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Gene expression is determined by a balance between RNA synthesis and RNA degradation. To elucidate the underlying

regulatory mechanisms and principles of this, simultaneous measurements of RNA synthesis and degradation are required.

Here, we report the development of “Dyrec-seq,” which uses 4-thiouridine and 5-bromouridine to simultaneously quantify

RNA synthesis and degradation rates. Dyrec-seq enabled the quantification of RNA synthesis and degradation rates of

4702 genes in HeLa cells. Functional enrichment analysis showed that the RNA synthesis and degradation rates of genes

are actually determined by the genes’ biological functions. A comparison of theoretical and experimental analyses revealed

that the amount of RNA is determined by the ratio of RNA synthesis to degradation rates, whereas the rapidity of respons-

es to external stimuli is determined only by the degradation rate. This study emphasizes that not only RNA synthesis but

also RNA degradation is important in shaping gene expression patterns.

[Supplemental material is available for this article.]

Gene expression is one of the most fundamental regulatory pro-
cesses determining cellular conditions through regulating the level
of proteins. The expression level ofmature RNA is one of themajor
determinants of gene expression, which reflects the balance be-
tween the rate of RNA synthesis as the sum of transcription and
maturation kinetics and that of RNA degradation (Rabani et al.
2011, 2014; Pérez-Ortín et al. 2013; De Pretis et al. 2015;
Maekawa et al. 2015; McManus et al. 2015; Eser et al. 2016;
Baptista and Dölken 2018; Kiefer et al. 2018; Duffy et al. 2019;
Schmid et al. 2019). To obtain a comprehensive overviewof the ex-
pression landscape of mature RNAs, the simultaneous quantifica-
tion of RNA synthesis and degradation is required.

To date, severalmethods have been developed to quantify the
transcription, splicing, and degradation of RNAs at the genome-
wide level (Tani et al. 2012; Imamachi et al. 2014; Schwalb et al.
2016; Herzog et al. 2017; Baptista and Dölken 2018; Kiefer et al.
2018; Matsushima et al. 2018; Schofield et al. 2018; Duffy et al.
2019). For example, SLAM seq enables the quantification of RNA
synthesis by in situ RNA labeling with 4-thiouridine (4sU)
(Herzog et al. 2017). 4sU is alkylated in vitro after the isolation
of total RNA from4sU-labeled cells, which is followed bymassively
parallel sequencing analysis. Because a guanine (G) rather than an
adenine (A) base pairs with alkylated 4sU during the reverse tran-
scription reaction in preparation of the library for massive se-
quencing, the uridine (thymine [T] in DNA) replaced by 4sU in
sequencing data is converted to a cytosine (C; T>C conversion).
Bioinformatic detection of this T>C conversion enables 4sU-la-
beled RNAs to be distinguished from intracellular RNAs. Herzog

et al. combined this base conversion with a polyadenylation-de-
pendent 3′-end RNA sequence (QuantSeq) (Moll et al. 2014),
which allows the rapid and quantitative access of mature RNA ex-
pression profiles, to quantify the comprehensive RNA synthesis
rate. Bymeasuring the T>C conversion inmature RNAs at sequen-
tial time points after 4sU labeling, RNA synthesis rates can be de-
termined. BRIC-seq enables measurement of the degradation
rates of the RNAs using in situ labeling of RNA with 5′-bromouri-
dine (BrU) (Tani et al. 2012; Imamachi et al. 2014). The BrU-la-
beled RNAs chronologically isolated from cells prelabeled with
BrU are immunoprecipitated, and then the immunoprecipitated
RNAs are chased by massive sequencing to estimate the degrada-
tion rates of the RNAs. However, methods enabling simultaneous
measurement of RNA synthesis and degradation by usingmultiple
ribonucleoside analogs are not currently available.

To approach this issue, in this study,we developed a system to
simultaneously measure actual RNA synthesis rates, defined as the
number of polyadenylated RNA appearances per unit of time, and
RNA degradation rates, defined as the ratio of RNA disappearance
per unit time, at the genome-wide level by combining SLAM seq
and BRIC-seq. We named this simultaneous measurement of
RNA synthesis and degradation rates as “sequencing for RNA dy-
namics recording” (Dyrec-seq). Moreover, we determined the
RNA synthesis and degradation rates in the human cervical cancer
HeLa cell line by using Dyrec-seq.
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Results

Sequential labeling of endogenous RNAs with BrU and 4sU

To quantify RNA synthesis and degradation rates simultaneously,
we labeled HeLa cells with BrU followed by 4sU (Fig. 1A). The
HeLa cells were precultured in BrU-containing medium for 12
h, and then RNAs were isolated at 0, 15, 30, 45, 60, 120, 240,
480, and 720 min after the BrU-containing medium had been
changed to 4sU-containing medium without BrU (Total-RNAs).
After 4sU was added and BrU was removed from the medium
by changing the medium (time: 0 min), the abundances of
BrU-labeled and 4sU-labeled RNAs decreased and increased, re-
spectively, over time. The cell proliferation assay revealed that
BrU and 4sU labeling at the concentrations used in this study
did not affect the cell growth of HeLa cells (Supplemental Fig.
S1A). The isolated RNAs were divided into two samples. One
was immunoprecipitated with an anti-BrdU antibody to isolate
BrU-labeled RNAs (IP-RNAs), and the other was treated with
iodoacetamide (IAA) to alkylate 4sU residues in newly synthe-
sized RNAs (Alkyl-RNAs) in vitro (Fig. 1A,B). Because the alkylat-
ed 4sU paired with guanines instead of adenines during
the reverse transcription, the 4sU incorporated in the RNAs is de-
tected as specific mutation (T >C conversion). The 3′ ends of
RNAs within the Alkyl-RNAs and IP-RNAs were sequenced using
QuantSeq, which enabled quantification of the mRNA expression
by sequencing the sequences close to the 3′ end of polyadeny-
lated RNA (Supplemental Fig. S1B).

Quantification of newly synthesized and pre-existing RNAs

Subsequently, we estimated the numbers of newly synthesized and
pre-existingRNAs at each timepoint based on the sequencing of the
Alkyl-RNAs and IP-RNAs by QuantSeq. Because 4sU is incorporated
intonewly synthesizedRNAs at a constant rate, thenumbers ofnew-
ly synthesized RNAs are in proportion to the numbers of reads con-
taining T>C mutations. Because newly synthesized RNA is
synthesized at a constant rate and degraded at a rate dependent
on its concentrationper unit time, thenumberofnewly synthesized
RNAs increases logarithmically. Fitting of this curve of logarithmic
increase indicated that ∼35% of the newly synthesized RNAs are la-
beled with 4sU (see Methods). Therefore, we estimated the number
of newly synthesized RNAs by correcting their count per million
mapped reads (CPM) using the labeling efficiency (Supplemental
Fig. S1C). Furthermore, we estimated the number of pre-existing
RNAs using the total number of newly synthesized RNAs at each
time point. Because the total number of intracellular RNAs can be
considered as constant and independent of time, the sum of the
number of newly synthesized and pre-existing RNAs should be
constant. Thus, we estimated the number of pre-existing RNAs at
each time point by subtracting the number of newly synthesized
RNAs at each time point from 1 million (Supplemental Fig. S1D).

Extraction of RNAs in a steady state

In this study, we assumed that the expression of genes is in a steady
state during labeling with modified ribonucleosides. However,
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Figure 1. Simultaneous labeling of intracellular RNAs with BrU and 4sU. (A) Schematic illustration of the labeling procedure. HeLa cells were precultured
in medium containing 150 μM BrU, and then the medium was changed to one containing 200 μM 4sU. Black, blue, and red lines indicate kinetics of ex-
pression of total RNAs, BrU-labeled RNAs, and 4sU-labeled RNAs, respectively. (B) Preparation and quantification of BrU-labeled and 4sU-labeled RNAs.
Total RNAs were isolated and purified from labeled cells in time series and then divided into two samples. One was immunoprecipitated using an anti-
BrdU antibody, and the cDNA was reverse-transcribed to be provided to QuantSeq (IP-RNAs). The other was alkylated using IAA, and the cDNA was
reverse-transcribed to be provided to QuantSeq (Alkyl-RNAs). Because alkylated 4sU pairs with guanine (G) instead of adenine (A) during reverse transcrip-
tion, the 4sU-labeled RNAs were identified as those including T>C conversions.
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some genes’ expression was changed af-
ter changing medium form BrU-contain-
ing medium to 4sU-containing medium.
Because the cells were not treated with
any specific stimuli, the altered expressed
genes should be caused by medium
change procedure, such as serum stimuli
or mechanical stress. We excluded the al-
tered expressed genes based on the statis-
tical significance of their trends of
expression (Supplemental Fig. S1E), com-
paring their empirical distribution with
that of a randomized gene set with pre-
served expression level (see Methods).
A statistical test indicated that, among
19,485 genes, 6830 (35.1%) were not ex-
pressed at all time points, 2203 (11.3%)
were expressed differentially (FDR<
0.01), and 10,452 (53.6%) were in a
steady state (FDR>0.01) (Supplemental
Fig. S1F). We extracted these 10,452
genes in a steady state as subjects of fur-
ther analysis.

Simultaneous evaluation of RNA

synthesis and degradation rates

Next, we estimated the RNA synthesis
and degradation rates for individual
genes simultaneously. The RNA synthe-
sis rate of each gene is defined as the
number of polyadenylated RNAs synthe-
sized per unit time and calculated based
on the time series of the number of newly
synthesized RNAs estimated from the se-
quencing of the Alkyl-RNAs. The degra-
dation rate of each RNA is defined as
the ratio of the RNAs degraded per unit
time calculated based on the time series
of the number of pre-existing RNAs esti-
mated from the sequencing of the IP-
RNAs. Because the medium change re-
moves BrU and adds 4sU, the numbers
of reads derived from newly synthesized
and pre-existing RNAs increase and
decrease in RNA synthesis rate–depen-
dent and degradation rate–dependent
manners, respectively.

That is, the kinetics of the read
numbers derived fromnewly synthesized
RNAs (xt) and pre-existing RNAs (yt) at
each time point is as follows:

xt = ks
kd

(1− e−kd (t−t0))+ b1,

yt = ae−kd t + b2

where ks, kd, t0, α, β1, and β2 are the RNA
synthesis rate, degradation rate, time lag, scaling factor, basal value
for newly synthesized RNA-derived reads, and basal value for pre-
existing RNA-derived reads, respectively (Fig. 2A–C).We estimated
the RNA synthesis and degradation rates of individual genes at the
genome-wide level by fitting the time series of the read numbers to

these curves and extracting well-fitted RNAs based on the signifi-
cance of correlation coefficients between read numbers and esti-
mated values (see Methods). Because 4sU-labeled RNAs,
particularly those with short half-lives, are being degraded as
well as synthesized, the amount of 4sU-labeled RNAs does not
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Figure 2. Estimation of RNA synthesis and degradation rates of individual genes. (A) Kinetics model of
gene expression. In this model, a transcript was synthesized according to the RNA synthesis rate, ks
(CPM/min) and degraded according to the degradation rate, kd (min−1). (B) Synthesis rates were esti-
mated by fitting of the time series of the amount of newly synthesized RNAs from individual genes to
a logarithmically increasing curve (see Methods). β1 and t0 indicate the basal value of newly synthesized
RNAs and the time delay, respectively. (C) Degradation rates were estimated by fitting of the time series
of the amount of pre-existing RNAs from individual genes to an exponentially decreasing curve (see
Methods). β2 indicates the basal value of pre-existing RNAs. (D,E) Distribution of estimated RNA synthe-
sis rate (D) and degradation rate (E). (F,G) Gene Set Enrichment Analysis (GSEA) for genes with ks values
(F) or with kd values (G).
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directly reflect RNA synthesis rates. Our method of estimating
RNA synthesis and degradation rates developed in this study
enables the correction of the effects of degradation. As a result,
we obtained the RNA synthesis and degradation rates for 4702
genes in HeLa cells (Supplemental Table S1). The estimated RNA
synthesis rates obeyed a log normal-like unimodal distribution
with a median of 1.17×10−1 CPM/min (Fig. 2D). The estimated
degradation rates obeyed a log normal-like unimodal distribution
with a median of 3.38×10−3 min−1, equivalent to a half-life of
205.0 min (Fig. 2E).

Are these rates of RNA synthesis and degradation related to
gene function? To approach this issue, we performed Gene Set
Enrichment Analysis (GSEA) (Mootha et al. 2003; Subramanian
et al. 2005) for the estimated RNA synthesis and degradation rates
(Supplemental Table S2, S3). GSEA statistically tests the homoge-
neity of the ks values (synthesis rates) and kd values (degradation
rates) of genes related to specific biological terms: A uniform distri-
bution of the ks or kd values of genes related to a term makes the
P-value larger, whereas a biased distribution of these values makes
it smaller. For the RNA synthesis rates, GSEA detected that the
genes showing only large ks values (fast RNA synthesis) are partic-
ularly related to several signaling pathways, such as MTOR com-
plex 1 (MTORC1) signaling, TNFA signaling, TGFB signaling, and
PI3K/AKT/MTOR signaling (Fig. 2F). For the degradation rates,
GSEA detected that the genes showing only small kd values (slow
degradation) are particularly related to severalmetabolic pathways,
such as adipogenesis, xenobiotic metabolism, glycolysis, and fatty
acid metabolism (Fig. 2G). TNFA signaling andMTORC1 signaling
were related only to genes showing large kd values (fast degrada-
tion) and thosewith small kd values (slowdegradation), respective-
ly (Fig. 2G). An integrated interpretation of these functional
analyses indicates the following: The RNAs involved in the inflam-
matory response (TNFA signaling via NF-kB, inflammatory re-
sponse) are synthesized faster, and their transcripts are degraded
faster; the genes involved in cell growth and survival (E2F targets,
MYC targets [v1], MTORC1 signaling) are synthesized faster, but
their transcripts are degraded slower (Fig. 2F,G). These results indi-
cate that the rates of RNA synthesis and degradation are closely
related to the biological function of the gene, and especially, sig-
naling factors tend to be synthesized faster andmetabolic enzymes
tend to be degraded slower.

Comparison of RNA synthesis and degradation rates

To examine how the combination of RNA synthesis and degrada-
tion rates is related to the function and behavior of individual
genes, we classified the 4702 RNAs into four classes based on their
RNA synthesis and degradation rates; fast RNA synthesis and fast
degradation (Class I, 277 genes), fast RNA synthesis and slow deg-
radation (Class II, 372 genes), slowRNA synthesis and fast degrada-
tion (Class III, 291 genes), and slow RNA synthesis and slow
degradation (Class IV, 229 genes) (Supplemental Table S4). To
avoid the effects of estimation error, first and third quartiles of
RNA synthesis rates (0.280 and 0.048 CPM/min, respectively)
and those of degradation rates (0.006 and 0.002min−1, respective-
ly) were adopted as thresholds of the classification. To examine the
relationship of the combination of RNA synthesis and degradation
rates with the biological function of the genes, we performed func-
tional enrichment analysis of the genes included in each class.
This analysis of the genes using the DAVID tool (Huang et al.
2009a, 2009b) provided several functional terms significantly en-
riched in the individual classes (Fig. 3A,B; Supplemental Table

S5). In Class I (fast RNA synthesis and fast degradation), the terms
related to signaling pathways such as “serine/threonine-protein ki-
nase” and those related to DNA repair were significantly enriched.
In Class II (fast RNA synthesis and slow degradation), the terms
were related to posttranscriptional regulation such as “mRNA
splicing,” “mRNA processing,” and “RNA-binding.” The terms re-
lated to some signaling pathways such as NF-kB signaling andWnt
signalingwere also significantly enriched inClass II. The terms “al-
ternative splicing” and “phosphoprotein” (indicating proteins to
be phosphorylated) were significantly enriched in both Class I
and Class II (classes of genes with fast RNA synthesis). The terms
of transcriptional regulation including “zinc-finger” were signifi-
cantly enriched in both Class I and Class III (classes of genes
with fast degradation). The terms “acetylation” and “mitochondri-
on” were significantly enriched in both Class II and Class IV (clas-
ses of genes degraded slowly).

In summary, functional enrichment analysis suggested the
following. First, the RNAs related to signaling are generally synthe-
sized rapidly, which is consistent with the results of GSEA, but the
rapidity of degradation varies depending on the signaling path-
ways. Second, the genes related to posttranscriptional regulation
such as splicing are synthesized rapidly and degraded slowly.
Third, the genes related to transcriptional regulation are degraded
rapidly, whereas those encoding proteins to be acetylated are de-
graded slowly. These results show that genes have optimized regu-
lation of transcription and degradation according to their
functions and physiological roles.

Combination of RNA synthesis and degradation rates determines

expression level

Theoretically, the expression level of a gene in a steady state is de-
termined by the ratio of its synthesis and degradation rates
(Hargrove and Schmidt 1989). Thus, we examined how the RNA
synthesis and degradation rates of individual genes affect the ex-
pression level using these estimated rates.

Generally, the expression rate of geneswhose regulation is ex-
pressed as per the model in Figure 2A is described as follows:

dx
dt

= ks − kdx,

where x, t, ks, and kd represent the expression level, time, RNA syn-
thesis rate, and degradation rate of an RNA, respectively. Because
the expression level does not change during a steady state,

dx
dt

= 0.

Thus, the expression level of the RNA in a steady state is de-
scribed as

ks − kdx = 0,

x = ks
kd

.

To verify the appropriateness of the theoretical prediction, we
compared the experimentally estimated ks and kd values with the
expression levels of individual genes estimated based on the se-
quencing of the Alkyl-RNAs. As expected, we observed strong pos-
itive correlation between the ratios of ks and kd values (ks/kd) and
the expression levels (Pearson’s correlation of R2 =0.85, P-value<
0.01) (Fig. 4A), suggesting that the combination of RNA synthesis
and degradation rates determines the expression levels of individ-
ual genes. This indicates that not only regulation of RNA synthesis
but also the regulation of degradation is an important factor deter-
mining the level of gene expression.
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Degradation rate is a key factor determining the rapidity of

response

Finally, to examine how the RNA synthesis and degradation rates
affect the behavior of individual RNAs (Koh et al. 2019), we simu-

lated RNA expression dynamics in re-
sponse to a change of RNA synthesis
using the mathematical model shown
in Figure 2A and numerically analyzed
the behavior of RNA expression. The dy-
namics of gene expression was simulated
independently for four classes whose ks
and kd values imitate the representative
values of those in Classes I to IV. In this
simulation, the RNA synthesis rate dou-
bled at 0 min. The rapidity of expression
was evaluated using a time constant (τ)
defined as the time when RNA expres-
sion reaches 1− e−1 (≈ 63.2%) of the final
value (Supplemental Fig. S1G). Theoreti-
cally, the time constant (τ) is represented
as follows:

t = k−1
d ,

depending on not the RNA synthesis rate
but only the degradation rate, indicating
that the time constants are larger for the
genes in the classes whose degradation is
fast, such as Classes I and III, and they are
smaller for the RNAs in the classes whose
degradation is slow, such as Classes II and
IV. In accordance with the theoretical
prediction, the time constants simulated
in Classes I and III (fast degradation) are
smaller than those simulated in Classes
II and IV (slow degradation) (Fig. 4B).
Moreover, the time constants were deter-
mined depending on kd, not on ks (Fig.
4C). These results suggest that the degra-
dation rate of each gene is a key factor de-
termining not only their expression level
but also their rapidity of differential ex-
pression caused by changes in the extra-
cellular environment.

To confirm the above idea experi-
mentally, we compared the estimated
degradation rates with the time con-
stants calculated based on previously
published RNA-seq data. The GSEA for
the degradation rates indicated that, al-
though “estrogen response (early)” was
significantly enriched for the large kd val-
ues (fast degradation), “estrogen re-
sponse (late)” was significantly enriched
for the small kd values (slow degradation)
(FDR<0.01) (Fig. 4D). In contrast, the
GSEA for the RNA synthesis rates showed
a uniform distribution of those terms
(Fig. 4E). This indicates that the products
ofmost genes related to late periods in es-
trogen response are degraded slowly, sug-

gesting that the rapidity of expression of genes in response to
estrogen is determined by their degradation rates. Note that
because estrogen-responsive genes include those with both fast
and slow degradation, as described above, Gene Ontology (GO)
terms related to estrogen response were not significantly enriched
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sequencing of Alkyl-RNAs (total RNA-seq reads with/without T >C conversion), respectively. Black solid line is the regression line based on log-transformed
values. (B) Simulations of expression time series of genes imitating the characteristics of Class I (fast RNA synthesis and fast degradation), Class II (fast RNA
synthesis and slow degradation), Class III (slow RNA synthesis and fast degradation), and Class IV (slow RNA synthesis and slow degradation). In each sim-
ulation, the RNA synthesis rates doubled at 0 min (red dotted line). (C) Time constants of expression of genes showing various RNA synthesis and degra-
dation rates. The x- and y-axes indicate RNA synthesis rate (ks) and degradation rate (kd). Colors indicate the time constants (τ). (D,E) GSEA of degradation
rate (D) and RNA synthesis rate (E) showing enrichment of “estrogen response (early)” and “estrogen response (late).” (NES) Normalized enrichment score.
(F ) Comparison of degradation rates (kd) and time constants (τ). The x- and y-axes indicate the degradation rate and time constants, respectively. Red
dashed line is a regression line based on log-transformed values. (G) Comparison of RNA synthesis rates (ks) and time constants (τ). The x- and y-axes in-
dicate the RNA synthesis rate and time constants, respectively. Red dashed line is a regression line based on log-transformed values.
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in any class (Fig. 3B). Because estrogen receptor is a nuclear recep-
tor directly regulating transcriptional activity and its target genes
might not be affected by the rapidity of signal transduction, the ra-
pidity of expression of genes in response to estrogen is likely to re-
flect the degradation rates of the products of individual genes.
Therefore, we calculated time constants from the time series of
RNA-seq of human breast cancer–derived MCF-7 cells stimulated
with estradiol (E2), a type of estrogen (Baran-Gale et al. 2016),
and compared those with the estimated degradation rates. To
avoid the effect of outliers of estimated expression levels, we rede-
fined the time constant (τ) as the timewhenRNA expression reach-
es half of the final value.

As expected, we observed a significant negative correlation
between the degradation rates and time constants (Pearson’s corre-
lation of r=−0.326, P-value =1.65×10−17) (Fig. 4F), whereas the
RNA synthesis rates were not significantly correlated (Pearson’s
correlation of r=0.033, P-value=0.40) (Fig. 4G). This suggests
that the rapidity of the response of gene expression to estrogen
stimulation is at least partially determined in amanner dependent
on the degradation rate. However, some genes showed extremely
fast or slow time constants independent of their degradation rates,
suggesting that the rapidity of expression of such genes affects sec-
ondary signal transduction and/or other signaling pathways.

Discussion

Recent developments in procedures to unravel the kinetics of gene
expression at the genome-wide level provide several insights into
the regulation of gene expression. For instance, BRIC-seq (Tani
et al. 2012; Imamachi et al. 2014) enables comprehensive clarifica-
tion of the regulation of degradation through chase experiments of
BrU-labeled RNAs. Moreover, SLAM seq (Herzog et al. 2017) en-
ables comprehensive clarification of RNA synthetic regulation
through the quantification of 4sU-labeled RNAs by identifying
IAA-induced T>C mutations. In this study, we developed
“Dyrec-seq,” a system to simultaneously measure RNA synthesis
and degradation rates of the comprehensive set of RNAs in HeLa
cells, by chasing BrU- and 4sU-labeled RNAs. It provided simulta-
neous measurement of the RNA synthesis and degradation rates
of 4702 genes in HeLa cells. Moreover, functional enrichment
analysis of the genes classified by the synthesis and degradation
rates showed that these rates of genes related to various cellular
functions are regulated in common, suggesting that the synthesis

and degradation rates of individual genes are closely associated
with their biological functions. To examine how such regulation
is associated with the biological roles of the genes, we constructed
a mathematical model. This theoretical approach indicated that
(1) the ratios of synthesis rates to degradation rates of individual
genes determine their expression levels, and (2) the degradation
rate is a key factor determining the rapidity of expression of each
gene. Taking these results together, the following insights can be
obtained (Fig. 5A,B): (1) Posttranscriptional factors, including
mainly RNA-binding proteins in Class II, are constitutively ex-
pressed constitutively at extremely high levels but respond slowly
to extracellular stimuli; (2) transcription factors in Classes I and III
show various expression levels but respond rapidly to extracellular
stimuli; (3) genes encoding phosphorylated proteins, mainly in-
cluding signaling factors in Classes I and II, are generally constitu-
tively expressed at extremely high levels; and (4) genes encoding
proteins under posttranslational regulation, such as acetylation
inClass II and IV, that are degraded slowly and do not respond rap-
idly to extracellular stimuli in terms of gene expression levels, like-
ly show posttranslational regulation. Terms related to signaling
pathways, such as NF-kB signaling and Wnt signaling, and ser-
ine/threonine protein kinases were not significantly enriched in
genes with average transcription and degradation factors. This in-
dicates that the synthesis and degradation rates of genes involved
in the signaling pathways are strictly regulated to ensure high ex-
pression, enabling rapid responses to posttranslational regulation
such as phosphorylation. These insights explain at least in part
how the differences of expression levels are regulated and why
the responses to extracellular stimuli differ according to the func-
tion of the genes. Simultaneous measurement of RNA synthesis
and degradation rates using Dyrec-seq provides an integrated un-
derstanding of the functions of genes and their behavior of
expression.

Tomeasure the RNA synthesis and degradation rates simulta-
neously, we labeled the intracellular RNAs using two uridine ana-
logs, BrU and 4sU. Because it is known that uridines are
particularly abundant in the 3′ untranslated region (3′ UTR) in
RNAs (Shaw and Kamen 1986; Chen and Shyu 1995; Barreau
et al. 2005; Vlasova and Bohjanen 2008; Vlasova et al. 2008;
Gruber et al. 2011), we used QuantSeq, which specifically detects
3′ UTR using oligo(dT) primer (Moll et al. 2014), to ensure efficient
detection. The efficiency of incorporation of nucleotide analogs
and the effects of cellular functions might be influenced by the

Fast
degradation

(a)

(b) (c) (d)

(e)

Time

Ex
pr

es
si

on
 le

ve
l

Low
expression

High
expression

Rapid
response

Slow
response

Slow
degradation

Fast
synthesis

Slow
synthesis

(b)

(d)

(c)

(a)

(e)

A B

Figure 5. Effect of RNA synthesis and degradation rates on behavior of gene expression. (A) The combination of the rates of RNA synthesis and degra-
dation regulates the temporal expression profiles. The ratio of the RNA synthesis and degradation rates determines the expression level (diagonal arrow),
and the degradation rate affects the rapidity of response of gene expression (vertical arrow). (B) Schematic diagram of temporal expression profiles. The
temporal expression profiles correspond to the points in A.

Evaluation of RNA synthesis and degradation rates

Genome Research 1487
www.genome.org



cell type and conditions. Thus, there is a need to verify effects spe-
cific to cell types sufficiently to identify labeling conditions that
do not influence the gene expression of cells. Moreover, the ability
to estimate the RNA synthesis and degradation rates depends on
the inherent kinetics of gene expression and library sequencing
depth. Therefore, consideration of these parameters is needed to
design experiments effectively. Additionally, not only RNA syn-
thesis, but also RNA degradation, is under control of the cell cycle.
Because we used unsynchronized cells in this study, further exam-
ination is necessary to evaluate RNA synthesis and degradation
rates of cell cycle–regulated genes.

Further extension of Dyrec-seqwith other kinds of nucleotide
analogs would enable the evaluation of additional types of regula-
tion such as splicing and processing (Windhager et al. 2012;
Barrass et al. 2015). Moreover, this procedure can be used for un-
derstanding the temporal contributions of multiple types of regu-
lation such as RNA synthesis and degradation during transient or
continuous changes of gene expression. Recent studies suggested
that the regulation of both RNA synthesis and degradation can af-
fect the dynamics of gene expression (Alonso 2012). For example,
upon regulation of the gene expression profile in the long term,
such as occurs in cell differentiation, the contribution of mecha-
nisms regulating RNA synthesis and degradationmight change de-
pending on the stage of differentiation.

In conclusion, we propose the concept of “RNA dynamics re-
cording” to encode the dynamics of RNAs onto the RNAs them-
selves by using multiple ribonucleoside analogs. This RNA
dynamics recording enables clarification of the temporal contribu-
tions of multiple forms of regulation independently. Therefore,
this approach should provide substantial insights into how gene
expression is regulated during differentiation or by extracellular
stimuli such as hormones and cytokines.

Methods

Metabolic labeling of endogenous RNAs and RNA isolation

HeLa cells (female, RRID: CVCL_0030) were seeded at a density of
6 ×105 cells per 6-cm dish (Thermo Fisher Scientific) and cultured
in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented
with 10% fetal bovine serum (FBS) and 1% antibiotic–antimycotic
at 37°C. In the next day, the medium was replaced with fresh me-
dium containing 150 μM BrU, and then the cells were precultured
for 12 h to label pre-existing RNAs. After the preculture, the cells
were washed twice with the medium, and then the medium was
replaced with one containing 200 μM 4sU to label newly synthe-
sized RNAs until 12 h. After incubating cells in the 4sU-containing
medium, the cells werewashed twicewith PBS, and then total RNA
was isolated using RNAiso Plus (TAKARA).

Sample preparation

To quantify 4sU-labeled and BrU-labeled RNAs individually, the
isolated total RNAs were divided into two samples, as follows.

RNA samples to quantify 4sU-labeled RNAs

From the isolated total RNAs, 5 μMRNAwas alkylated using SLAM
seq kinetics kit (Lexogen), in accordance with the manufacturer’s
instructions. Hereafter, the alkylated RNA samples are referred to
as “Alkyl-RNAs.” The quality of Alkyl-RNAs was assessed using
Agilent RNA nano 6000 kit (Agilent) on the Agilent Bioanalyzer
2100 (Agilent).

RNA samples to quantify BrU-labeled RNAs

To normalize the quantity of BrU-labeled RNAs among the time
points during preanalysis, 1.0 ng of BrU-labeled luciferase RNA
was added to 10 μg of extracted total RNA as a spike-in control to
serve as an internal standard. The RNA mixtures were diluted to
a final volume of 100 μL with TE buffer (a final concentration of
10 mM Tris–HCl at pH 7.0 and 1.0 mM EDTA). BrU-labeled
RNAs were immunoprecipitated using anti-BrdU antibody-conju-
gated beads (MBL, clone 2B1), in accordance with previous reports
(Tani et al. 2012; Imamachi et al. 2014). Briefly, the BrU-labeled
RNAs were added to the antibody-conjugated protein G agarose
suspended with 100 μL of ice-cold PBS containing 0.1% bovine se-
rum albumin (BSA), 1% Triton X-100, 100 U of RNasin plus RNase
inhibitor (Promega), and 5 mg/mL heparin. BrU-labeled RNAs
were isolated using ISOGEN LS (NIPPON GENE), in accordance
with the manufacturer’s instructions. Because the amount of puri-
fied BrU-labeled RNAs was low, 60 μg of glycogen was added to the
mixture during the precipitation of RNA. Hereafter, the immuno-
precipitated RNA samples are referred to as “IP-RNAs.” The quality
of IP-RNAs was assessed using Agilent RNA nano 6000 kit (Agilent)
on the Agilent Bioanalyzer 2100 (Agilent).

Cell proliferation assay

Cell proliferationwas determined bymeasuring intracellular levels
of NADH using the cell counting kit-8 (DOJINDO). The absor-
bance at 450 nm was measured using a GloMax discover micro-
plate reader (Promega).

Sequencing

The 3′ ends of RNAswithin the Alkyl- and IP-RNAswere sequenced
using the QuantSeq 3′ mRNA-seq library prep kit (Lexogen), in ac-
cordancewith themanufacturer’s instructions. Briefly, 5.0 ng from
each Alkyl- or IP-RNA sample was used for reverse transcription.
The 4sU incorporated into the Alkyl-RNAs paired with guanines
instead of adenines during the reverse transcription. The RNA
was subsequently removed, and second-strand synthesis was initi-
ated by a random primer, containing Illumina-compatible linker
sequences and appropriate in-line barcodes, followed by magnetic
bead–based purification. The resulting library was amplified using
PCR with 12 cycles for Alkyl-RNAs and 18 cycles for IP-RNAs, and
then purified using AMPure XP. Library quality and quantity were
assessed on a Bioanalyzer using DNA high sensitivity kit reagents
(Agilent Technologies). Standard Illumina protocols were used to
generate 100-bp end read libraries that were sequenced on the
HiSeq 3000 platform (Illumina).

Quantification of 4sU- and BrU-labeled RNAs

The newly synthesized and pre-existing polyadenylated RNAs
were quantified based on the sequence data obtained from the
Alkyl- and IP-RNAs for each time point by using SlamDunk
v0.3.3, a pipeline for SLAM seq data analysis, with the default pa-
rameters (Herzog et al. 2017). BecauseQuantSeq targetsmainly the
3′ end of individual RNAs in a poly(A) tail-dependent manner, the
sequence data were aligned on genome-wide 3′ UTR sequences
generated based on the human genome sequence and annotation
data (GRCh38) obtained from the Ensembl database (release 92).
Twelve bases from the 5′ end were trimmed as adaptor-clipped
reads, and then four or more subsequent adenines from the
3′ end were regarded as the remaining poly(A) tail and removed.
Multiply mapped reads were allowed up to 100 of regions. In
VarScan 2.4.1 (Koboldt et al. 2012), included in the SlamDunk
tool, an SNP was called in the case of a mismatch exceeding a
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variant fraction of 0.8 and a coverage cutoff of 10-fold. Through
these filters, we calculated the total number of reads and the num-
ber of those including non-SNP T>C conversions aligned on the
3′ UTR of individual genes. Because 4sU pairs with guanine (G)
during reverse transcription, the 4sU-labeled reads were identified
as those including T>C conversion. Because one read is generated
from one RNA, the total number of reads and the number of those
including T>C conversions correspond to the numbers of total
RNAs and 4sU-labeled RNAs, respectively. Therefore, the numbers
of reads including T>C conversion from Alkyl-RNAs and those of
reads from IP-RNAs were counted as the numbers of 4sU-labeled
and BrU-labeled RNAs, respectively, and normalized to CPM.

Identification of RNAs in a steady state

Althoughwe did not stimulate the cells in this study and the genes
should have been in a steady state, we observed that some of the
genes showed differential expression. Because the expression of a
gene in a steady state changes dependent on only white noise,
the sum of angles formed by the lines connecting each time point
is relatively small, whereas the sum of angles in a differentially ex-
pressed gene (DEG) with a constant trend is relatively large
(Supplemental Fig. S1E). Therefore, we designed a filter to exclude
the DEGs with constant trends. First, we calculated the sum of the
angles formed by the lines connecting certain time points and
neighboring ones, within a time series of total read numbers for
each gene calculated from Alkyl-RNAs. Second, we generated an
empirical distribution of the sum of angles by rearranging all
time points randomly. Finally, we calculated the probability that
the sum of angles in the empirical distribution was larger than
the actual value (empirical P-value). We calculated FDR from the
empirical P-values using Storey’s procedure (Storey et al. 2004).
Among the genes expressed at all time points, those with FDR val-
ues greater than 0.01 were identified as genes in a steady state.

Correction of newly synthesized and pre-existing

RNA numbers

Because the 4sU added to the medium labels only part of newly
synthesized RNAs owing to the incorporation efficiency, we esti-
mated the incorporation efficiency based on the time series of total
4sU-labeled RNAs. In a steady state, constant copies of 4sU-labeled
RNAs are generated, and their level decreases at a constant rate per
unit time. Therefore, the time series of 4sU-labeled RNAs in CPM
obeys the following:

x =
̂ks
̂kd

(1− e−
̂kd t )d,

where x, ̂ks, and ̂kd indicate the number of 4sU-labeled RNAs in
CPM, the RNA synthesis rate, and the degradation rate of the total
4sU-labeled RNAs, respectively. In addition, this time series as-
ymptotically approaches the ratio of ̂ks to ̂kd (̂ks/̂kd). Because the
number of newly synthesized RNAs in CPM can approximate
106, the incorporation efficiency (η) can be presented as

h =
̂ks

106 × ̂kd
.

Therefore, the numbers of newly synthesized RNAs of total
and individual genes are calculated by dividing the number of
4sU-labeled RNAs in CPM by the estimated incorporation
efficiency.

Moreover, we estimated the number of pre-existing RNAs at
each time point. Because the number of intracellular RNAs in a
steady state can be regarded as constant, the total number of pre-

existing RNAs in CPM can be determined by subtracting the total
number of newly synthesized RNAs in CPM from 1 million.
Therefore, the number of pre-existing RNAs of individual
genes was calculated by correcting the number of BrU-labeled
RNAs of individual genes in CPM by the total number of pre-exist-
ing RNAs.

Estimation of RNA synthesis and degradation rates

The numbers of newly synthesized and pre-existing RNAs increase
anddecrease, respectively, in a time-dependentmanner, according
to the RNA synthesis and degradation rates. Therefore, we estimat-
ed the RNA synthesis and degradation rates simultaneously by fit-
ting the time series of the estimated newly synthesized and pre-
existing RNA levels to

x = ks
kd

{1− e−kd (t−t0)}+ b1 (t ≥ t0)

x = b1 (t , t0)

⎧

⎨

⎩

and

x = ae−kdt + b2,

where ks, kd, α, t0, β1, and β2 indicate the RNA synthesis rate, deg-
radation rate, scaling factor, time delay, basal value for newly syn-
thesized RNAs, and basal value for pre-existing RNAs of individual
genes, respectively. The scaling factor is incorporated as the num-
ber of pre-existing RNAs at 0min. The time delay is incorporated as
the time when the newly synthesized RNAs begin to be synthe-
sized after 4sU addition. The basal value for newly synthesized
RNAs is incorporated as the number of RNAs including the inher-
ent T >Cmutant. The basal value for pre-existing RNAs is incorpo-
rated as the background of immunoprecipitation of BrU-labeled
RNAs.

The fittings were performed with the combination of an
evolutionary algorithm (genetic algorithm) and hill climbing
(L-BFGS-B algorithm) with evaluation by the least squares meth-
od in Python 2.7. The genetic algorithm was implemented using
the DEAP library with a generation number of 200, population
number of 50, crossover probability of 0.5, and mutation proba-
bility of 0.2. The boundaries of parameters are shown in Table 1.
The L-BFGS-B algorithm was implemented using the minimize
module in the SciPy package, in which the parameters estimated
by the genetic algorithm are given as initial parameters. The fit-
ness in each gene was evaluated as the correlation of actual newly
synthesized and pre-existing RNA levels with estimated values.
The probability of the null hypothesis that a population correla-
tion coefficient is equivalent to zero was calculated for each gene
using the OLS module in the StatsModels package, and the RNA
synthesis and degradation rates of the genes whose FDR as deter-
mined by Storey’s procedure (Storey et al. 2004) was less than
10−5 were extracted.

Table 1. Boundaries of parameters

Parameter Description
Lower

boundary
Upper

boundary

ks RNA synthesis rate 1.0 × 10−10 1.0 × 103

kd RNA degradation rate 1.0 × 10−8 1.0
t0 Time delay 0.0 30.0
α Scaling factor 1.0 5.0 × 103

β1 Basal value for newly
synthesized RNAs

0.0 10.0

β2 Basal value for pre-
existing RNAs

0.0 10.0
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Gene Set Enrichment Analysis

The functions of genes and their associations with the estimated
RNA synthesis and degradation rates were independently exam-
ined using GSEA 4.0.3. We set one as the control value for individ-
ual genes and sorted the genes by the ratio of the ks or kd values to
the control values (i.e., the original ks or kd values). The enrich-
ment scores (ESs) for the terms included in GSEA hallmark were
calculated using the default parameters, and empirical P-values
were calculated by comparing those with the distributions of ES
values from 10,000 randomized gene sets. The empirical P-values
were corrected as FDR. The terms with FDRs of less than 0.05
were considered as significantly enriched.

Classification of genes according to RNA synthesis and

degradation rates

Genes were classified according to associated RNA synthesis and
degradation rates. To avoid the effects of estimation error, first
and third quartiles of RNA synthesis rates and degradation rates
were adopted as thresholds of the classification. The first and third
quartiles were calculated for the RNA synthesis rate (ks) and degra-
dation rate (kd) independently: Qs1, first quartile of ks values; Qs3,
third quartile of ks values; Qd1, first quartile of kd values; and Qd3,
third quartile of kd values. By using these thresholds, we classified
the genes into four classes: Class I, fast RNA synthesis (ks>Qs3) and
fast degradation (kd>Qd3); Class II, fast RNA synthesis and slow
degradation (kd<Qd1); Class III, slow RNA synthesis (ks<Qs1) and
fast degradation; and Class IV, slow RNA synthesis and slow
degradation.

Functional enrichment analysis

The biological functions of the genes classified by the RNA synthe-
sis and degradation rates were statistically determined using the
DAVID tool v6.8 (Huang et al. 2009a,b; https://david.ncifcrf.gov/),
by examining the GO categories of biological process (GOTE
RM_BP_DIRECT), cellular component (GOTERM_CC_DIRECT),
and molecular function (GOTERM_MF_DIRECT), as well as
UniProt keywords (UP_KEYWORDS). The P-values of enrichment
were calculated by modified Fisher’s exact test (Fisher 1922;
Huang et al. 2009a, 2009b). The whole human genome (Homo sa-
piens) was used as a background (default). The biological functions
whose FDR values were less than 0.01 were identified as those that
were significantly enriched.

Estimation of time constants from published database

The time constants (τ) were calculated as a criterion of the rapidity
of the gene expression response, defined as the time when the
change in expression level reaches a particular magnitude
(Supplemental Fig. S1G). In the mathematical model, τ was de-
fined as the time when the change in expression level reaches
1 − e−1 (≈63.2%) of the final value. For experimental validation,
a prequantified data set of RNA-seq of human breast cancer–de-
rived MCF-7 cells stimulated with E2 (Baran-Gale et al. 2016)
was downloaded from NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE78169. This prequantified RNA-seq data set consists of the ex-
pression levels at 0, 1, 2, 3, 4, 5, 6, 8, 12, and 24 h after E2 stimu-
lation with triplicate data for individual time points. First, the
significance of the changes of the expression levels at each time
point after stimulation relative to those without stimulation (0
h) was tested by Welch’s t-test using the ttest_ind function of the
stats module in SciPy library (Virtanen et al. 2020). The genes
whose expression levels were significantly changed in at least

one time point were extracted as DEGs. For each DEG, we calculat-
ed the τ, redefined as the time when the expression reaches half of
the final expression level to avoid the effect of outliers of estimated
expression levels. The time constants whose identifiers were re-
placed with Ensembl Gene ID from NCBI gene ID based on
db2db on the bioDBnet web service (Mudunuri et al. 2009; https
://biodbnet-abcc.ncifcrf.gov/) were compared with the estimated
RNA synthesis and degradation rates.

Data access

The high-throughput sequencing data of Alkyl- and IP-RNAs gen-
erated in this study have been submitted to the DNA Data Bank of
Japan (DDBJ) Sequence Read Archive (DRA; https://ddbj.nig.ac.jp/
DRASearch/) under accession number DRA008497.
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