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Abstract: (1) Background: Recent evidence reported a reduced tolerance of macronutrient parenteral
intakes in subjects in critically ill conditions. We designed a prospective cohort study to evaluate the
effects of hyperglycemia (HG) related to parenteral nutrition (PN) on neurodevelopment (NDV) in
survived preterm newborns. (2) Methods: Enrolled newborns with gestational age < 32 weeks or
birth weight < 1500 g, were divided in two cohorts: (A) exposed to moderate or severe HG (glucose
blood level > 180 mg/dL) in the first week of life; (B) not exposed to HG. We considered as the
primary outcome the rate of preterm newborns survived without NDV delay at 24 months of life,
evaluated with Bayley Scales of Infants Development III edition. (3) Results: We analyzed 108 (A 32
vs. B 76) at 24 months of life. Newborns in cohort A showed a higher rate of cognitive and motor
delay (A 44% vs. B 22 %, p = 0.024; A 38% vs. B 8%, p < 0.001). When adjusting for background
characteristics, HG remained a risk factor for motor delay. (4) Conclusions: High nutritional intakes
through PN soon after birth increase the risk of HG. The consequences of this severe metabolic
complication affect long-term NDV and survival in preterm newborns.

Keywords: mortality; neurodevelopment; Bayley Scales of Infants Development; VLBW; metabolic
complication; maternal age

1. Introduction

It has been reported that, in developed countries, the survival rate of VLBW newborns
is about 90% [1]. Up to 60–70% of this population develop extrauterine growth retarda-
tion (EUGR) [2]. To limit EUGR in preterm newborns, current guidelines recommend to
administer high nutritional intakes in parenteral nutrition (PN) soon after birth [3]. It has
been reported that EUGR affects long-term neurodevelopment (NDV) [4]. However, long-
term efficacy of this nutritional approach in order to reduce EUGR, and thus to improve
NDV in children born preterm, is still debated [5–8]. We have previously demonstrated
that energy-enhanced PN early in life does not improve post-natal growth and results in
lower motor and socioemotional competence performance at 24 months of corrected age in
preterm babies independently to long-term growth [5,6].

Recent evidence reported a reduced tolerance of macronutrient parenteral intakes in
adults and children in critically ill conditions [9–12]. A randomized control trial including
critically ill neonates at term demonstrated that withholding PN for 1 week was clinically
superior to starting PN soon after birth for short-term outcomes [12].
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Hyperglycemia (HG), considered a marker of tolerance of energy intake given by PN,
has been associated with an increased rate of mortality in preterm newborns receiving
enhanced PN in comparison with standard PN in the first week of life [13]. The incidence
of HG in preterm babies ranges from 15% to 30%, in relation to the definition of the
threshold [14]. The occurrence of HG in early life has also been related to an impaired white
matter development revealed by magnetic resonance imaging (MRI) and to a worsening
long-term NDV in recent observational and case-control study [15,16].

In light of these considerations, we supposed that the occurrence of HG, related to PN,
could influence the rate of long-term NDV delay in children born preterm. To demonstrate
our hypothesis, we designed a prospective cohort study to evaluate the influence of HG
related to early-enhanced PN on NDV in survived preterm babies.

2. Materials and Methods
2.1. Study Design and Population

We considered eligible all newborns with gestational age (GA) < 32 weeks or body
birth weight (BW) < 1500 g, consecutively admitted from January 2015 to December 2019
to the neonatal intensive care unit (NICU) of Policlinico Umberto I Hospital in Rome,
requiring PN in the first week of life. Newborns with congenital diseases, inborn errors of
metabolism, congenital infections, and hospital discharge or death within 72 h of life in
terminal condition were excluded [17–20].

Blood glucose levels were monitored by validated micro-method, four to eight times a
day from the first days of life (DOL) and less frequently when the clinical conditions were
stabilized, from capillary blood and analyzed by point of care device Accu-Chek Inform II
glucometer (Roche, Indianapolis, IN, USA) [21]. The HG was defined as two consecutive
blood glucose levels greater than 180 mg/dL, at least 3 h apart, and was categorized as
moderate (181–239 mg/dL) or severe (>240 mg/dL). Enrolled newborns were divided into
two Cohorts: (A) newborns exposed to moderate or severe HG in the first week of life; (B)
neonates not exposed to HG.

2.2. Outcome

We considered as the primary outcome the rate of preterm newborns survived without
NDV delay at 24 months of life. We also evaluated the occurrence rate of major prematurity-
related morbidity, length of hospital stay, and EUGR.

2.3. Data Collection

Medical staff, blinded to the study aims, evaluated the eligibility criteria. They were
in charge of the babies and monitored the blood glucose levels. Researchers not involved
in the NICU clinical practice and unaware of the study aims recorded information in
a specific data form for statistical analysis, which was performed by a blinded statistician.
A third-party observer, not involved in clinical practice, collected data on NDV.

Prenatal, perinatal, and postnatal data were prospectively recorded, as previously
described [6]. We daily collected nutritional intake on PN, enteral nutrition (EN), and
feeding tolerance.

As previously described [5], we defined morbidity the presence of at least one of the
major prematurity-related complications, including necrotizing enterocolitis (NEC) Bell-
Stage ≥ II, periventricular leukomalacia (PVL), late-onset culture proven sepsis, retinopathy
of prematurity (ROP), and bronchopulmonary dysplasia (BPD). Diagnosis of prematurity-
related morbidities was performed according to standard criteria [22–26]. We considered
EUGR, with longitudinal definition, as the loss of 1 standard deviation (SD) from birth to
36 weeks of PMA [27].

Children were assessed at 24 months of life with the cognitive, language, and mo-
tor scales of the BSID III by a trained psychologist blinded to the study aims [28]. We
considered a standardized score <1 standard deviation (SD) from the test mean to define
NDV delay [29,30].
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2.4. Hyperglycemia and Blood Glucose Management

The definition of moderate HG corresponds to our unit’s operational threshold to
reduce the glucose infusion rate. While we initiated insulin infusion in newborns presenting
sever HG. Moderate HG was treated by reducing the intravenous glucose concentration
by 1–2 mg/kg/min. If this did not reduce the blood sugar within 4 h, the dextrose was
again decreased until a minimum of 5 mg/kg/min. Insulin infusion was set at 0.1 U/kg/h
and titrated (every 4 h) to maintain blood sugar under 180 mg/dL. The minimum dose of
insulin use was 0.001 U/kg/h, and the maximum was 1.0 U/kg/h.

2.5. Nutritional Protocol

The amount of macro and micronutrients administered through PN was in line with
the actual EPSGHAN guidelines for PN during the study period [3]. Until full enteral
feeding (FEF, 120 kcal/Kg/day) was achieved, we administered PN via a central venous
access device to maintain adequate fluids, electrolytes, and nutrient intakes, soon after
birth [31,32]. Mother’s own milk was administered as soon as possible after birth and
donor milk was not available during the study period [33]. Preterm formula was adminis-
tered when human milk was not available or sufficient. Minimal enteral feeding (MEF),
started at 10–20 mL/kg/day, was increased by 20–30 mL/kg/day if enteral nutrition was
tolerated [34,35]. We defined total PN (TPN) when PN represents more than 70% of energy
of total nutrition (enteral and parenteral) in the first 7 DOL.

2.6. Statistics

Statistical analysis was performed using Statistical Package for Social Science software
(SPSS Inc., Chicago, IL, USA), version 25.0. We checked for normality using the Shapiro–
Wilk test. The mean and 95% confidence interval (CI) summarized continuous variables,
while the number and percentage described categories variables. We used the χ2 test for
categorical variable and t-test or Mann–Whitney for paired and unpaired variables. To
evaluate the influence of PN independently to enteral feeding, we selected, in a sensitivity
analysis, newborns nourished with TPN in the first 7 DOL.

We performed a binary regression analysis to evaluate the influence of PDA, invasive
mechanical ventilation support, clinical risk index for babies (CRIB) II score, maternal
age ≥ 35 years old, antenatal corticosteroids, and HG on the rate of death, EUGR, and
morbidity. A binary regression analysis was also performed to evaluate the influence
of covariates statistically significant in univariate model (PDA, CRIB II score, two doses
of antenatal corticosteroids administration, start of EN before to 72 h of life, maternal
age ≥ 35 years, ventilation support, and energy intake by PN on the first week of life
≥432 kcal/kg/week) on the rate of HG. The cut-off of 432 kcal/kg/week was the
50◦ percentile of the energy intake of the study population with HG. We performed
two models of logistic regression analysis considering the NDV delay in each domain of
BSID-III as dependent variable and maternal age ≥ 35 years, EUGR, HG, IVH, sex, ethnicity,
and GA ≤29 weeks of PMA (model I) or ELBW (model II) as confounding variables. The
level of significance for all statistical tests was two-sided (p < 0.05).

3. Results

Of the 338 eligible newborns, 280 met the inclusion criteria (Figure 1). Table 1 showed
the baseline clinical characteristics of the study population. Newborns with HG showed
a higher rate of mother with more than 35 years of life, lower GA and BW, higher CRIB II
score, higher rate of mechanical ventilation support (for both invasive and non-invasive),
and higher rate of PDA (Table 1).
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Table 1. Baseline clinical characteristics of the study population.

Total
n = 280

Cohort A (HG)
n = 82

Cohort B (Control)
n = 198 OR (95% CI) p Value #

Maternal age, years old 34 (33 to 35) 34 (33 to 35) 35 (34 to 35) - 0.364
Maternal age ≥ 35 years old, No. (%) 132 (47.1) 61 (74.4) 71 (35.9) 0.422 (0.243–0.731) 0.002

Gestational age, weeks 29 (29 to 30) 27 (27 to 28) 30 (29 to 30) - <0.001
Gestational age ≤ 29 weeks, No. (%) 148 (52.9) 21 (25.6) 127 (64.1) 0.192 (0.108–0.342) <0.001

Birth weight, g 1248 (1207 to 1291) 1010 (936 to 1085) 1347 (1303 to 1391) - <0.001
Birth weight ≤ 1000 g, No. (%) 72 (25.7) 44 (53.7) 28 (14.1) 7.030 (3.897–12.683) <0.001

Male sex, No. (%) 151 (53.9) 43 (52.4) 108 (54.5) 0.919 (0.549–1.539) 0.748
Caucasian, No. (%) 231 (82.5) 63 (76.8) 168 (84.8) 1.689 (0.887–3.214) 0.108

Cesarean section, No. (%) 243 (86.8) 70 (85.4) 173 (87.4) 0.843 (0.401–1.771) 0.652
Antenatal corticosteroids a, No. (%) 195 (69.6) 56 (68.3) 139 (70.2) 0.951 (0.542–1.667) 0.860

Intrauterine growth restriction, No (%) 35 (12.5) 9 (10.9) 26 (13.1) 0.817 (0.365–1.831) 0.624
Pregnancy-induced hypertension, No. (%) 68 (24.3) 20 (24.4) 48 (24.2) 1.018 (0.558–1.856) 0.954

Gestational diabetes, No. (%) 27 (9.6) 6 (7.3) 21 (10.6) 0.672 (0.261–1.732) 0.408
Small for gestational age at birth, No. (%) 59 (21.1) 16 (19.5) 43 (21.7) 0.901 (0.473–1.715) 0.751

Twins, No. (%) 80 (28.6) 28 (34.1) 52 (26.3) 1.456 (0.835–2.537) 0.184
pH on cord blood 7.3 (7.2 to 7.3) 7.2 (7.2 to 7.3) 7.3 (7.2 to 7.3) - 0.784

CRIB II score 6 (5 to 8) 9 (8 to 10) 5 (4 to 6) - <0.001
Mechanical Ventilation, No. (%) 226 (80.7) 78 (95.1) 148 (74.7) 6.588 (2.295–18.914) <0.001

Invasive mechanical ventilation, No. (%) 89 (31.8) 46 (56.1) 43 (21.7) 4.606 (2.653–7.997) <0.001
Non-invasive mechanical ventilation, No. (%) 220 (78.6) 74 (90.2) 146 (73.7) 3.295 (1.488–7.297) 0.002

Patent Ductus Arteriosus, No. (%) 73 (26.1) 36 (43.9) 37 (18.7) 3.405 (1.938–5.985) <0.001

a Intramuscular steroid cycle in two doses of 12 mg over a 24-h period; CRIB (clinical risk index for babies). # Cohort A vs. Cohort B. Data
were expressed as mean (95% CI), when not specified.

Survival was higher in cohort B compared with the newborns in cohort A (99.0% vs.
86.6%, OR 15.183, p < 0.001). Morbidity was higher in cohort A compared with cohort B,
as shown in Table 2. In particular, the rate of IVH, sepsis, ROP, and BPD was higher in
cohort A (Table 2). Length of hospital stay was longer in cohort A compared with cohort B
(80 days 95 % CI 68 to 92 days vs. 54 days 95 % CI 51 to 57 days, p < 0.001). We did not
find differences in the rate of EUGR between the two study cohorts (A 59.8% vs. B 60.6%,
OR 0.965, p = 0.895).

As shown in Tables S1 and S2, the sensitivity analysis, including only newborns
receiving TPN in the first 7 DOL, confirmed the differences in baseline clinical characteristic,
survival (A 98.7% vs. B 86.8%, OR 11.898, p = 0.004), morbidity, length of hospital stay
(A 82 days 95 % CI 68 to 96 days vs. B 67 days 95 % CI 62 to 73 days, p = 0.035), and EUGR
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(A 60.3% vs. B 65.8%, OR 0.788, p = 0.488). Logistic regression analysis showed that HG
and CRIB score >9 represented independent risk factor for mortality (Figure 2). In the
multivariate model, HG appeared to not be related to EUGR and morbidity rate.

Table 2. Morbidity of the entire study population.

Total
n = 280

Cohort A (HG)
n = 82

Cohort B (Control)
n = 198 OR (95% CI) p Value #

Necrotizing enterocolitis 13 (4.6) 5 (6.1) 8 (4.0) 1.542 (0.489–4.862) 0.322
Intraventricular hemorrhage all stage 19 (6.8) 12 (14.6) 7 (3.6) 4.653 (1.761–12.294) 0.001
Intraventricular hemorrhage stage > II 11 (3.9) 8 (9.8) 3 (1.5) 7.027 (1.815–27.204) 0.003

Periventricular leukomalacia 7 (2.5) 3 (3.7) 4 (2.0) 1.842 (0.403–8.418) 0.336
Sepsis all diagnosis 26 (9.3) 14 (17.1) 12 (6.1) 3.191 (1.406–7.242) 0.004

Sepsis proven by positive culture 23 (8.2) 12 (14.6) 11 (5.6) 2.914 (1.230–6.908) 0.012
Retinopathy of prematurity all stage 52 (18.6) 26 (31.7) 26 (13.1) 3.071 (1.650–5.719) <0.001

Retinopathy of prematurity stage ≥ II 40 (14.3) 21 (25.6) 19 (9.6) 3.243 (1.635–6.435) <0.001
Bronchopulmonary dysplasia 18 (6.4) 12 (14.8) 6 (3.0) 5.536 (2.001–15.321) <0.001

Overall morbidity 68 (24.3) 35 (42.7) 33 (16.7) 3.723 (2.094–6.620) <0.001

# Cohort A vs. Cohort B. Data were expressed as No. (%).
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The PN energy intakes in the first week of life of the newborns in cohort A were higher
compared with the newborns in cohort B (Figure S1). In particular, newborns in cohort
A received a higher intake of all macronutrients compared with those in cohort B (Figure S1).
Moreover, daily energy intake by PN in the first two weeks of life for this subpopulation
was higher in newborns of cohort A compared with those of cohort B (Figure 3).

Logistic regression analysis showed that maternal age and high energy intake in PN
were risk factors for HG in a multivariate model (Figure 4). Sensitivity multivariate analysis
including newborns in TPN confirmed these results (Figure 4).

As shown in Figure 5, the rate of NDV delay at 24 months of life for cognitive and
motor scales of BSID-III was significantly higher in children of cohort A compared with
those of cohort B. When we analyzed only subjects receiving TPN in the first 7 DOL, we
observed that newborns in cohort A showed higher rate of NDV delay in all domains of
BSID-III (Figure 5). In Table 3, we showed that mean values of performances in cognitive,
language, and motor domains were lower in subjects included in cohort A compared with
cohort B at 24 months for all populations of newborns analyzed in the sensitivity analysis.
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Figure 3. Daily energy intake of the first two weeks of life of the two study cohorts in total parenteral
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Table 3. Neurodevelopmental outcome at 24 months of life of the study population.

Overall In TPN in the First Week of Life
Cohort A (HG)

n = 32
Cohort B (Control)

n = 76
Cohort A (HG)

n = 25
Cohort B (Control)

n = 39

Cognitive scale
Scaled score 6.8 (6.0 to 7.7) * 7.9 (7.5 to 8.5) 6.6 (5.6 to 7.6) 7.8 (6.9 to 8.7)
Composite score 84.2 (80.1 to 88.3) * 89.9 (87.3 to 92.5) 83.0 (77.8 to 88.1) 88.9 (84.5 to 93.4)

Language scale
Receptive Language 6.1 (5.4 to 6.8) * 7.1 (6.7 to 7.5) 5.9 (5.0 to 6.7) * 7.0 (6.3 to 7.7)
Expressive Language 6.3 (5.6 to 6.9) 7.0 (6.5 to 7.4) 5.8 (5.1 to 6.6) * 6.9 (6.2 to 7.6)
Total Scaled score 12.4 (11.1 to 13.7) * 14.1 (13.3 to 14.9) 11.7 (10.2 to 13.2) * 13.9 (12.6 to 15.2)
Total Composite score 78.0 (74.2 to 81.9) * 82.9 (80.6 to 85.3) 76.0 (71.5 to 80.6) * 82.5 (78.7 to 86.3)

Motor scale
Fine Motor 8.9 (7.9 to 9.9) 10.2 (9.7 to 10.6) 8.2 (7.1 to 9.4) * 9.9 (9.2 to 10.7)
Gross Motor 7.0 (6.3 to 7.7) *** 8.3 (7.9 to 8.6) 6.6 (5.8 to 7.4) *** 8.1 (7.7 to 8.5)
Total Scaled score 15.9 (14.4 to 17.5) ** 18.4 (17.8 to 19.1) 14.8 (13.2 to 16.5) ** 18.1 (17.0 to 19.1)
Total Composite score 87.9 (83.3 to 92.6) ** 95.4 (93.4 to 97.4) 84.5 (79.5 to 89.5) ** 94.3 (91.1 to 97.4)

TPN (total parenteral nutrition); * vs. Cohort B p-value < 0.05; ** vs. Cohort B p-value < 0.01; *** vs. Cohort B p-value < 0.001. Data were
expressed as mean (95% CI).

When adjusting for background characteristics, analysis revealed that HG was a risk
factor for motor delay, in association with male sex (Figure 6A). Sensitivity analysis consid-
ering newborns in TPN during the first 7 DOL confirmed these findings (Figure 6B).
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4. Discussion

Our findings reveled that HG has a significant impact on survival in a population
of children born preterm in critically ill condition. We further demonstrated that HG
depended on energy intake given by PN in the first 7 DOL and on maternal age. Finally,
we showed that HG and male sex are risk factors for neurological impairment at 24 months
of life.

The effects of HG on long-term NDV are still debated and there are similar observa-
tions in other jurisdictions. In a prospective study, Gonzalez Villamizar et al. aimed at
evaluating the effects of HG on body composition and NDV, and how early nutrition and
illness modify these relationships in infants born preterm [36]. The authors demonstrated
that, in infants born before 32 weeks of PMA, more than 5 days of HG were associated
with decreased lean mass at 4 months’ PMA and poorer NDV outcome at 12 months’ PMA.
These observations may be owing to an overall decrease in the nutritional intakes in the first
week, as a consequence of the reduced glucose infusion rate needed for the management of
HG. Some limitations affect the results of the aforementioned study. First, the number of
glucose measurements recorded for each enrolled patient varied according to the discretion
of the clinician, which could underestimate the true glycemic state of each patient. Second,
the high rate of drop-out at follow-up may make the results less representative of the origi-
nal sample of patients recruited. Van der Lung et al., in a retrospective study, showed that
HG was associated with a worsening of NDV evaluated by a neurological examination at
2 years of life [16]. However, these results were not corrected for confounding variables. In
addition, an observer-bias cannot be excluded because several physicians did the follow-up
consults. The composition of the unexposed control group was randomly chosen and
purely based on the in advance defined matching criteria. Thus, an unintentional selection
bias cannot be excluded. Finally, NDV was assessed by neurological examination and
not by a standardized test as BSID. Ramel et al. demonstrated that neonatal HG was not
associated with lower scores on the Bayley scales evaluated at 12 and 24 months of life [37].
However, the author did not report nutritional intake and did not perform a multivariate
analysis, including variables that may have an important role in long-term NDV. In addi-
tion, this study is limited by its retrospective design. In a recent study including critically
ill term newborns, Verlinden et al. evaluated the effects of two nutritional strategies: the
early start of PN (early-PN) versus withholding it for one week (late-PN) [11]. Two years
later, long-term development of neurocognitive, behavioral, and emotional functions were
improved in children in the late-PN group. These authors suggest a de-implementation
of nutritional strategies characterized by high energy and protein intake in critically ill
children of all ages, but especially for critically ill children aged between 29 days and
11 months at the time of exposure to PN [11]. In our study, NDV was assessed at 24 months
of life by a single phycologist and through a standardized test. We then confirmed the
effects of HG on NDV, correcting for confounding variables.

We observed that NDV impairment depends also on male sex other than HG. This
relatively poor NDV outcome in preterm males may reflect increased prevalence of neonatal
brain abnormalities rather than an independent sex-specific response to HG. Previous
evidence indicates that HG is more common in preterm females [38] and that higher
incidence of abnormal NDV in preterm males relates to greater incidence and severity of
brain abnormalities [39].

It has been demonstrated in observational studies that HG is a risk factor for death in
critical premature infants [15,40–42]. In addition, Stensvold et al., in a recent prospective co-
hort study, evaluated the influence of HG on mortality rate [13]. The authors demonstrated
that infants enrolled in the cohort with an enhanced PN protocol have a higher risk of
mortality (OR 2.64; 95% CI, 1.39–4.98), after an implementation of nutritional protocol [13].
In the multivariate models, these authors included HG and PN energy intake as covariates.
However, on the basis of our results, occurrence of HG may be influenced by PN energy
intake. In addition, the authors of this study did not evaluate the factors influencing the
occurrence of HG [13].
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In vitro, Temming et al. demonstrated an increased proinflammatory cytokine re-
sponse in the blood of preterm and term neonates with HG; thus, HG induces oxidative
stress and inflammatory reactions that support the hypothesis of a direct relationship
between neonatal high blood glucose levels and adverse outcome, in contrast to the idea
that detrimental effects of HG in the human neonate are merely a reflection of critical
illness [43]. In addition, an animal model study demonstrated that high glucose levels
activate the caspase with a consequent reactive oxygen species (ROS) production, respon-
sible for triggering an apoptotic process in the brain [44]. This process is significant in
the hippocampus, in which increased levels of caspase -3, caspase -8, and caspase -9 were
found [44]. Tayman et al. in animal models conclude that the severity of HG causes cell
death in the developing brain, decreases brain density, and affects the development of
brain tissues in the neonatal period [44]. In addition, we observed that maternal age over
35 years represents a protective factor for HG. It has been demonstrated that, in twin
pregnancy, older maternal age is associated with indices of insulin resistance [45]. Despite
that little is known in singleton, it is possible to speculate that maternal insulin resistance
may improve tolerance of glucose in fetus, and thus in preterm newborns with similar GA.
However, gestational diabetes was not related to HG in our study. This hypothesis should
be confirmed in a specifically designed study.

Despite being interesting, our results should be interpreted considering several lim-
itations. Our findings may be related to the effects of chance (random error), bias, or
confounding factors. We verified that the effects on NDV of HG persisted even after
correcting for confounding variables. Despite everything, unknown confounding variables
or ones not considered in our statistical analysis may have influenced the study results.
Indeed, neurological development is complex, with endogenous and exogenous factors
at play [46,47]. We evaluated in a binary regression analysis the possible factors that
could influence the occurrence of HG. A possible confounding factor is the early (<8 DOL)
post-natal administration of corticosteroids [48]. We did not include this factor in our
model because we considered HG in the first 7 DOL and we had no subjects treated with
corticosteroids in this time frame. Moreover, this is not a RCT. Individualized nutritional
corrections are the milestone of our policy on PN, in order to avoid deleterious conse-
quences of complications related to the administration of intravenous macronutrients [31].
Despite being a potential information bias, we have preferred that physicians taking care
of babies were aware of the composition of PN, in order to make immediate corrections in
the case of complications. In addition, the risk of lack of equipoise within neonatologists
caring for preterm infants could be very high. Hence, it is not easy to design an RCT in
newborns in critically ill conditions. On the other hand, the severity of clinical conditions
may increase the use of PN. To exclude confounding effects of this aspect, we confirmed
our results in a sensitivity multivariate analysis including only subjects who were fed
mainly by PN in the first 7 DOL. A reduction of energy intake in PN secondary to HG
could be associated with a reduced energy intake in PN in newborns with HG compared
with controls. However, the PN intake of the first 14 DOL remained higher in cohort
A compared with cohort B, not influencing the rate of EUGR between the two cohorts
of the study. To limit selection bias, neonatologists evaluating eligibility used objective
inclusion criteria (such as GA and BW), unaware of the study aims. In addition, researchers
not involved in clinical practice and eligibility assessment and who were unaware of the
cohort assignment collected the data for the statistical analysis. A protocol for the collection,
measurement, and interpretation of data was discussed and defined before starting the
study. It has been demonstrated that BSID-III tends to underestimate neurodevelopmental
delay compared with other scales [49]. However, measurement of NDV using different
scales, exploring further domains other than those evaluated by BSID, could overcame this
bias. A blinded third part observer collected data on the primary outcome of the study and
a blinded statistician performed the analysis. Despite no changes in the policies care during
the study period and similar baseline characteristics of the two cohorts, it is not possible to



Nutrients 2021, 13, 1930 10 of 12

exclude that unknown differences in the clinical practice or changes in the medical staff
composition may have influenced the results.

5. Conclusions

High nutritional intakes through PN in the first 7 DOL increase the risk of HG. The
consequences of this severe metabolic complication affect survival and NDV at 24 months
of life. Our data suggest a reduction of energy intake in PN in the first week of life. Further
randomized controlled trials are urgently needed to confirm the negative role of enhanced
PN soon after birth, for brief-term metabolic and, consequently, long-term neurological
outcomes of babies born before 32 weeks of PMA or VLBW. As critically ill children aged
29 days to 11 months at time of exposure are most vulnerable to developmental harm
evoked by early-PN [11], an early-enhanced PN could also be deleterious for long-term
NDV of preterm babies.
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.3390/nu13061930/s1, Table S1: Baseline clinical characteristics of the newborns in total parenteral
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the first week of life; Figure S1: Nutritional intake of the first week of life.
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