitive contract-

ing fibers. Subsequently, homologous centrin proteins

were observed in the microtubule-organizing center

[2–5]. The functions of centrins were diverse in the cel-

lular processes, including spindle pole body duplication

[4], cellular morphogenesis [6], nucleotide excision

repair [7], mRNA export [8], and protein degradation

[9]. In green algae, the flagellar contraction is regulated

by contractile fibers containing centrin and the con-

traction depending on the increase in intracellular con-

centration of Ca2+ ions [1,10], suggesting that centrin

is responsible for Ca2+-dependent cell motility. Target

Sfi1 in yeast and its homologous protein (hSfi1) in

humans were identified to interact centrins and respon-

sible for SPB duplication [11,12]. In humans, two cen-

trins (HsCentrin1 and HsCentrin2) with high sequence

identity are involved in the centrosome/basal body seg-

regation, ciliary beating, and mRNA and protein

export [2,3,13–15]. HsCentrin3 is involved in centro-

some/basal body duplication [16,17].

The overall topology of centrins or centrin/target

peptide complexes reported by NMR spectroscopy or

X-ray crystallography [6,11,18–21] is highly conserved

and similar to CaM and troponin (TnC). The structure

of centrin generally contains four EF-hands comprised

of seven to eight a-helices. The structure of centrin can

be divided into two independent domains, N-terminal

domain (NTD) and C-terminal domain (CTD). Each

Abbreviations

CaM, calmodulin; CTD, C-terminal domain; DAPI, 4’,6-diamidino-2-phenylindole; ITC, isothermal titration calorimetry; NTD, N-terminal

domain; RT-PCR, reverse transcription-PCR; TnC, troponin.

1421FEBS Open Bio 9 (2019) 1421–1431 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

mailto:
mailto:


domain contains a pair of EF-hands. The two domains

are linked by a loop or a long a-helix and form a

dumbbell structure. In all structures of centrins except

Mus musculus Centrin1 (MmCentrin1) [19] and

Chlamydomonas reinhardtii centrin (CrCentrin) [22],

the two EF-hands of CTD instead of all the four EF-

hands can be saturated by Ca2+ ions. The highly con-

served CTD shows a higher affinity with Ca2+ ions

and other partners [11,23,24]. Meanwhile, NTD con-

taining unconserved and unstructured 20–25 residues

at the front shows a lower affinity with Ca2+ ions and

its partners [11,20]. Compared with CaM and TnC,

the extended 20–25 residues in the NTD may have spe-

cialized biological function that is metal ion-dependent

during self-assembly of centrin [25,26].

In Trypanosoma brucei (T. brucei), a protozoan par-

asite that causes sleeping sickness in humans and

nagana in cattle in sub-Saharan Africa, five centrin

isoforms have been identified [27,28]. TbCentrin1

(Tb927.04.2260) and TbCentrin2 (Tb927.08.1080) are

localized to the basal body and are essential for basal

body duplication [27]. TbCentrin3 (Tb927.10.8710) is

localized in the flagellum and is required for the flagel-

lar motility [29]. TbCentirn4 (Tb927.07.3410) is local-

ized to both the basal bodies and the bilobe structure

and is involved in organelle segregation and the co-

ordination between karyokinesis and cytokinesis

[30,31]. The role of centrin5 of T. brucei (TbCentrin5;

Tb927.11.13900) is still unknown.

Here, we investigated the localization of TbCentrin5

in T. brucei and identified the interactions between

TbCentrin5 and Ca2+ ions. We further identified that

TbCentrin5 is able to interact with other TbCentrins

and the interactions are Ca2+-dependent. The work

will provide a basis for better understanding of the

biological functions of TbCentrin5.

Materials and methods

Phylogenetic analyses of centrin protein

sequences

The centrin protein sequences of T. brucei were obtained

from TriTrypDB (https://tritrypdb.org/tritrypdb/). All

other centrin protein sequences were obtained from NCBI

protein database (https://www.ncbi.nlm.nih.gov/protein)

and UniProt (https://www.uniprot.org/). Sequences were

aligned using CLUSTALX [32] with default alignment parame-

ters. The sequence trees were reconstructed with Neighbor-

Joining algorithm using MEGA7 [33]. Bootstrap analysis

(> 70, based on 500 replicates) provided a confidence mea-

sure for the detected relationships of branches in the phylo-

genetic tree.

Cell culture

The wild-type procyclic Lister 427 strain was cultivated at

28 °C in Cunningham’s medium supplemented with 10%

FBS. The procyclic 29-13 strain [34] was cultivated at

28 °C in Cunningham’s medium containing 10% FBS, sup-

plemented with 15 lg�mL�1 G418 and 50 lg�mL�1 hygro-

mycin.

RNA interference

RNA interference (RNAi) of TbCentrin5 was performed

using the RNAi vector pZJM. Recombinant pZJM vector

containing segment (nucleotide number 121–420) of TbCen-
trin5 was linearized and electroporated into T. brucei pro-

cyclic forms from 427 strain. The transfection by

electroporation was carried out as follows: Briefly, 108 cells

were harvested and washed twice with cytomix buffer

(120 mM KCl, 0.15 mM CaCl2, 10 mM K2HPO4, 10 mM

KH2PO4, 25 mM Hepes, 2 mM EGTA, 5 mM MgCl2, 2 mM

ATP, 5 mM glutathione, pH 7.6) and suspended in 0.45 mL

of cytomix buffer containing 30 lg of the linearized vec-

tors. Electroporation was carried out in a 2-mm cuvette

(Bio-Rad, Berkeley, CA, USA) using the Gene Pulser

(BTX ECM630, Holliston, MA, USA) with parameters set

as follows: 2.0 kV voltages, 25 lF capacitance, and 200 Ω
resistance. The transfected cells were immediately trans-

ferred into 10 mL of fresh Cunningham’s medium. Trans-

fectants were selected with 10 lg�mL�1 zeocin and were

induced with 1.0 lg�mL�1 tetracycline.

In situ epitope tagging of endogenous proteins

For in situ tagging of TbCentrin5, the cDNA segment (nu-

cleotide number 121–558) was cloned into pC-EYFP-NEO

vector [35]. The recombinant vectors were linearized and

electroporated into T. brucei procyclic forms from 427

strain. The transfection conditions were the same described

as above. Successful transfectants were selected under

2.5 lg�mL�1 G418. Expression of TbCentrin5-EYFP fusion

protein was verified by western blotting.

Immunofluorescence microscopy

Cells stably expressing TbCentrin5-EYFP were harvested

and washed twice with PBS. Resuspended cells were fixed

with 4% paraformaldehyde and washed with PBS. Fixed

cells were settled on the coverslip at room temperature for

30 min. The cells were stained with 40,6-diamidino-2-

phenylindole (DAPI) and examined with an inverted micro-

scope (Model IX73; Olympus, Tokyo, Japan). Images were

analyzed by IMAGEJ (NIH, Bethesda, MD, USA).

Protein expression and purification

Full-length gene encoding TbCentrin5 was amplified by

PCR from the genomic DNA of T. brucei and cloned into
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a modifier vector pET-28a (+) (Novagen, Darmstadt, Ger-

many), which provided a cut site of TEV protease at the N

terminus to remove His-tag. The recombinant vector was

transformed into Escherichia coli BL21 (DE3). The trans-

formed cells were cultured in LB at 37 °C until OD600

reached 0.8 and induced by 0.5 mM IPTG at 16 °C for

20 h. The cells were harvested and purified in lysis buffer

containing 20 mM Tris and 500 mM NaCl at pH 7.0. The

eluted protein was digested by TEV protease and further

purified by gel filtration column Sephadex G-75 (GE

Healthcare, Chicago, IL, USA).

Structure modeling

The 3D structure of TbCentrin5 or the complex of TbCen-

trin5 and Ca2+ ions was carried out using SWISS-MODEL

based on homology modeling techniques [36]. The evolu-

tionarily related protein structures were searched as tem-

plates based on the amino acid sequence of TbCentrin5.

More than five hundred templates were searched and esti-

mated by Global model quality estimate (GMQE) [37] and

quaternary structure quality estimate (QSQE) [38]. Top-

ranked templates were selected as templates for building

model automatically. The model was finally evaluated and

optimized by pairwise distance constraints that represented

ensemble information from all template structures found.

Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) measurements were

performed on iTC200 (GE Healthcare) at 16 °C to investi-

gate the Ca2+-binding capacity and the interactions between

TbCentrin5 and TbCentrin1/2/3/4. Samples of TbCentrin5

titrated with Ca2+ ions were mixed with EGTA to remove

potential Ca2+ ions and then further purified by gel filtration

column Sephadex G-75 (GE Healthcare). TbCentrin5 and

calcium ions were equilibrated in the same buffer containing

20 mM Tris/HCl (pH 7.0) and 100 mM NaCl. 0.1 mM TbCen-

trin5 in cell was titrated against 2.0 mM CaCl2 from syringe.

Two microliter of CaCl2 was injected into 0.2 mL TbCen-

trin5 at 120 s intervals. Samples of TbCentrin1/2/3/4 titrated

with TbCentrin5 were purified and equilibrated as above

expect mixed with EGTA or not. Fifty micromolar TbCen-

trin1/2/3/4 in the cell was titrated against 0.5 mM TbCentrin5

from the syringe with the same sample volume and rotate

speed. The data collected were analyzed by MICROCAL LLC

ITC software (MicroCal, Malvern, UK).

Sedimentation assay

Sedimentation assay was carried out according to the pro-

cedures published previously [29]. In brief, the wild-type

29-13 cell line, the noninduced control cells, and TbCen-

trin5 RNAi cells after tetracycline induction for 3 days

were each suspended to ~ 59106 cells�mL�1 in fresh

medium. Each cell line was cultured in two cuvettes and

incubated at 26 °C and was measured by optical density

(600 nm) every 2 h. To monitor the OD600, one cuvette

was resuspended for monitoring cell growth while the other

cuvette was not disturbed for monitoring sedimentation.

The change in the OD600 (DOD600) was calculated by sub-

tracting the OD600 of the resuspended sample from that of

the undisturbed sample. The experiment was repeated three

times.

Results and Discussion

Phylogenetic analysis of TbCentrin5

To further understand the position of TbCentrin5 in

evolution and its relationship with other centrins that

have been identified in other organisms, a phylogenetic

analysis was performed using a Neighbor-Joining

method (Fig. 1A). Because the sequences of centrins

are conserved, Neighbor-Joining method was selected.

The presence of sequences of centrins from animal,

fungi, and protist in this evolutionary tree indicates

that those centrins come possibly from an ancestral

protein in eukaryotic evolution. In the evolutionary

tree, centrins from T. brucei are on different branches

with centrins from higher animal, but closer to centrins

from fungi and other protest, especially to centrins

from Leishmania major (L. major) which belong to the

same family of Trypanosomatidae as T. brucei. TbCen-

trin5 and TbCentrin2 were on utterly different

branches with other centrins but same as LmCentrin4

and LmCentrin3, suggesting that TbCentrin5 and

TbCentrin2 are far from other centrins but closer to

LmCentrin4 and LmCentrin3. The phylogenetic analy-

sis indicated the position of TbCentrin5 and its rela-

tionship with other centrins, which is helpful for us to

determine the location of Trypanosoma genera in the

evolution.

TbCentrin5 is localized throughout the cytosol

and nucleus and enriched in the flagellum

To determine the subcellular localization of TbCentrin5,

TbLa was endogenously tagged with EYFP at the C ter-

minus. The level of TbCentrin5-EYFP fusion protein

was examined by western blot with GFP probe, which

indicated the successful expression of TbCentrin5-

EYFP in vivo (Fig. 1B). Fluorescence microscopy

demonstrated that TbCentrin5-EYFP appeared to

spread throughout the cell and was enriched in flagellum

(Fig. 1C). Intriguingly, the localization of TbCentrin5 in

nucleus changed through the cell cycle. In the early stage

(1N1K) of the cell cycle, TbCentrin5 was slightly
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distributed in nucleus. As the cell cycle progressed

(1N2K and 2N2K), the distribution of TbCentrin5 in

nucleus became stronger. The results suggested that

TbCentrin5 might be involved in the karyokinesis.

Sequence analysis of TbCentrin5

The sequence of TbCentrin5 was aligned with other

centrins from T. brucei, L. major and Homo sapiens

using CLUSTALW2 and ESPRIPT 3.0 [32,39]. TbCentrin5

shares about 29%, 33%, 27%, 31%, 38%, and 45%

sequence identity with TbCentrin1-4, HsCentrin1, and

LmCentrin2, respectively (Fig. 2). The result of

sequence alignment also verified the credibility of the

evolutionary tree in Fig. 1A. Although the structures

of centrins are conserved [6,11,18–21], the sequences of

centrins show diversity. Especially, the sequences of

the first ~ 25 residues at the N terminus show diverse

length and very low similarity. In contrast with CaM

and TnC, the extended ~ 25 amino acids at the N

1N2K

2N2K

1N1K

DAPI             TbCentrin5-EYFP          Merge  

25

35

45

60

80

kDa

55

TbCentrin5-EYFP

α-tubulin

A B C

Fig. 1. Characterization of TbCentrin5. (A) Evolutionary tree of centrins. Numbers on branches represent bootstrap support values. Hs,

Human sapiens; Mm, Mus musculus; Cr, Chlamydomonas_reinhardtii; Tg, Toxoplasma gondii; Eo, Euplotes octocarinatus; Sd, Scherffelia

dubia; Sc, Saccharomyces_cerevisiae; Tt, Tetrahymena thermophila; Ld, Leishmania donovani; Lm, Leishmania major; Tb, Trypanosoma brucei;

(B) The expression of TbCentrin5-EYFP examined by western blot with anti-GFP probe. The levels of a-tubulin served as the loading control.

(C) The subcellular localization of TbCentrin5. The localization of TbCentrin5-EYFP (green) was examined in paraformaldehyde-fixed intact cells.

Cells were stained DAPI for DNA (blue), small blue dots are kinetoplasts, and large blue structures are nuclei. 1N1K, 1N2K, and 2N2K cells

were tabulated, respectively. Scale bars: 5 lm.

Fig. 2. Multiple sequence alignments of TbCentrin5 with other centrins. Tb, Trypanosoma brucei; Hs, Homo sapiens; Lm, Leishmania major.

Identical residues are shaded in red box, and conserved residues are colored in red.
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terminus of centrins display diversity in length and

sequence, indicating that centrins may have more ver-

satile functions than CaM and TnC.

Structure modeling of TbCentrin5

To better understand the functions of TbCentrin5,

the model of TbCentrin5 was built using SWISS-

MODEL [36], which builds model based on homol-

ogy modeling techniques. Because the first 25 amino

acids of TbCentrin5 show low conservation, the

sequence of TbCentrin5 without the first 25 amino

acids was placed for modeling. A total of 4015 tem-

plates were found from template library extracted

from the PDB [40] to match the sequence of TbCen-

trin5, and five templates were selected for modeling.

The quality of model built by SWISS-MODEL is

rapidly reduced when sequence identity is below

~ 30% and is reliable when sequence identity is more

than ~ 40% [41,42]. Finally, MmCentrin1 (PDB: 5d

43), HsCentrin2 (PDB: 2ggm), SdCentrin (PDB: 3kf

9), and CrCentrin (PDB: 3qrx) with respective

sequence identity of 43%, 42%, 41%, and 39% were

selected to build model (Fig. 3). The scores of the

model estimated by GMQE and QSQE were 0.64 and

�1.23, respectively. In addition, the analysis of

Ramachandran plots showed that 96% of the residues

are in the most favored region (Fig. 4). The evalua-

tion indicated that the model is of high quality and

reliable. The structure model of TbCentrin5 is com-

prised of four EF-hands containing seven a-helices.
Interestingly, a very short a-helix was formed in the

loop of EF-hand IV because the loop is longer than

that in general EF-hand. TbCentrin5 is divided into

NTD and CTD by the long a4 and adopts a shape

like a dumbbell.

Purification of TbCentrin5

Centrin5 of T. brucei was expressed and purified as

described above. The elution volume of TbCentrin5

from Superdex G-75 column is approximate 66 mL,

which corresponds to a molecular weight about

36 kDa (Fig. 5A). The calculated molecular weight of

TbCentrin5 containing 186 amino acids is about

20 kDa. In addition, SDS/PAGE indicated no

Fig. 3. Structure model of TbCentrin5. The

model was built by SWISS-MODEL based

on homology modeling techniques.
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disulfide bond formation of the purified TbCentrin5

proteins, which suggested TbCentrin5 was expressed

and purified as a homodimer.

TbCentrin5 binds to Ca2+ ions with a high affinity

As an important second messenger, Ca2+ ion is

involved in many biological regulation processes [43].

ITC was performed to investigate the Ca2+-binding

property of TbCentrin5 (Fig. 5B). The result showed

that TbCentrin5 (pretreated with EDTA) binds to

Ca2+ ions with a high affinity (Kd = 4.8 lM) in an

exothermic mode and one molecule of TbCentrin5 is

able to bind two Ca2+ ions (N = 2).

The Ca2+-binding mode of TbCentrin5 is similar

to that of TbCentrin4 [21], HsCentrin2 [20,44], and

ScCdc31 [11] where one centrin molecule binds two

Ca2+ ions. In other Ca2+-binding modes, one centrin

molecule binds more than two Ca2+ ions [19,22].

Because of the higher binding affinity of CTD of

centrins compared with NTD, CTD was preferen-

tially saturated with Ca2+ ions [11,20,23,24]. There-

fore, the Ca2+-binding site of TbCentrin5 should be

located in the CTD containing EF-hand III and

EF-hand IV. The structure model of TbCentrin5

bound by Ca2+ ions was built using SWISS-

MODEL (Fig. 5C). As a Ca2+-binding motif, EF-

hand contains the specific amino acid sequences
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Residues in generously allowed regions  [~a,~b,~l,~p]      0   0.0%
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Fig. 4. The model of TbCentrin5 was

evaluated by Ramachandran plots.
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Fig. 5. The Ca2+ binding of TbCentrin5. (A) Gel filtration of Superdex G-75 column and SDS/PAGE analysis of TbCentrin5. (B) Saturated

titration of TbCentrin5 with Ca2+ ions was measured by ITC. (C) The model of TbCentrin5 bound by Ca2+ ions. Ca2+-binding site at the loop

of EF-hand III (D) and EF-hand IV (E). Cyan-colored sticks represent the residues which interact with Ca2+ ions, red represents oxygen atom,

blue represents nitrogen atom. Magenta lines represent coordinated bonds.

Table 1. The sequence preference of the loop in EF-hand. bb, backbone; sc, side chain.

EF-hand l

oop position 1 2 3 4 5 6 7 8 9 10 11 12

Coordinated

ligand

X

sc

Y

sc

Z

sc

�Y

bb

�X

sca
�Z

sc2

Most

common

Asp

100%

Lys

29%

Asp

76%

Gly

56%

Gly

56%

Gly

96%

Thr

23%

Ile

68%

Asp

32%

Phe

23%

Glu

29%

Glu

92%

Other

frequently

observed

Ala

Gln

Thr

Val

Ile

Ser

Glu

Arg

Asn Lys

Arg

Asn

Ser

Asn

Phe

Lys

Gln

Tyr

Glu

Arg

Val

Leu

Ser

Thr

Glu

Asn

Gly

Gln

Tyr

Ala

Thr

Leu

Glu

Lys

Asp

Lys

Ala

Pro

Asn

Asp

aThe ligand typically provided by a water molecule that is hydrogen-bonded to the side chain of the residues at position 9.
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(Table 1) [45] that provide carboxyl oxygen atoms

for coordinating Ca2+ ions. The residues (Asp117,

Tyr123, Asp128) in the loop of EF-hand III may

provide five coordinated bonds for Ca2+ ions bind-

ing (Fig. 5D). The conformation of EF-hands may

change due to the binding of Ca2+ ions to EF-

hands, resulting in the change of the direction of

Lys121, which may also provide a coordinated bond

for Ca2+ ions binding. The loop of EF-hand IV in

TbCentrin5 is longer than its counterparts in other

centrins (Fig. 2), resulting in the change of the loca-

tion of the residues that provide coordinated bonds

for Ca2+ ions binding. The residues (Pro154,

Asp162, Thr170, Glu175) in the loop of EF-hand

IV may provide six coordinated bonds for Ca2+ ions

binding (Fig. 5E). The residues in the EF-hand III

and EF-hand IV have the ability to provide suffi-

cient coordinated bonds for Ca2+ ions binding, indi-

cating TbCentrin5 has a high Ca2+-binding affinity

and forms a stable complex with Ca2+ ions.

Fig. 6. Interactions between TbCentrin5 and other TbCentrins. (A) GST-pull down assay. TbCentrin5-3HA was pulled down by GST-

TbCentrin1-4 and detected by western blot. ITCs of TbCentrin1-4 titrated with TbCentrin5 were performed without (B) or with (C) EGTA

treatment.
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TbCentrin5 interacts with other centrins

depending on Ca2+ ions binding

In T. brucei, five centrin isoforms have been identified

[27,28]. We have previously reported that TbCentrin4

interacts with TbCentrin1, TbCentrin2, and TbCen-

trin5 [21]. To investigate the interactions between

TbCentrin5 and other TbCentrins and further enrich

the interaction network of centrins from T. brucei,

GST-pull down assay and ITC were performed.

GST-fused TbCentrin1-4 and TbCentrin5-HA were

expressed and used in GST-pull down assay (Fig. 6A).

The results showed that TbCentrin5 interacts with

TbCentrin1, TbCentrin3, and TbCentrin4 but not

TbCentrin2.

To further investigate the binding affinity of TbCen-

trin5 with TbCentrin1, TbCentrin3, and TbCentrin4,

ITC analysis of TbCentrin1-4 titrated with TbCentrin5

was carried out (Fig. 6B). The results verified the inter-

actions between TbCentrin5 and TbCentrin1, 3, 4. The

dissociation constants (Kd values) of TbCentrin5 bind-

ing to TbCentrin1, TbCentrin3, and TbCentrin4 are

105, 52, and 12 lM, respectively.
In the above experiments, EGTA was not added to

remove the remaining Ca2+ ions in TbCentrins. In the

protein expression in LB culture medium and purifica-

tion procedures, Ca2+ ions may be copurified with

TbCentrins. Therefore, it is necessary to ensure com-

plete removal of Ca2+ ions by treatment of EGTA to

investigate the effect of Ca2+ ions on the interactions

between TbCentrin5 and other TbCentrins. ITC analy-

sis of TbCentrin1, 2, 3, 4 titrated with TbCentrin5 was

then performed without Ca2+ ions. In the absence of

Ca2+ ions, TbCentrin5 is not able to interact with

TbCentrin1, 2, 3, 4 (Fig. 6C). The results indicated

that TbCentrin5 interacts with TbCentrin1, 3, 4

depending on Ca2+ ions binding. Binding to Ca2+ ions

might induce the local conformational change of

TbCentrin5, which results in the exposure of more

hydrophobic region of TbCentrin5 to interact with

other TbCentrins. Owing to these interactions, TbCen-

trin5 is able to form different complexes with other

TbCentrins depending on cellular Ca2+ ions to partici-

pate in the relevant biological processes.

Depletion of TbCentrin5 does not compromise

the cell motility

To investigate whether depletion of TbCentrin5

impacts cell growth, RNAi targeting on TbCentrin5

was performed in procyclic 29-13 cell line. Quantitative

reverse transcription-PCR (RT-PCR) monitored that

the mRNA level of TbCentrin5 in the RNAi cells

decreased by ~ 80% compared with that in the nonin-

duced control cells after tetracycline induction for

2 days (Fig. 7A). The result demonstrated that deple-

tion of TbCentrin5 does not inhibit the cell growth sig-

nificantly (Fig. 7A).

TbCentrin5 has the same flagellum localization as

TbCentrin3, and the effect of TbCentrin5 RNAi on

cell growth is also similar to that of TbCentrin3 RNAi

[29]. It was reported that knockdown of TbCentrin3

compromised the cell motility [29]. Therefore, the

impact of knockdown of TbCentrin5 on the cell motil-

ity was also investigated. Sedimentation assay of cells

after TbCentrin5 RNAi was performed. Monitored

OD600 values among wild-type 29-13 cell line, the non-

induced control cells, and TbCentrin5 RNAi cells

showed no significant distinction (Fig. 7B). Under light

microscopy, cells after the deficiency of TbCentrin5

did not display any unusual phenotype such as spin-

ning and tumbling or losing motility compared with

the noninduced control cells. The results indicated that

Fig. 7. Sedimentation assays to monitor the cell motility. (A) Effect of TbCentrin5 RNAi on cell proliferation. Quantitative RT-PCR was used

to monitor the level of TbCentrin5 mRNA in noninduced control cells and RNAi cells (inset). (B) The parental 29-13 cell line, the noninduced

cells, and TbCentrin5 RNAi cells after tetracycline induction for 3 days were incubated in cuvettes. The change of cell density (DOD600) was

determined and plotted against the time of incubation (hours). Three independent experiments were carried out, and the error bars

represent SD.
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the depletion of TbCentrin5 does not compromise the

cell motility.

Conclusion

In conclusion, we identified that TbCentrin5 is local-

ized at the cytosol and nucleus and enriched in the

flagellum. We further identified that TbCentrin5 binds

Ca2+ ions with a high affinity and built the model of

TbCentrin5 bound by Ca2+ ions. Besides, we demon-

strated that TbCentrin5 interacts with TbCentrin1,

TbCentrin3, and TbCentrin4 depending on Ca2+ ions

binding, suggesting TbCentrin5 might be able to form

different complexes with other TbCentrins depending

on cellular Ca2+ ions to participate in the relevant bio-

logical processes. Our study will provide a basic infor-

mation for better understanding the biological

functions of TbCentrin5.
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