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INTRODUCTION

Personalized medicine has a huge potential of transforming healthcare standards when selection
of therapies according to standard guidelines often fails, which can be the case in oncology (1, 2),
endocrinology (3, 4), neurology (3), treatment of infectious diseases (5, 6) and hemostatic disorders
(7, 8). Nowadays, personalized approach can be based on a solid fundament of big biomedical data
obtained for an individual patient, analyzed vs. comparable datasets for other individual cases with
known clinical outcome. This can help, for example, developing new criteria for predicting response
of a cancer patient to a certain treatment.

The analysis of Big Data in oncology can benefit significantly from being empowered by
machine learning (ML) techniques (9–13) tailored for solving this “P vs. N” problem. ML is
usually defined as the study of algorithmically-built mathematical models that have been fitted
for the portion of data called the training dataset, to make predictions for the similarly-obtained
and similarly structured data called the test or validation dataset. Major principles of ML have
been formulated more than half a century ago and transformed methodology in many areas such
as engineering, physics, banking, defense, agriculture, and meteorology (11, 14). Efficiencies of
ML-based predictor/classifier models are described by specific quality metrics such as sensitivity
(Sn), specificity (Sp), area under ROC curve (AUC), accuracy rate (ACC), Matthews correlation
coefficient (MCC), or by p-values from statistical tests distinguishing one class from another (15).

However, it was only in the beginning of XXI century when such ML on Big Data became
possible in biomedicine, still not having a groundbreaking effect (16). This delay is most
probably due to relatively recent emergence of experimental methods generating big biomedical
data connected with the sufficiently developed IT infrastructure. Among those game-changing
experimental methods the major role was played by next-generation sequencing (NGS) and
novel mass-spectrometry approaches which enabled performing whole genome-, transcriptome-,
proteome-, andmetabolome analyses relatively fast and cheap (17–19), see Figure 1A. This allowed
to feed ML methods with big biomedical data thus generating beneficial outputs, also in the field
of clinical medicine. For example, over 150 scientific papers have been indexed in the PubMed
repository during last 24 months mentioningmachine learning and drug sensitivity1.

Here we will focus on applying ML for personalized medicine, primarily oncology, dealing with
attempts to generate as much as possible treatment response biomarkers from mediocre datasets.
From the point of view of classical ML approaches, most if not all of the available clinical genetic

1This is the result of a PubMed query: https://www.ncbi.nlm.nih.gov/pubmed/?term=machine$+$learning$+$drug$+

$sensitivity
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datasets are insufficient for solving the task of differentiating, e.g.,
treatment responders from non-responders (9, 20). Numbers of
features measured by NGS (e.g., mutations or gene expression
values) are far greater than numbers of individual patients with
traced clinical outcomes involved in each respective dataset.
To generate statistically significant predictions, this requires
extensive reduction of a pool of features to be considered, tomake
their number not exceeding the number of individuals analyzed
(16). To increase the number of individuals, the datasets can

FIGURE 1 | Input and output data types (A) methods for feature harmonization (B) general workflow (C) for a ML-assisted solution of typical problem in personalized

medicine; ML methods for those FDT is expected to be useful or useless (D).

be merged using cross-dataset harmonization. Different methods
can be used to harmonize data obtained using the same (21, 22) or
different experimental platforms (23, 24), or even using multiple
platforms (25) (Figure 1).

ML INPUT DATA AND WORKFLOW

For ML applications dealing with prediction of patient’s
individual response(s) on drugs and different treatment
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regimens, two types of data are most frequently
used (Figure 1A):

1. Variousmulti-omics data, i.e., mRNA,microRNA, and protein
expression levels, mutations in genomic DNA and epigenetic
profiles (primarily DNAmethylation) (26, 27). These datamay
be compared with the analogous types of data obtained on
cell cultures in relation to sensitivity to therapeutics/treatment
regimens, such as the data taken from the Broad Institute (28)
and CancerRxGene (29) projects. These examples include,
respectively, either changes of gene expression profiles
influenced by the addition of drugs to cell culturing media,
or gene expression and polymorphism/mutation profiles for
many cell lines linked with their measured sensitivities to
cancer drugs (30). These datasets are regarded plausible
models for trainingML drug sensitivity classifiers because they
have thousands of individual “cases”—pairs cell culture/drug,
each profiled in several replicates.

2. Alternatively, other types of data can be used including gender,
age, results of clinical laboratory tests, functional diagnostics
data (ECG, EEG etc.), risk factors, social anamnesis, and other
electronic health records.

A typical workflow of ML drug sensitivity assay includes the
following steps (Figure 1C):

1. Data reduction, feature selection, and building on the training
dataset. Usually, in the collected raw data, the number of
features (NF) exceeds the number of cases (NC), so that
to provide a robust ML model, one must reduce the data
to make the number of selected features (NS) lower than
NC or at least comparable to it. This goal can be achieved
in several ways. The raw data may be aggregated, e.g., in
molecular pathways (2); or co-expressed/co-mutated clusters
(31). Sometimes, the co-expression- and pathway topology-
based analysis may be combined (32).
Alternatively, they can be filtered according to specific
functional of statistical traits (e.g., only the genes coding for
tyrosine kinases are left; or genes with the highest abilities
to discriminate responders from non-responders in training
datasets) (33). The statistical methods for feature selection
may include Pearson chi-squared test (34) or correlation
test (34, 35). Other options are variance thresholding (VT),
genetic algorithms (36), univariate feature selection (UFE),
recursive feature elimination (RFE), principal component
analysis (PCA) (35), CURmatrix (37) decomposition (27) and
covariate regression (38).

2. Applying ML algorithm. The following methods may be
used: support vector machines, SVM (2, 27, 39), k nearest
neighbors, kNN (39), decision trees, DT (34, 39) or random
forest, RF (39, 40). Alternatively, one can use artificial
neural network, ANV (39), elastic net (41), back propagation
networks (42), naïve Bayesian (27), logistic (27, 39), penalized
(43), and lasso (43) regression models. In some cases,
the hybrid global-local approaches, like combination of
decision trees, random forests/SVM with kNN are used
(2, 33, 39, 44, 45).

3. Cross-validation and performance quality check. The data
obtained with the training dataset are then validated using
independent validation dataset. For the cross-validation of
machine learning methods, 5- or 10-fold cross validations
are most commonly used. For datasets with smaller number
of preceding cases (NC) the leave-one-out (LOO) scheme is
preferable (2, 33, 43).

SHIFTING THE PARADIGM

The demonstrated performance of ML classifiers was high for
problems like age recognition based on biochemical markers
(41), but significantly lower for predictions of drug response in
cancer patients (27, 46), with the exception of few reports based
on very small patient cohorts (43).

A new paradigm recently emerged of considering flexible
rather than fixed sets of features that are fitted individually
for every comparison of a biosample with the pool of
controls/training datasets (33). This can be done by means
of data trimming2—sample-specific removal of features. The
irrelevant features in a sample that don’t have significant
number of neighboring hits in the training dataset are removed
from further analyses. In a pilot application for the SVM
method of ML and high throughput gene expression data,
this enabled to dramatically increase number and quality of
biomarkers predicting responses to chemotherapy treatments for
10/10 cohorts of 46–235 cancer patients (33). Among them, in
3/10 cases basic ML applications were impossible to generate
biomarkers of a sufficient quality.

The application of flexible data trimming (FDT) procedure
prevents ML classifier from extrapolation by excluding non-
informative features. Contrary to other complex data transfer
techniques, this approach is heuristic, based on a common
geometrical sense. For each point of a validation dataset, it
takes into account only the proximal points of the training
dataset. Thus, for every point of a validation dataset, the training
dataset is adjusted to form a floating window. That was why
we called (33) our FDT method FLOating Window Projective
Separator (FloWPS).

DISCUSSION

Certainly, FloWPS is not the only possible method of data
reduction for ML in oncology. In the pilot study, a simple
PCA-based alternative was tried, which was less successful (33).

One of the major limitations of FloWPS is that it can
be time-consuming at the level of optimization of data
trimming parameters. The required computational time for such
optimization grows cubically with the number of preceding cases
in the training dataset. For example, for a 31 Gb RAM and
8·4.20 GHz CPUs computer running the Python FloWPS code
for a dataset of 46 samples (33) takes ∼20 s, whereas for a bigger
dataset of 235 samples (33) it requires already few hours.

2Data trimming is the process of removing or excluding extreme values, or outliers,

from a dataset (47).
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SVM is one of the most popular methods of ML nowadays (9,
48). However, using data trimming procedure has dramatically
improved its performance for the task of classification cancer
drug responders and non-responders. This means that it
can be highly beneficial for the other ML methods as well.
The FDT method simultaneously combines the advantages of
both global (like SVM) and local (like kNN) methods of
ML, and successfully acts even when purely local and global
approaches fail. Due to its hybrid (global + local) nature,
we expect that FloWPS may be also effective for other global
ML methods such as decision trees/random forests, neural
networks/multi-layer perceptrons, decision trees/random forests
and boosting or Bayesian methods for ML, but may be
useless for purely local approaches such as kNN or regression
models (Figure 1D).

In its first published application, the data trimming could
operate with high throughput gene expression or mutation
profiles (33). However, it can be used for any type of
Big Data in biomedicine, but not only. In this opinion
paper, we speculate that this new concept has a potential to
broadly introduce the use of ML in personalized oncology
and, possibly, significantly expand its presence in many
other fields.

AVAILABILITY OF CODE

The R package flowpspkg.tar.gz for FloWPS method and
README manual are available at GitLab through the
link: https://gitlab.com/borisov_oncobox/flowpspkg.
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